Pub Date : 2019-09-11DOI: 10.11648/J.IJPC.20190502.12
M. Mahali, G Sibi
Protein is one of the main nutrients that will be in short supply in the future. Alternative protein sources and production methods are required to fulfil the demand of protein requirements. Proteins from microalgae represent potential raw materials for the generation of protein based food ingredients. Arthospira platensis harbors high protein concentrations and one of the most important factors influencing successful extraction of protein is accessibility of the protein molecules. Process optimization and statistical analysis is necessary to maximize protein extraction. This study attempts to evaluate and compare various methods for their reliability in extracting microalgal proteins. Five different extraction methods namely alkali, enzymatic, thermal, microwave assisted and ultrasonic extraction were performed to obtain protein from A. platensis. Functional properties of the protein isolates were determined at various pH levels. Highest protein yield of 84% was obtained in ultrasound extraction. The lowest solubility of protein was found at pH 5.0 (0.27%) and highest solubility of protein was obtained at pH 9.0 (74.90%). Water holding capacity of protein isolates of S. platensis was in the range of 0.902 – 1.341 gwater/gprotein. The foaming capacity ranged from 19.37 to 41.28%, with the lowest and maximum values obtained at pH 5.0 and 3.0, respectively. Maximum value of foam stability at pH 5.0 was 31.24% and this subsequently decreased when the pH increased. The results revealed that both microwave assisted and ultrasound extraction methods were found suitable to make bioavailability of algal proteins from Arthospira platensis.
{"title":"Extraction Methods and Functional Properties of Protein from Arthospira platensis for Bioavailability of Algal Proteins","authors":"M. Mahali, G Sibi","doi":"10.11648/J.IJPC.20190502.12","DOIUrl":"https://doi.org/10.11648/J.IJPC.20190502.12","url":null,"abstract":"Protein is one of the main nutrients that will be in short supply in the future. Alternative protein sources and production methods are required to fulfil the demand of protein requirements. Proteins from microalgae represent potential raw materials for the generation of protein based food ingredients. Arthospira platensis harbors high protein concentrations and one of the most important factors influencing successful extraction of protein is accessibility of the protein molecules. Process optimization and statistical analysis is necessary to maximize protein extraction. This study attempts to evaluate and compare various methods for their reliability in extracting microalgal proteins. Five different extraction methods namely alkali, enzymatic, thermal, microwave assisted and ultrasonic extraction were performed to obtain protein from A. platensis. Functional properties of the protein isolates were determined at various pH levels. Highest protein yield of 84% was obtained in ultrasound extraction. The lowest solubility of protein was found at pH 5.0 (0.27%) and highest solubility of protein was obtained at pH 9.0 (74.90%). Water holding capacity of protein isolates of S. platensis was in the range of 0.902 – 1.341 gwater/gprotein. The foaming capacity ranged from 19.37 to 41.28%, with the lowest and maximum values obtained at pH 5.0 and 3.0, respectively. Maximum value of foam stability at pH 5.0 was 31.24% and this subsequently decreased when the pH increased. The results revealed that both microwave assisted and ultrasound extraction methods were found suitable to make bioavailability of algal proteins from Arthospira platensis.","PeriodicalId":14230,"journal":{"name":"International Journal of Pharmacy and Chemistry","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89747769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JBIR-99 is a secondary metabolite of marine fungi that has been shown to possess strong antibiotic activity. An efficient approach using a combination of size exclusion chromatography with a Sephadex LH-20 and high-speed counter-current chromatography (HSCCC) has been successfully developed for the isolation and purification of a polyketide from the solid-state fermentation of Meyerozyma guilliermondii. The active compound was isolated with purity >95% by HSCCC using an optimized solvent system composed of petroleum ether–ethyl acetate– 95% ethanol–water (5:3:5:3, v/v/v/v) after size exclusion chromatography. This compound was successfully purified in the quantity of 68 mg from 120 mg of the crude extract. The structure of JBIR-99 was elucidated and assigned by 1D, 2D NMR spectroscopic, and positive HRESITOFMS. Moreover, the relative configuration of compound JBIR-99, displaying a quite complex multi-ring structure, is determined by X-ray crystallography for the first time. The purification method developed for JBIR-99 will facilitate the further investigation and development of this antibiotic agent as a lead compound. Furthermore, it is suggested that the combination of size exclusion chromatography and HSCCC could be more widely applied for the isolation and purification of polyketides from marine fungi.
{"title":"Isolation and Purification of an Antibiotic Polyketide JBIR-99 from the Marine Fungus Meyerozyma guilliermondii by High-Speed Counter-Current Chromatography","authors":"Hankui Wu, Jianmin Liu, N. Duan, Rumeng Han, Xinxin Zhang, X. Leng, Wenjie Liu, Liwen Han, Xiaobin Li, Shu Xing, Yong-chun Zhang, Mingyang Zhou","doi":"10.20944/preprints201909.0024.v1","DOIUrl":"https://doi.org/10.20944/preprints201909.0024.v1","url":null,"abstract":"JBIR-99 is a secondary metabolite of marine fungi that has been shown to possess strong antibiotic activity. An efficient approach using a combination of size exclusion chromatography with a Sephadex LH-20 and high-speed counter-current chromatography (HSCCC) has been successfully developed for the isolation and purification of a polyketide from the solid-state fermentation of Meyerozyma guilliermondii. The active compound was isolated with purity >95% by HSCCC using an optimized solvent system composed of petroleum ether–ethyl acetate– 95% ethanol–water (5:3:5:3, v/v/v/v) after size exclusion chromatography. This compound was successfully purified in the quantity of 68 mg from 120 mg of the crude extract. The structure of JBIR-99 was elucidated and assigned by 1D, 2D NMR spectroscopic, and positive HRESITOFMS. Moreover, the relative configuration of compound JBIR-99, displaying a quite complex multi-ring structure, is determined by X-ray crystallography for the first time. The purification method developed for JBIR-99 will facilitate the further investigation and development of this antibiotic agent as a lead compound. Furthermore, it is suggested that the combination of size exclusion chromatography and HSCCC could be more widely applied for the isolation and purification of polyketides from marine fungi.","PeriodicalId":14230,"journal":{"name":"International Journal of Pharmacy and Chemistry","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85691559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-09DOI: 10.11648/J.IJPC.20190502.11
G. Camenisch
Many enzymes and transporters involved in the hepatic clearance of drugs also play an important role in endogenous compound transport. Inhibition of some of these active mechanisms has frequently been shown to be associated with Drug-Induced Liver Injury (DILI). The Extended Clearance Model (ECM) describes the complex interplay between the different processes driving hepatic clearance, namely sinusoidal uptake and efflux, canalicular secretion and intracellular metabolism. Based on the ECM, we have derived an integral concept (referred as 1/R-value approach) to quantitatively describe the overall inhibition potency of potential drug candidates on active processes involved in the transport and metabolism of endogenous and safety-relevant compounds. For a small training set of in-house compounds with largely complete in vitro inhibition and in vivo exposure data, accurate ECM-based prediction of DILI was realized. Additionally, prediction of several cases of DILI for a comprehensive validation set of external compounds was achieved with no major false-positive results. However, due to general incompleteness of the required input information available in the public space (the most probable reason for the large number of false-negatives in the test set) the overall legitimacy of ECM for large-scale prediction of cell stress mediated DILI still needs to be demonstrated. In order to advance and accelerate science in this exciting but complex field, a more transparent and open sharing of data is therefore urgently needed and should be encouraged.
{"title":"Drug-Induced Liver Injury Predictions: Extended Clearance Model and Its Use for Prospective Transporter and Enzyme-Based Hepatic Cell Stress Grading","authors":"G. Camenisch","doi":"10.11648/J.IJPC.20190502.11","DOIUrl":"https://doi.org/10.11648/J.IJPC.20190502.11","url":null,"abstract":"Many enzymes and transporters involved in the hepatic clearance of drugs also play an important role in endogenous compound transport. Inhibition of some of these active mechanisms has frequently been shown to be associated with Drug-Induced Liver Injury (DILI). The Extended Clearance Model (ECM) describes the complex interplay between the different processes driving hepatic clearance, namely sinusoidal uptake and efflux, canalicular secretion and intracellular metabolism. Based on the ECM, we have derived an integral concept (referred as 1/R-value approach) to quantitatively describe the overall inhibition potency of potential drug candidates on active processes involved in the transport and metabolism of endogenous and safety-relevant compounds. For a small training set of in-house compounds with largely complete in vitro inhibition and in vivo exposure data, accurate ECM-based prediction of DILI was realized. Additionally, prediction of several cases of DILI for a comprehensive validation set of external compounds was achieved with no major false-positive results. However, due to general incompleteness of the required input information available in the public space (the most probable reason for the large number of false-negatives in the test set) the overall legitimacy of ECM for large-scale prediction of cell stress mediated DILI still needs to be demonstrated. In order to advance and accelerate science in this exciting but complex field, a more transparent and open sharing of data is therefore urgently needed and should be encouraged.","PeriodicalId":14230,"journal":{"name":"International Journal of Pharmacy and Chemistry","volume":"126 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87664374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-04-15DOI: 10.11648/J.IJPC.20190501.12
Ziyue Yi, Zhuang Pei, Ma Xiaoyan
Antibiotic resistant pathogens is the an urgent challenge of the medicine field. To counter these pathogens, the antibiotic assisting drugs is an ideal choice. Assisting drugs can improve the efficiency of the treatment without further induce of antibiotic resistance. Amlodipine (AML) is one of the most common generic cardiovascular drug for lowering blood pressure. In previous studies, amlodipine was suggested to have some antibiotic properties. The MIC is not very low for amlodipine against these pathogens. However, the findings imply amlodipine potential to be repurposed as assisting drug and its inhibition of β-lactamase. To further discover and verify its potential of antimicrobial drug, amlodipine was tested for β-lactamase inhibition, and its synergistic effects were investigated against methicillin-resistant Staphylococcus aureus (MRSA). The compound was found to inhibit β-lactamase mixture (3 distinct species) in broad spectrum. Cephalosporins requires high concentration (>=64 ug/ml) to inhibit MRSA; combine both amlodipine and cephalosporins, the MIC only requires 8ug/ml (4 ug/ml amlodipine + 4 ug/ml Cefuroxime) in total, with FIC lower than 0.1 for strong synergistic effect. Both enzyme assay and bacterial tests indicate amlodipine as an ideal assisting drug for antibiotics; one of the mechanism is β-lactamase inhibition.
{"title":"Evaluation of Amlodipine Inhibition and Antimicrobial Effects","authors":"Ziyue Yi, Zhuang Pei, Ma Xiaoyan","doi":"10.11648/J.IJPC.20190501.12","DOIUrl":"https://doi.org/10.11648/J.IJPC.20190501.12","url":null,"abstract":"Antibiotic resistant pathogens is the an urgent challenge of the medicine field. To counter these pathogens, the antibiotic assisting drugs is an ideal choice. Assisting drugs can improve the efficiency of the treatment without further induce of antibiotic resistance. Amlodipine (AML) is one of the most common generic cardiovascular drug for lowering blood pressure. In previous studies, amlodipine was suggested to have some antibiotic properties. The MIC is not very low for amlodipine against these pathogens. However, the findings imply amlodipine potential to be repurposed as assisting drug and its inhibition of β-lactamase. To further discover and verify its potential of antimicrobial drug, amlodipine was tested for β-lactamase inhibition, and its synergistic effects were investigated against methicillin-resistant Staphylococcus aureus (MRSA). The compound was found to inhibit β-lactamase mixture (3 distinct species) in broad spectrum. Cephalosporins requires high concentration (>=64 ug/ml) to inhibit MRSA; combine both amlodipine and cephalosporins, the MIC only requires 8ug/ml (4 ug/ml amlodipine + 4 ug/ml Cefuroxime) in total, with FIC lower than 0.1 for strong synergistic effect. Both enzyme assay and bacterial tests indicate amlodipine as an ideal assisting drug for antibiotics; one of the mechanism is β-lactamase inhibition.","PeriodicalId":14230,"journal":{"name":"International Journal of Pharmacy and Chemistry","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77765823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-22DOI: 10.11648/j.ijpc.20190501.11
Zhu Fugen
Control charts, also known as Shewhart Control charts, are used to determine if a manufacturing process is in a state of statistical control. This article illustrates the use of charts to evaluate pharmaceutical manufacturing process variability. According to the characteristics and control requirements of quality parameters, several types of typical parameters were introduced to illustrate the detection results and create the control charts in order to confirm whether the production was under control. Expedite the operator discovering the process variation caused by special factors, and taking corrective actions so that the products consistently complied with the regulatory specifications and production instructions.
{"title":"Application of Shewhart Control Charts in the Inspection of Pharmaceutical Manufacturing Process","authors":"Zhu Fugen","doi":"10.11648/j.ijpc.20190501.11","DOIUrl":"https://doi.org/10.11648/j.ijpc.20190501.11","url":null,"abstract":"Control charts, also known as Shewhart Control charts, are used to determine if a manufacturing process is in a state of statistical control. This article illustrates the use of charts to evaluate pharmaceutical manufacturing process variability. According to the characteristics and control requirements of quality parameters, several types of typical parameters were introduced to illustrate the detection results and create the control charts in order to confirm whether the production was under control. Expedite the operator discovering the process variation caused by special factors, and taking corrective actions so that the products consistently complied with the regulatory specifications and production instructions.","PeriodicalId":14230,"journal":{"name":"International Journal of Pharmacy and Chemistry","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89573936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.11648/j.ijpc.20190503.12
Iwuozor Kingsley Ogemdi
{"title":"A Review on the Properties and Uses of Paracetamol","authors":"Iwuozor Kingsley Ogemdi","doi":"10.11648/j.ijpc.20190503.12","DOIUrl":"https://doi.org/10.11648/j.ijpc.20190503.12","url":null,"abstract":"","PeriodicalId":14230,"journal":{"name":"International Journal of Pharmacy and Chemistry","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87463574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.11648/j.ijpc.20220802.11
Gudisa Bereda
{"title":"First Line Anti-tuberculosis Medication for Pregnant Women","authors":"Gudisa Bereda","doi":"10.11648/j.ijpc.20220802.11","DOIUrl":"https://doi.org/10.11648/j.ijpc.20220802.11","url":null,"abstract":"","PeriodicalId":14230,"journal":{"name":"International Journal of Pharmacy and Chemistry","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78355075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}