首页 > 最新文献

International Journal of Genomics最新文献

英文 中文
Identification of Circulating Exosomal miR-101 and miR-125b Panel Act as a Potential Biomarker for Hepatocellular Carcinoma. 循环外泌体miR-101和miR-125b小组行为作为肝细胞癌的潜在生物标志物的鉴定
IF 2.9 4区 生物学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2021-12-27 eCollection Date: 2021-01-01 DOI: 10.1155/2021/1326463
Li Sun, Mu Xu, Guoying Zhang, Lin Dong, Jie Wu, Chenchen Wei, Kexin Xu, Lu Zhang

Background: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with high mortality, and there is an urgent need of new diagnosis measures. This study is aimed at investigating whether circulating exosomal miRNAs could act as biomarkers for the diagnosis of HCC.

Methods: A four-stage strategy was adopted in this study. Candidate miRNA was selected by comprehensive analysis of four GEO datasets and TCGA database. The expression of candidate miRNAs in serum exosomal samples were examined through qRT-PCR. The diagnostic utility of the final validated miRNAs was examined by receiver operating characteristic (ROC) curve analysis.

Results: After synthetical analysis of four GEO datasets, six miRNAs were selected as candidates due to their higher differential fold change. miR-101 and miR-125b were selected as candidate miRNAs to further investigate their potential as biomarkers for HCC due to their differential fold change and their influence on overall survival based on the TCGA database. As a result, miR-101 and miR-125b expressions were remarkably downregulated in both tissues and serum exosomes of patients with HCC. The area under the ROC curves (AUCs) of circulating exosomal miR-101 and miR-125b were 0.894 (95% CI, 0.793-0.994) and 0.812 (95% CI, 0.675-0.950), respectively. The combination of the two miRNAs presented higher diagnostic utility for HCC (AUC = 0.953).

Conclusion: The exosomal miR-101 and miR-125b panel in the serum may act as a noninvasive biomarker for HCC detection.

背景:肝细胞癌(HCC)是世界范围内最常见的高死亡率癌症之一,迫切需要新的诊断手段。本研究旨在探讨循环外泌体mirna是否可以作为HCC诊断的生物标志物。方法:本研究采用四阶段策略。通过对四个GEO数据集和TCGA数据库的综合分析,选择候选miRNA。通过qRT-PCR检测血清外泌体样本中候选mirna的表达。通过受试者工作特征(ROC)曲线分析检验最终验证的mirna的诊断效用。结果:在对4个GEO数据集进行综合分析后,6个mirna因其较高的差异折叠变化而被选为候选mirna。根据TCGA数据库,我们选择miR-101和miR-125b作为候选mirna,进一步研究它们作为HCC生物标志物的潜力,因为它们的差异变化及其对总体生存的影响。因此,在HCC患者的组织和血清外泌体中,miR-101和miR-125b的表达均显著下调。循环外泌体miR-101和miR-125b的ROC曲线下面积(auc)分别为0.894 (95% CI, 0.793-0.994)和0.812 (95% CI, 0.675-0.950)。两种mirna联合使用对HCC具有较高的诊断价值(AUC = 0.953)。结论:血清中外泌体miR-101和miR-125b可作为HCC检测的无创生物标志物。
{"title":"Identification of Circulating Exosomal miR-101 and miR-125b Panel Act as a Potential Biomarker for Hepatocellular Carcinoma.","authors":"Li Sun,&nbsp;Mu Xu,&nbsp;Guoying Zhang,&nbsp;Lin Dong,&nbsp;Jie Wu,&nbsp;Chenchen Wei,&nbsp;Kexin Xu,&nbsp;Lu Zhang","doi":"10.1155/2021/1326463","DOIUrl":"https://doi.org/10.1155/2021/1326463","url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with high mortality, and there is an urgent need of new diagnosis measures. This study is aimed at investigating whether circulating exosomal miRNAs could act as biomarkers for the diagnosis of HCC.</p><p><strong>Methods: </strong>A four-stage strategy was adopted in this study. Candidate miRNA was selected by comprehensive analysis of four GEO datasets and TCGA database. The expression of candidate miRNAs in serum exosomal samples were examined through qRT-PCR. The diagnostic utility of the final validated miRNAs was examined by receiver operating characteristic (ROC) curve analysis.</p><p><strong>Results: </strong>After synthetical analysis of four GEO datasets, six miRNAs were selected as candidates due to their higher differential fold change. miR-101 and miR-125b were selected as candidate miRNAs to further investigate their potential as biomarkers for HCC due to their differential fold change and their influence on overall survival based on the TCGA database. As a result, miR-101 and miR-125b expressions were remarkably downregulated in both tissues and serum exosomes of patients with HCC. The area under the ROC curves (AUCs) of circulating exosomal miR-101 and miR-125b were 0.894 (95% CI, 0.793-0.994) and 0.812 (95% CI, 0.675-0.950), respectively. The combination of the two miRNAs presented higher diagnostic utility for HCC (AUC = 0.953).</p><p><strong>Conclusion: </strong>The exosomal miR-101 and miR-125b panel in the serum may act as a noninvasive biomarker for HCC detection.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8723878/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39649754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Recent Duplications Dominate VQ and WRKY Gene Expansions in Six Prunus Species. 在6种李属植物中,VQ和WRKY基因扩增以近期重复为主。
IF 2.9 4区 生物学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2021-12-17 eCollection Date: 2021-01-01 DOI: 10.1155/2021/4066394
Yan Zhong, Ping Wang, Xiaohui Zhang, Zong-Ming Cheng

Genes encoding VQ motif-containing (VQ) transcriptional regulators and WRKY transcription factors can participate separately or jointly in plant growth, development, and abiotic and biotic stress responses. In this study, 222 VQ and 645 WRKY genes were identified in six Prunus species. Based on phylogenetic tree topologies, the VQ and WRKY genes were classified into 13 and 32 clades, respectively. Therefore, at least 13 VQ gene copies and 32 WRKY gene copies were present in the genome of the common ancestor of the six Prunus species. Similar small Ks value peaks for the VQ and WRKY genes suggest that the two gene families underwent recent duplications in the six studied species. The majority of the Ka/Ks ratios were less than 1, implying that most of the VQ and WRKY genes had undergone purifying selection. Pi values were significantly higher in the VQ genes than in the WRKY genes, and the VQ genes therefore exhibited greater nucleotide diversity in the six species. Forty-one of the Prunus VQ genes were predicted to interact with 44 of the WRKY genes, and the expression levels of some predicted VQ-WRKY interacting pairs were significantly correlated. Differential expression patterns of the VQ and WRKY genes suggested that some might be involved in regulating aphid resistance in P. persica and fruit development in P. avium.

编码VQ基序转录调控因子和WRKY转录因子的基因可以单独或共同参与植物的生长发育以及非生物和生物胁迫反应。在6种李属植物中共鉴定出222个VQ基因和645个WRKY基因。基于系统发育树拓扑结构,VQ和WRKY基因分别被划分为13个和32个支系。因此,6种李树共同祖先的基因组中至少存在13个VQ基因拷贝和32个WRKY基因拷贝。VQ和WRKY基因相似的小k值峰值表明,这两个基因家族在6个研究物种中最近发生了重复。大部分的Ka/Ks比小于1,说明大部分VQ和WRKY基因都经历了纯化选择。VQ基因的Pi值显著高于WRKY基因,因此VQ基因在6个物种中表现出更大的核苷酸多样性。41个李树VQ基因预测与44个WRKY基因互作,部分预测VQ-WRKY互作对的表达量呈显著相关。VQ和WRKY基因的差异表达模式表明,其中一些基因可能参与调节桃蚜抗性和鸟桃果实发育。
{"title":"Recent Duplications Dominate VQ and WRKY Gene Expansions in Six <i>Prunus</i> Species.","authors":"Yan Zhong,&nbsp;Ping Wang,&nbsp;Xiaohui Zhang,&nbsp;Zong-Ming Cheng","doi":"10.1155/2021/4066394","DOIUrl":"https://doi.org/10.1155/2021/4066394","url":null,"abstract":"<p><p>Genes encoding VQ motif-containing (VQ) transcriptional regulators and WRKY transcription factors can participate separately or jointly in plant growth, development, and abiotic and biotic stress responses. In this study, 222 VQ and 645 WRKY genes were identified in six <i>Prunus</i> species. Based on phylogenetic tree topologies, the VQ and WRKY genes were classified into 13 and 32 clades, respectively. Therefore, at least 13 VQ gene copies and 32 WRKY gene copies were present in the genome of the common ancestor of the six <i>Prunus</i> species. Similar small Ks value peaks for the VQ and WRKY genes suggest that the two gene families underwent recent duplications in the six studied species. The majority of the Ka/Ks ratios were less than 1, implying that most of the VQ and WRKY genes had undergone purifying selection. Pi values were significantly higher in the VQ genes than in the WRKY genes, and the VQ genes therefore exhibited greater nucleotide diversity in the six species. Forty-one of the <i>Prunus</i> VQ genes were predicted to interact with 44 of the WRKY genes, and the expression levels of some predicted VQ-WRKY interacting pairs were significantly correlated. Differential expression patterns of the VQ and WRKY genes suggested that some might be involved in regulating aphid resistance in <i>P. persica</i> and fruit development in <i>P. avium</i>.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39645284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Prediction of the Sex-Associated Genomic Region in Tunas (Thunnus Fishes). 金枪鱼(Thunnus Fish)性别相关基因组区域的预测。
IF 2.9 4区 生物学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2021-12-14 eCollection Date: 2021-01-01 DOI: 10.1155/2021/7226353
Yoji Nakamura, Kentaro Higuchi, Kazunori Kumon, Motoshige Yasuike, Toshinori Takashi, Koichiro Gen, Atushi Fujiwara

Fish species have a variety of sex determination systems. Tunas (genus Thunnus) have an XY genetic sex determination system. However, the Y chromosome or responsible locus has not yet been identified in males. In a previous study, a female genome of Pacific bluefin tuna (T. orientalis) was sequenced, and candidates for sex-associated DNA polymorphisms were identified by a genome-wide association study using resequencing data. In the present study, we sequenced a male genome of Pacific bluefin tuna by long-read and linked-read sequencing technologies and explored male-specific loci through a comparison with the female genome. As a result, we found a unique region carrying the male-specific haplotype, where a homolog of estrogen sulfotransferase gene was predicted to be encoded. The genome-wide mapping of previously resequenced data indicated that, among the functionally annotated genes, only this gene, named sult1st6y, was paternally inherited in the males of Pacific bluefin tuna. We reviewed the RNA-seq data of southern bluefin tuna (T. maccoyii) in the public database and found that sult1st6y of southern bluefin tuna was expressed in all male testes, but absent or suppressed in the female ovary. Since estrogen sulfotransferase is responsible for the inactivation of estrogens, it is reasonable to assume that the expression of sult1st6y in gonad cells may inhibit female development, thereby inducing the individuals to become males. Thus, our results raise a promising hypothesis that sult1st6y is the sex determination gene in Thunnus fishes or at least functions at a crucial point in the sex-differentiation cascade.

鱼类物种有多种性别决定系统。金枪鱼(金枪鱼属)具有 XY 遗传性别决定系统。然而,雄性金枪鱼的 Y 染色体或负责基因座尚未确定。在之前的一项研究中,我们对太平洋蓝鳍金枪鱼(T. orientalis)的雌性基因组进行了测序,并利用重测序数据通过全基因组关联研究确定了与性别相关的候选 DNA 多态性。在本研究中,我们利用长读取和链接读取测序技术对太平洋蓝鳍金枪鱼的雄性基因组进行了测序,并通过与雌性基因组的比较探索雄性特异性位点。结果,我们发现了一个携带雄性特异性单倍型的独特区域,该区域被预测编码了雌激素磺基转移酶基因的同源物。对先前重新测序数据进行的全基因组图谱分析表明,在功能注释基因中,只有这个名为 sult1st6y 的基因在太平洋蓝鳍金枪鱼雄鱼中是父系遗传的。我们查阅了公共数据库中南方蓝鳍金枪鱼(T. maccoyii)的 RNA-seq 数据,发现南方蓝鳍金枪鱼的 sult1st6y 在所有雄性睾丸中均有表达,但在雌性卵巢中没有表达或表达受抑制。由于雌激素磺基转移酶负责雌激素的灭活,我们有理由推测,性腺细胞中 sult1st6y 的表达可能会抑制雌性发育,从而诱导个体变为雄性。因此,我们的研究结果提出了一个很有希望的假设,即 sult1st6y 是塘鹅科鱼类的性别决定基因,或至少在性别分化级联中的一个关键点起作用。
{"title":"Prediction of the Sex-Associated Genomic Region in Tunas (<i>Thunnus</i> Fishes).","authors":"Yoji Nakamura, Kentaro Higuchi, Kazunori Kumon, Motoshige Yasuike, Toshinori Takashi, Koichiro Gen, Atushi Fujiwara","doi":"10.1155/2021/7226353","DOIUrl":"10.1155/2021/7226353","url":null,"abstract":"<p><p>Fish species have a variety of sex determination systems. Tunas (genus <i>Thunnus</i>) have an XY genetic sex determination system. However, the Y chromosome or responsible locus has not yet been identified in males. In a previous study, a female genome of Pacific bluefin tuna (<i>T. orientalis</i>) was sequenced, and candidates for sex-associated DNA polymorphisms were identified by a genome-wide association study using resequencing data. In the present study, we sequenced a male genome of Pacific bluefin tuna by long-read and linked-read sequencing technologies and explored male-specific loci through a comparison with the female genome. As a result, we found a unique region carrying the male-specific haplotype, where a homolog of estrogen sulfotransferase gene was predicted to be encoded. The genome-wide mapping of previously resequenced data indicated that, among the functionally annotated genes, only this gene, named <i>sult1st6y</i>, was paternally inherited in the males of Pacific bluefin tuna. We reviewed the RNA-seq data of southern bluefin tuna (<i>T. maccoyii</i>) in the public database and found that <i>sult1st6y</i> of southern bluefin tuna was expressed in all male testes, but absent or suppressed in the female ovary. Since estrogen sulfotransferase is responsible for the inactivation of estrogens, it is reasonable to assume that the expression of <i>sult1st6y</i> in gonad cells may inhibit female development, thereby inducing the individuals to become males. Thus, our results raise a promising hypothesis that <i>sult1st6y</i> is the sex determination gene in <i>Thunnus</i> fishes or at least functions at a crucial point in the sex-differentiation cascade.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693018/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39766467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
circHUWE1 Exerts an Oncogenic Role in Inducing DDP-Resistant NSCLC Progression Depending on the Regulation of miR-34a-5p/TNFAIP8. circHUWE1通过调控miR-34a-5p/TNFAIP8在诱导ddp耐药NSCLC进展中发挥致癌作用。
IF 2.9 4区 生物学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2021-12-03 eCollection Date: 2021-01-01 DOI: 10.1155/2021/3997045
Xueliang Yang, Quan Sun, Yongming Song, Wenli Li

Background: Circular RNAs (circRNAs) are reported as competing endogenous RNAs (ceRNAs) and play key roles in non-small-cell lung cancer (NSCLC) progression. Thus, this study was aimed at clarifying underlying molecular mechanisms of circHUWE1 in NSCLC.

Methods: The quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analyses were used for examining circHUWE1, microRNA-34a-5p (miR-34a-5p), and tumor necrosis factor alpha-induced protein 8 (TNFAIP8). IC50 of cisplatin (DDP) in A549/DDP and H1299/DDP cells and cell viability were analyzed by the Cell Counting Kit 8 (CCK-8) assay. Colony forming assay was performed to assess colony forming ability. Cell apoptosis and cell cycle distribution were determined by flow cytometry. Migrated and invaded cell numbers were examined by transwell assay. The association among circHUWE1, miR-34a-5p, and TNFAIP8 was analyzed by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft experiment was applied to clarify the functional role of circHUWE1 in vivo.

Results: circHUWE1 was upregulated in NSCLC tissues and cells, especially in DDP-resistant groups. circHUWE1 downregulation inhibited DDP resistance, proliferation, migration, and invasion while it induced apoptosis and cell cycle arrest of DDP-resistant NSCLC cells, which was overturned by silencing of miR-34a-5p. TNFAIP8 was a functional gene of miR-34a-5p, and the suppressive effects of miR-34a-5p overexpression on DDP-resistant NSCLC progression were dependent on the suppression of TNFAIP8. circHUWE1 inhibition also delayed tumor growth of DDP-resistant NSCLC cells.

Conclusion: circHUWE1 functioned as a promoter in DDP-resistant NSCLC by interaction with miR-34a-5p-TNFAIP8 networks, providing novel insight into DDP-resistant NSCLC diagnosis and treatment.

背景:环状rna (circRNAs)被报道为竞争内源性rna (ceRNAs),在非小细胞肺癌(NSCLC)进展中发挥关键作用。因此,本研究旨在阐明circHUWE1在非小细胞肺癌中的潜在分子机制。方法:采用实时定量聚合酶链反应(RT-qPCR)和western blot检测circHUWE1、microRNA-34a-5p (miR-34a-5p)和肿瘤坏死因子α诱导蛋白8 (TNFAIP8)。采用细胞计数试剂盒8 (CCK-8)检测A549/DDP和H1299/DDP细胞中顺铂(DDP)的IC50和细胞活力。采用菌落形成试验评价菌落形成能力。流式细胞术检测细胞凋亡和细胞周期分布。transwell法检测迁移和侵袭细胞数量。通过双荧光素酶报告基因和RNA免疫沉淀法分析circHUWE1、miR-34a-5p和TNFAIP8之间的关联。通过异种移植实验来阐明circHUWE1在体内的功能作用。结果:circHUWE1在NSCLC组织和细胞中表达上调,尤其是在ddp耐药组。circHUWE1下调抑制DDP耐药、增殖、迁移和侵袭,同时诱导DDP耐药NSCLC细胞凋亡和细胞周期阻滞,这一过程被miR-34a-5p沉默推翻。TNFAIP8是miR-34a-5p的功能基因,miR-34a-5p过表达对ddp耐药NSCLC进展的抑制作用依赖于对TNFAIP8的抑制。circHUWE1抑制也延迟了ddp耐药NSCLC细胞的肿瘤生长。结论:circHUWE1通过与miR-34a-5p-TNFAIP8网络相互作用,在ddp耐药NSCLC中发挥启动子作用,为ddp耐药NSCLC的诊断和治疗提供了新的见解。
{"title":"circHUWE1 Exerts an Oncogenic Role in Inducing DDP-Resistant NSCLC Progression Depending on the Regulation of miR-34a-5p/TNFAIP8.","authors":"Xueliang Yang,&nbsp;Quan Sun,&nbsp;Yongming Song,&nbsp;Wenli Li","doi":"10.1155/2021/3997045","DOIUrl":"https://doi.org/10.1155/2021/3997045","url":null,"abstract":"<p><strong>Background: </strong>Circular RNAs (circRNAs) are reported as competing endogenous RNAs (ceRNAs) and play key roles in non-small-cell lung cancer (NSCLC) progression. Thus, this study was aimed at clarifying underlying molecular mechanisms of circHUWE1 in NSCLC.</p><p><strong>Methods: </strong>The quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analyses were used for examining circHUWE1, microRNA-34a-5p (miR-34a-5p), and tumor necrosis factor alpha-induced protein 8 (TNFAIP8). IC<sub>50</sub> of cisplatin (DDP) in A549/DDP and H1299/DDP cells and cell viability were analyzed by the Cell Counting Kit 8 (CCK-8) assay. Colony forming assay was performed to assess colony forming ability. Cell apoptosis and cell cycle distribution were determined by flow cytometry. Migrated and invaded cell numbers were examined by transwell assay. The association among circHUWE1, miR-34a-5p, and TNFAIP8 was analyzed by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft experiment was applied to clarify the functional role of circHUWE1 <i>in vivo</i>.</p><p><strong>Results: </strong>circHUWE1 was upregulated in NSCLC tissues and cells, especially in DDP-resistant groups. circHUWE1 downregulation inhibited DDP resistance, proliferation, migration, and invasion while it induced apoptosis and cell cycle arrest of DDP-resistant NSCLC cells, which was overturned by silencing of miR-34a-5p. TNFAIP8 was a functional gene of miR-34a-5p, and the suppressive effects of miR-34a-5p overexpression on DDP-resistant NSCLC progression were dependent on the suppression of TNFAIP8. circHUWE1 inhibition also delayed tumor growth of DDP-resistant NSCLC cells.</p><p><strong>Conclusion: </strong>circHUWE1 functioned as a promoter in DDP-resistant NSCLC by interaction with miR-34a-5p-TNFAIP8 networks, providing novel insight into DDP-resistant NSCLC diagnosis and treatment.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39597639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Transcriptome Analysis of Jujube (Ziziphus jujuba Mill.) Response to Heat Stress. 红枣(Ziziphus jujuba Mill.)对热应激反应的转录组分析。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-12-02 eCollection Date: 2021-01-01 DOI: 10.1155/2021/3442277
Lei Yang, Juan Jin, Dingyu Fan, Qing Hao, Jianxin Niu

Heat stress (HS) is a common stress influencing the growth and reproduction of plant species. Jujube (Ziziphus jujuba Mill.) is an economically important tree with strong abiotic stress resistance, but the molecular mechanism of its response to HS remains elusive. In this study, we subjected seedlings of Z. jujuba cultivar "Hqing1-HR" to HS (45°C) for 0, 1, 3, 5, and 7 days, respectively, and collected the leaf samples (HR0, HR1, HR3, HR5, and HR7) accordingly. Fifteen cDNA libraries from leaves were constructed for transcriptomics assays. RNA sequencing and transcriptomics identified 1,642, 4,080, 5,160, and 2,119 differentially expressed genes (DEGs) in comparisons of HR1 vs. HR0, HR3 vs. HR0, HR5 vs. HR0, and HR7 vs. HR0, respectively. Gene ontology analyses of the DEGs from these comparisons revealed enrichment in a series of biological processes involved in stress responses, photosynthesis, and metabolism, suggesting that lowering or upregulating expression of these genes might play important roles in the response to HS. This study contributed to our understanding of the molecular mechanism of jujube response to HS and will be beneficial for developing jujube cultivars with improved heat resistance.

热胁迫(HS)是影响植物物种生长和繁殖的常见胁迫。枣树(Ziziphus jujuba Mill.)在本研究中,我们将栽培品种 "Hqing1-HR "的幼苗分别置于HS(45°C)条件下0、1、3、5和7天,并收集相应的叶片样本(HR0、HR1、HR3、HR5和HR7)。从叶片中构建了 15 个 cDNA 文库,用于转录组学检测。通过 RNA 测序和转录组学分析,在 HR1 vs. HR0、HR3 vs. HR0、HR5 vs. HR0 和 HR7 vs. HR0 的比较中分别发现了 1,642 个、4,080 个、5,160 个和 2,119 个差异表达基因(DEGs)。对这些比较中的 DEGs 进行的基因本体分析表明,这些 DEGs 富集于一系列涉及胁迫响应、光合作用和新陈代谢的生物过程中,表明降低或上调这些基因的表达可能在对 HS 的响应中发挥重要作用。这项研究有助于我们了解红枣对HS响应的分子机制,对培育抗热性更强的红枣栽培品种大有裨益。
{"title":"Transcriptome Analysis of Jujube (<i>Ziziphus jujuba</i> Mill.) Response to Heat Stress.","authors":"Lei Yang, Juan Jin, Dingyu Fan, Qing Hao, Jianxin Niu","doi":"10.1155/2021/3442277","DOIUrl":"10.1155/2021/3442277","url":null,"abstract":"<p><p>Heat stress (HS) is a common stress influencing the growth and reproduction of plant species. Jujube (<i>Ziziphus jujuba</i> Mill.) is an economically important tree with strong abiotic stress resistance, but the molecular mechanism of its response to HS remains elusive. In this study, we subjected seedlings of <i>Z. jujuba</i> cultivar \"Hqing1-HR\" to HS (45°C) for 0, 1, 3, 5, and 7 days, respectively, and collected the leaf samples (HR0, HR1, HR3, HR5, and HR7) accordingly. Fifteen cDNA libraries from leaves were constructed for transcriptomics assays. RNA sequencing and transcriptomics identified 1,642, 4,080, 5,160, and 2,119 differentially expressed genes (DEGs) in comparisons of HR1 vs. HR0, HR3 vs. HR0, HR5 vs. HR0, and HR7 vs. HR0, respectively. Gene ontology analyses of the DEGs from these comparisons revealed enrichment in a series of biological processes involved in stress responses, photosynthesis, and metabolism, suggesting that lowering or upregulating expression of these genes might play important roles in the response to HS. This study contributed to our understanding of the molecular mechanism of jujube response to HS and will be beneficial for developing jujube cultivars with improved heat resistance.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8660251/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39597638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic Diversity and Population Structure of Moroccan Isolates Belong to Alternaria spp. Causing Black Rot and Brown Spot in Citrus. 柑橘黑腐病和褐斑病摩洛哥分离株的遗传多样性和群体结构。
IF 2.9 4区 生物学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2021-11-23 eCollection Date: 2021-01-01 DOI: 10.1155/2021/9976969
Lamyaa Zelmat, Joseph Mbasani Mansi, Sarra Aouzal, Fatima Gaboun, Slimane Khayi, Mohammed Ibriz, Mohammed El Guilli, Rachid Mentag

Alternaria alternata is one of the most important fungi causing various diseases on citrus worldwide. In Morocco, Alternaria black rot (ABR) and Alternaria brown spot (ABS) are two major diseases causing serious losses in commercial cultivars of citrus. The aim of the present work was to study the genetic diversity and the population structure of isolates belonging to sect. Alternaria obtained from infected citrus fruits, collected from seven provinces at different locations in Morocco (markets, packinghouses, and orchards). Forty-five isolates were analyzed by sequence-related amplified polymorphism (SRAP) markers, and cluster analysis of DNA fragments was performed using UPGMA method and Jaccard coefficient. Cluster analysis revealed that isolates were classified in four distinct groups. AMOVA revealed also a large extent of variation within sect. Alternaria isolates (99%). The results demonstrate that no correlation was found among SRAP pattern, host, and geographical origin of these isolates. Population structure analyses showed that the Alternaria isolates from the same collection origin had almost a similar level of admixture.

Alternaria alternata是世界范围内引起柑橘多种疾病的重要真菌之一。在摩洛哥,链格孢黑腐病(ABR)和链格孢褐色斑点病(ABS)是造成柑橘商业品种严重损失的两种主要病害。本研究的目的是研究该菌株的遗传多样性和种群结构。链格孢菌是从摩洛哥七个省不同地点(市场、包装厂和果园)采集的受感染柑橘类水果中获得的。用序列相关扩增多态性(SRAP)标记对45个分离株进行分析,并用UPGMA法和Jaccard系数对DNA片段进行聚类分析。聚类分析显示,分离物分为四个不同的组。AMOVA还揭示了教派内部的很大程度的差异。链格孢分离株(99%)。结果表明,这些分离株的SRAP模式、宿主和地理来源之间没有相关性。种群结构分析表明,来自同一采集来源的链格孢分离株具有几乎相似的混合水平。
{"title":"Genetic Diversity and Population Structure of Moroccan Isolates Belong to <i>Alternaria</i> spp. Causing Black Rot and Brown Spot in Citrus.","authors":"Lamyaa Zelmat,&nbsp;Joseph Mbasani Mansi,&nbsp;Sarra Aouzal,&nbsp;Fatima Gaboun,&nbsp;Slimane Khayi,&nbsp;Mohammed Ibriz,&nbsp;Mohammed El Guilli,&nbsp;Rachid Mentag","doi":"10.1155/2021/9976969","DOIUrl":"10.1155/2021/9976969","url":null,"abstract":"<p><p><i>Alternaria alternata</i> is one of the most important fungi causing various diseases on citrus worldwide. In Morocco, Alternaria black rot (ABR) and Alternaria brown spot (ABS) are two major diseases causing serious losses in commercial cultivars of citrus. The aim of the present work was to study the genetic diversity and the population structure of isolates belonging to sect. <i>Alternaria</i> obtained from infected citrus fruits, collected from seven provinces at different locations in Morocco (markets, packinghouses, and orchards). Forty-five isolates were analyzed by sequence-related amplified polymorphism (SRAP) markers, and cluster analysis of DNA fragments was performed using UPGMA method and Jaccard coefficient. Cluster analysis revealed that isolates were classified in four distinct groups. AMOVA revealed also a large extent of variation within sect. <i>Alternaria</i> isolates (99%). The results demonstrate that no correlation was found among SRAP pattern, host, and geographical origin of these isolates. Population structure analyses showed that the <i>Alternaria</i> isolates from the same collection origin had almost a similar level of admixture.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39687757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
MicroRNA as a Potential Biomarker and Treatment Strategy for Ischemia-Reperfusion Injury. MicroRNA作为缺血再灌注损伤的潜在生物标志物和治疗策略。
IF 2.9 4区 生物学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2021-11-20 eCollection Date: 2021-01-01 DOI: 10.1155/2021/9098145
Mingming Cao, Wenjing Song, Runyu Liang, Lili Teng, Mei Zhang, Jiyao Zhang, Luwen Zhu

Ischemia-reperfusion (I/R) injury is a progressive injury that aggravates the pathological state when the organ tissue restores blood supply after a certain period of ischemia, including the myocardial, brain, liver, kidney, and intestinal. With growing evidence that microRNAs (miRNAs) play an important role as posttranscription gene silencing mediators in many I/R injury, in this review, we highlight the microRNAs that are related to I/R injury and their regulatory molecular pathways. In addition, we discussed the potential role of miRNA as a biomarker and its role as a target in I/R injury treatment. Developing miRNAs are not without its challenges, but prudent design combined with existing clinical treatments will result in more effective therapies for I/R injury. This review is aimed at providing new research results obtained in this research field. It is hoped that new research on this topic will not only generate new insights into the pathophysiology of miRNA in I/R injury but also can provide a basis for the clinical application of miRNA in I/R.

缺血再灌注(I/R)损伤是指心肌、脑、肝、肾、肠等器官组织在缺血一定时期后恢复血液供应,使病理状态加重的进行性损伤。随着越来越多的证据表明microRNAs (miRNAs)在许多I/R损伤中作为转录后基因沉默介质发挥重要作用,在本文中,我们重点介绍了与I/R损伤相关的microRNAs及其调控分子途径。此外,我们还讨论了miRNA作为生物标志物的潜在作用及其在I/R损伤治疗中的作用。开发mirna并非没有挑战,但谨慎的设计结合现有的临床治疗方法将使I/R损伤的治疗更有效。本文旨在介绍这一研究领域的最新研究成果。希望本课题的新研究不仅能对miRNA在I/R损伤中的病理生理有新的认识,也能为miRNA在I/R中的临床应用提供依据。
{"title":"MicroRNA as a Potential Biomarker and Treatment Strategy for Ischemia-Reperfusion Injury.","authors":"Mingming Cao,&nbsp;Wenjing Song,&nbsp;Runyu Liang,&nbsp;Lili Teng,&nbsp;Mei Zhang,&nbsp;Jiyao Zhang,&nbsp;Luwen Zhu","doi":"10.1155/2021/9098145","DOIUrl":"https://doi.org/10.1155/2021/9098145","url":null,"abstract":"<p><p>Ischemia-reperfusion (I/R) injury is a progressive injury that aggravates the pathological state when the organ tissue restores blood supply after a certain period of ischemia, including the myocardial, brain, liver, kidney, and intestinal. With growing evidence that microRNAs (miRNAs) play an important role as posttranscription gene silencing mediators in many I/R injury, in this review, we highlight the microRNAs that are related to I/R injury and their regulatory molecular pathways. In addition, we discussed the potential role of miRNA as a biomarker and its role as a target in I/R injury treatment. Developing miRNAs are not without its challenges, but prudent design combined with existing clinical treatments will result in more effective therapies for I/R injury. This review is aimed at providing new research results obtained in this research field. It is hoped that new research on this topic will not only generate new insights into the pathophysiology of miRNA in I/R injury but also can provide a basis for the clinical application of miRNA in I/R.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39677819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Identification of the circRNA-miRNA-mRNA Regulatory Network in Bladder Cancer by Bioinformatics Analysis. 用生物信息学分析鉴定膀胱癌中circRNA-miRNA-mRNA调控网络。
IF 2.9 4区 生物学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2021-11-16 eCollection Date: 2021-01-01 DOI: 10.1155/2021/9935986
Jiancheng Lv, Ping-An Chang, Xin Li, Xiao Yang, Jie Han, Hao Yu, Zijian Zhou, Haiwei Yang, Pengchao Li, Jiexiu Zhang, Qiang Lu

In recent years, increasing evidence shows that circular RNA (circRNA) disorder is closely related to tumorigenesis and cancer progression. However, the regulatory functions of most circRNAs in bladder cancer (BCa) remain unclear. This study was aimed at exploring the molecular regulatory mechanism of circRNAs in BCa. We obtained four datasets of circRNA, microRNA (miRNA), and messenger (mRNA) expression profiles from the Gene Expression Omnibus and The Cancer Genome Atlas microarray databases and identified 434, 367, and 4799/4841 differentially expressed circRNAs, miRNAs, and mRNAs, respectively. With these differentially expressed RNAs, we established a circRNA-miRNA-mRNA targeted interaction network. A total of 18, 24, and 51 central circRNAs, miRNAs, and mRNAs were identified, respectively. Among them, the top 10 mRNAs that had high connectivity with other circRNAs and miRNAs were regarded as hub genes. We detected the expression levels of these 10 mRNAs in 16 pairs of BCa tissues and adjacent normal tissues through quantitative real-time polymerase chain reaction. The differentially expressed mRNAs and central mRNAs were enriched in the processes and pathways that are associated with the growth, differentiation, proliferation, and apoptosis of tumor cells. The outstanding genes (CDCA4, GATA6, LATS2, RHOB, ZBTB4, and ZFPM2) also interacted with numerous drugs, indicating their potency as biomarkers and drug targets. The findings of this study provide a deep understanding of the circRNA-related competitive endogenous RNA regulatory mechanism in BCa pathogenesis.

近年来,越来越多的证据表明,环状RNA (circRNA)紊乱与肿瘤发生和癌症进展密切相关。然而,大多数circrna在膀胱癌(BCa)中的调节功能尚不清楚。本研究旨在探索环状rna在BCa中的分子调控机制。我们从Gene expression Omnibus和the Cancer Genome Atlas微阵列数据库中获得了四个circRNA、microRNA (miRNA)和信使(mRNA)表达谱数据集,并分别鉴定出434、367和4799/4841个差异表达的circRNA、miRNA和mRNA。利用这些差异表达的rna,我们建立了一个circRNA-miRNA-mRNA靶向相互作用网络。共鉴定出18、24和51个中心环状rna、mirna和mrna。其中,与其他circrna和mirna具有高度连通性的前10位mrna被视为枢纽基因。我们通过实时定量聚合酶链反应检测了这10种mrna在16对BCa组织和邻近正常组织中的表达水平。差异表达mrna和中心mrna在与肿瘤细胞生长、分化、增殖和凋亡相关的过程和途径中富集。突出的基因(CDCA4、GATA6、LATS2、RHOB、ZBTB4和ZFPM2)也与许多药物相互作用,表明它们作为生物标志物和药物靶点的潜力。本研究结果为深入了解BCa发病机制中与circrna相关的竞争性内源性RNA调控机制提供了依据。
{"title":"Identification of the circRNA-miRNA-mRNA Regulatory Network in Bladder Cancer by Bioinformatics Analysis.","authors":"Jiancheng Lv,&nbsp;Ping-An Chang,&nbsp;Xin Li,&nbsp;Xiao Yang,&nbsp;Jie Han,&nbsp;Hao Yu,&nbsp;Zijian Zhou,&nbsp;Haiwei Yang,&nbsp;Pengchao Li,&nbsp;Jiexiu Zhang,&nbsp;Qiang Lu","doi":"10.1155/2021/9935986","DOIUrl":"https://doi.org/10.1155/2021/9935986","url":null,"abstract":"<p><p>In recent years, increasing evidence shows that circular RNA (circRNA) disorder is closely related to tumorigenesis and cancer progression. However, the regulatory functions of most circRNAs in bladder cancer (BCa) remain unclear. This study was aimed at exploring the molecular regulatory mechanism of circRNAs in BCa. We obtained four datasets of circRNA, microRNA (miRNA), and messenger (mRNA) expression profiles from the Gene Expression Omnibus and The Cancer Genome Atlas microarray databases and identified 434, 367, and 4799/4841 differentially expressed circRNAs, miRNAs, and mRNAs, respectively. With these differentially expressed RNAs, we established a circRNA-miRNA-mRNA targeted interaction network. A total of 18, 24, and 51 central circRNAs, miRNAs, and mRNAs were identified, respectively. Among them, the top 10 mRNAs that had high connectivity with other circRNAs and miRNAs were regarded as hub genes. We detected the expression levels of these 10 mRNAs in 16 pairs of BCa tissues and adjacent normal tissues through quantitative real-time polymerase chain reaction. The differentially expressed mRNAs and central mRNAs were enriched in the processes and pathways that are associated with the growth, differentiation, proliferation, and apoptosis of tumor cells. The outstanding genes (CDCA4, GATA6, LATS2, RHOB, ZBTB4, and ZFPM2) also interacted with numerous drugs, indicating their potency as biomarkers and drug targets. The findings of this study provide a deep understanding of the circRNA-related competitive endogenous RNA regulatory mechanism in BCa pathogenesis.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39660489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Downregulation of the Coiled-Coil Domain Containing 80 and Its Perspective Mechanisms in Ovarian Carcinoma: A Comprehensive Study. 含80的coil - coil结构域在卵巢癌中的下调及其机制:一项综合研究。
IF 2.9 4区 生物学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2021-11-15 eCollection Date: 2021-01-01 DOI: 10.1155/2021/3752871
Zi-Qian Liang, Li Gao, Jun-Hong Chen, Wen-Bin Dai, Ya-Si Su, Gang Chen

Introduction: We aimed to explore the downregulation of the coiled-coil domain containing 80 (CCDC80) and its underlying molecular mechanisms in ovarian carcinoma (OVCA). Materials/Methods. Immunohistochemical staining was performed to confirm the expression status of CCDC80 protein. Combining the data from in-house tissue microarrays and high-throughput datasets, we identified the expression level of CCDC80 in OVCA. We utilized cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm and single-sample gene set enrichment analysis (ssGSEA) to explore the relationship between CCDC80 and the tumor microenvironment (TME) landscape in OVCA. Pathway enrichment, function annotation, and transcription factor (TFs) exploration were conducted to study the latent molecular mechanisms. Moreover, the cell line data in the Genomics of Drug Sensitivity in Cancer (GDSC) database was used to discover the relationship between CCDC80 and drug sensitivity.

Results: An integrated standard mean difference (SMD) of -0.919 (95% CI: -1.515-0.324, P = 0.002) identified the downregulation of CCDC80 in OVCA based on 1048 samples, and the sROC (AUC = 0.76) showed a moderate discriminatory ability of CCDC80 in OVCA. The fraction of infiltrating naive B cells showed significant differences between the high- and low-CCDC80 expression groups. Also, CCDC80-related genes are enriched in the Ras signaling pathway and metabolic of lipid. Nuclear receptor subfamily three group C member 1 (NR3C1) may be an upstream TF of CCDC80, and CCDC80 may be related to the sensitivity of mitocycin C and nilotinib.

Conclusion: CCDC80 was downregulated in OVCA and may play a role as a tumor suppressor in OVCA.

引言:我们旨在探讨含有卷曲螺旋结构域80(CCDC80)在卵巢癌(OVCA)中的下调及其潜在的分子机制。材料/方法。免疫组化染色证实CCDC80蛋白的表达状态。结合来自内部组织微阵列和高通量数据集的数据,我们确定了CCDC80在OVCA中的表达水平。我们利用通过估计RNA转录物相对亚群的细胞类型鉴定(CIBERSORT)算法和单样本基因集富集分析(ssGSEA)来探索CCDC80与OVCA中肿瘤微环境(TME)景观之间的关系。通过通路富集、功能注释和转录因子(TF)探索来研究潜在的分子机制。此外,利用癌症药物敏感性基因组数据库(GDSC)中的细胞系数据来发现CCDC80与药物敏感性之间的关系。结果:基于1048个样本,-0.919的综合标准差(SMD)(95%可信区间:-1.515-0.324,P=0.002)确定了CCDC80在OVCA中的下调,sROC(AUC=0.76)显示CCDC80对OVCA的中等辨别能力。CCDC80高表达组和低表达组之间的浸润性幼稚B细胞的分数显示出显著差异。此外,CCDC80相关基因在Ras信号通路和脂质代谢中富集。核受体亚家族3族C成员1(NR3C1)可能是CCDC80的上游TF,CCDC80可能与有丝分裂素C和尼洛替尼的敏感性有关。结论:CCDC80在OVCA中表达下调,可能在OVCA的发生中起抑癌作用。
{"title":"Downregulation of the Coiled-Coil Domain Containing 80 and Its Perspective Mechanisms in Ovarian Carcinoma: A Comprehensive Study.","authors":"Zi-Qian Liang,&nbsp;Li Gao,&nbsp;Jun-Hong Chen,&nbsp;Wen-Bin Dai,&nbsp;Ya-Si Su,&nbsp;Gang Chen","doi":"10.1155/2021/3752871","DOIUrl":"10.1155/2021/3752871","url":null,"abstract":"<p><strong>Introduction: </strong>We aimed to explore the downregulation of the coiled-coil domain containing 80 (<i>CCDC80</i>) and its underlying molecular mechanisms in ovarian carcinoma (OVCA). <i>Materials/Methods</i>. Immunohistochemical staining was performed to confirm the expression status of <i>CCDC80</i> protein. Combining the data from in-house tissue microarrays and high-throughput datasets, we identified the expression level of <i>CCDC80</i> in OVCA. We utilized cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm and single-sample gene set enrichment analysis (ssGSEA) to explore the relationship between <i>CCDC80</i> and the tumor microenvironment (TME) landscape in OVCA. Pathway enrichment, function annotation, and transcription factor (TFs) exploration were conducted to study the latent molecular mechanisms. Moreover, the cell line data in the Genomics of Drug Sensitivity in Cancer (GDSC) database was used to discover the relationship between <i>CCDC80</i> and drug sensitivity.</p><p><strong>Results: </strong>An integrated standard mean difference (SMD) of -0.919 (95% CI: -1.515-0.324, <i>P</i> = 0.002) identified the downregulation of <i>CCDC80</i> in OVCA based on 1048 samples, and the sROC (AUC = 0.76) showed a moderate discriminatory ability of <i>CCDC80</i> in OVCA. The fraction of infiltrating naive B cells showed significant differences between the high- and low-CCDC80 expression groups. Also, <i>CCDC80</i>-related genes are enriched in the Ras signaling pathway and metabolic of lipid. Nuclear receptor subfamily three group C member 1 (<i>NR3C1</i>) may be an upstream TF of <i>CCDC80</i>, and <i>CCDC80</i> may be related to the sensitivity of mitocycin C and nilotinib.</p><p><strong>Conclusion: </strong>CCDC80 was downregulated in OVCA and may play a role as a tumor suppressor in OVCA.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608537/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39657078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
miRNAomic Approach to Plant Nitrogen Starvation. 植物氮饥饿的miRNAomic方法。
IF 2.9 4区 生物学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2021-11-09 eCollection Date: 2021-01-01 DOI: 10.1155/2021/8560323
Peerzada Yasir Yousuf, Peerzada Arshid Shabir, Khalid Rehman Hakeem

Nitrogen (N) is one of the indispensable nutrients required by plants for their growth, development, and survival. Being a limited nutrient, it is mostly supplied exogenously to the plants, to maintain quality and productivity. The increased use of N fertilizers is associated with high-cost inputs and negative environmental consequences, which necessitates the development of nitrogen-use-efficient plants for sustainable agriculture. Understanding the regulatory mechanisms underlying N metabolism in plants under low N is one of the prerequisites for the development of nitrogen-use-efficient plants. One of the important and recently discovered groups of regulatory molecules acting at the posttranscriptional and translational levels are microRNAs (miRNAs). miRNAs are known to play critical roles in the regulation of gene expression in plants under different stress conditions including N stress. Several classes of miRNAs associated with N metabolism have been identified so far. These nitrogen-responsive miRNAs may provide a platform for a better understanding of the regulation of N metabolism and pave a way for the development of genotypes for better N utilization. The current review presents a brief outline of miRNAs and their regulatory role in N metabolism.

氮(N)是植物生长、发育和生存所必需的营养物质之一。作为一种有限的营养物质,它主要是外源供应给植物,以保持质量和生产力。氮肥使用量的增加与高成本投入和负面环境后果有关,这就需要开发氮利用效率高的植物,以实现可持续农业。了解低氮条件下植物氮代谢的调控机制是开发氮利用高效植物的先决条件之一。microrna (mirna)是最近发现的在转录后和翻译水平起作用的重要调控分子之一。在包括氮胁迫在内的不同胁迫条件下,mirna在植物基因表达调控中发挥着重要作用。到目前为止,已经确定了几种与N代谢相关的mirna。这些响应氮的mirna可能为更好地理解氮代谢的调控提供了平台,并为更好地利用氮的基因型的开发铺平了道路。目前的综述简要概述了mirna及其在N代谢中的调节作用。
{"title":"miRNAomic Approach to Plant Nitrogen Starvation.","authors":"Peerzada Yasir Yousuf,&nbsp;Peerzada Arshid Shabir,&nbsp;Khalid Rehman Hakeem","doi":"10.1155/2021/8560323","DOIUrl":"https://doi.org/10.1155/2021/8560323","url":null,"abstract":"<p><p>Nitrogen (N) is one of the indispensable nutrients required by plants for their growth, development, and survival. Being a limited nutrient, it is mostly supplied exogenously to the plants, to maintain quality and productivity. The increased use of N fertilizers is associated with high-cost inputs and negative environmental consequences, which necessitates the development of nitrogen-use-efficient plants for sustainable agriculture. Understanding the regulatory mechanisms underlying N metabolism in plants under low N is one of the prerequisites for the development of nitrogen-use-efficient plants. One of the important and recently discovered groups of regulatory molecules acting at the posttranscriptional and translational levels are microRNAs (miRNAs). miRNAs are known to play critical roles in the regulation of gene expression in plants under different stress conditions including N stress. Several classes of miRNAs associated with N metabolism have been identified so far. These nitrogen-responsive miRNAs may provide a platform for a better understanding of the regulation of N metabolism and pave a way for the development of genotypes for better N utilization. The current review presents a brief outline of miRNAs and their regulatory role in N metabolism.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39638237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
International Journal of Genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1