Pub Date : 2023-08-03DOI: 10.13052/jgeu0975-1416.1125
Pritam Ghosh, Anwesha Das, P. Mandal
Research endeavors on the design and control techniques of Autonomous Underwater Vehicles (AUVs) have been going on for a long time. In the present study, the yaw motion of a small submerged underwater vehicle is investigated and visualized as a direct result of changes in the rudder tilt angle and forward velocity. The numerical analysis is performed in ANSYS-Fluent software. The turbulent flow field has been modeled using Shear Stress Transport (SST) k-ω model. A grid independence test has been conducted to ensure the validity of the findings. The forces on the rudder and the available yaw moment have been obtained for different combinations of the AUV’s rudder tilt angle and forward velocity. The trend has intuitively been consistent and agreed with the basic concept of hydrodynamics
{"title":"Analysis of Available Yawing Moment of an Autonomous Underwater Vehicle Model in Simulation Frame","authors":"Pritam Ghosh, Anwesha Das, P. Mandal","doi":"10.13052/jgeu0975-1416.1125","DOIUrl":"https://doi.org/10.13052/jgeu0975-1416.1125","url":null,"abstract":"Research endeavors on the design and control techniques of Autonomous Underwater Vehicles (AUVs) have been going on for a long time. In the present study, the yaw motion of a small submerged underwater vehicle is investigated and visualized as a direct result of changes in the rudder tilt angle and forward velocity. The numerical analysis is performed in ANSYS-Fluent software. The turbulent flow field has been modeled using Shear Stress Transport (SST) k-ω model. A grid independence test has been conducted to ensure the validity of the findings. The forces on the rudder and the available yaw moment have been obtained for different combinations of the AUV’s rudder tilt angle and forward velocity. The trend has intuitively been consistent and agreed with the basic concept of hydrodynamics","PeriodicalId":142472,"journal":{"name":"Journal of Graphic Era University","volume":"79 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121895804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-19DOI: 10.13052/jgeu0975-1416.1122
Anuj Kumar, Sangeeta Pant, M. Ram, Akshay Kumar
Dealing with the conflicting objectives in reliability analysis of complex engineering systems is always a challenging task. Here, we have taken two conflicting objectives namely reducing cost and increasing the reliability of a complex reliability system named life support system in space capsule (LS3C) into consideration. A novel multi-objective evolutionary algorithm named MOPSO-CD has been employed to get various Pareto Optimal Fronts (POFs) in accordance with different parameter tuning. The simulation results so obtained provide a wide range of varieties of POFs to decision maker (DM).
{"title":"Evolutionary Algorithm-based Approach for Multi-Objective Optimization of a Complex Reliability System","authors":"Anuj Kumar, Sangeeta Pant, M. Ram, Akshay Kumar","doi":"10.13052/jgeu0975-1416.1122","DOIUrl":"https://doi.org/10.13052/jgeu0975-1416.1122","url":null,"abstract":"Dealing with the conflicting objectives in reliability analysis of complex engineering systems is always a challenging task. Here, we have taken two conflicting objectives namely reducing cost and increasing the reliability of a complex reliability system named life support system in space capsule (LS3C) into consideration. A novel multi-objective evolutionary algorithm named MOPSO-CD has been employed to get various Pareto Optimal Fronts (POFs) in accordance with different parameter tuning. The simulation results so obtained provide a wide range of varieties of POFs to decision maker (DM).","PeriodicalId":142472,"journal":{"name":"Journal of Graphic Era University","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116614438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-19DOI: 10.13052/jgeu0975-1416.1121
K. Charu, Padmanabh Thakur, Fahim Ansari
The effectiveness and accuracy of two different MPPT methods of solar photovoltaic (PV), namely Perturb & Observe (P&O) and Constant Current (CC) have been investigated in this study. The main objective of this study is to test the impacts of temperature and solar irradiance (insolation) variations on solar PV output power which are achieved through these methods. Usually, solar insolation and temperature are the two most important influencing factors that have a significant impact on the output power (Pout). Here, the two conventional MPPT techniques have been applied to analyze the response through power characteristics curves of solar PV systems subject to changing environmental conditions. The MPPT techniques have been implemented on the solar PV system using MATLAB®. Additionally, the output power curves at various irradiances are shown in this work. The research demonstrates that the P&O-based MPPT method outperforms the CC-based MPPT method.
{"title":"Performance Analysis of Conventional MPPT Techniques for a Solar PV System","authors":"K. Charu, Padmanabh Thakur, Fahim Ansari","doi":"10.13052/jgeu0975-1416.1121","DOIUrl":"https://doi.org/10.13052/jgeu0975-1416.1121","url":null,"abstract":"The effectiveness and accuracy of two different MPPT methods of solar photovoltaic (PV), namely Perturb & Observe (P&O) and Constant Current (CC) have been investigated in this study. The main objective of this study is to test the impacts of temperature and solar irradiance (insolation) variations on solar PV output power which are achieved through these methods. Usually, solar insolation and temperature are the two most important influencing factors that have a significant impact on the output power (Pout). Here, the two conventional MPPT techniques have been applied to analyze the response through power characteristics curves of solar PV systems subject to changing environmental conditions. The MPPT techniques have been implemented on the solar PV system using MATLAB®. Additionally, the output power curves at various irradiances are shown in this work. The research demonstrates that the P&O-based MPPT method outperforms the CC-based MPPT method.","PeriodicalId":142472,"journal":{"name":"Journal of Graphic Era University","volume":"209 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133735091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-07DOI: 10.13052/jgeu0975-1416.1118
Neeraj Bisht, Suvam Gairola, Shivam Shekhawat, Deep Darshan, Nitesh Aithani
Structures develop cracks during the course of there life resulting in catastrophic failures. This can be reduced by drilling holes near the crack tip. Here the aspect of optimal position and size of the drill hole has been analysed. Additionally the effect of supplementary hole has also been made. Finite element code ANSYS was used for the analysis. To verify the fracture capabilities of ANSYS the results were corroborated using photoelastic techniques. It was observed that reduction in stress intensity factor to a great extent depends upon the position of the stop hole. Also it was observed that as the radius of the crack was increased the stress intensity factor increased. Creating supplementary hole further reduced the stress intensity factor. So it can be concluded that for employing the concept of drill hole its position and size should be accurately determined.
{"title":"Drill Hole Optimization for Augmenting Structural Integrity","authors":"Neeraj Bisht, Suvam Gairola, Shivam Shekhawat, Deep Darshan, Nitesh Aithani","doi":"10.13052/jgeu0975-1416.1118","DOIUrl":"https://doi.org/10.13052/jgeu0975-1416.1118","url":null,"abstract":"Structures develop cracks during the course of there life resulting in catastrophic failures. This can be reduced by drilling holes near the crack tip. Here the aspect of optimal position and size of the drill hole has been analysed. Additionally the effect of supplementary hole has also been made. Finite element code ANSYS was used for the analysis. To verify the fracture capabilities of ANSYS the results were corroborated using photoelastic techniques. It was observed that reduction in stress intensity factor to a great extent depends upon the position of the stop hole. Also it was observed that as the radius of the crack was increased the stress intensity factor increased. Creating supplementary hole further reduced the stress intensity factor. So it can be concluded that for employing the concept of drill hole its position and size should be accurately determined.","PeriodicalId":142472,"journal":{"name":"Journal of Graphic Era University","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131344060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-07DOI: 10.13052/jgeu0975-1416.1116
Subhan Ali, Vipin Uniyal
The purpose of this study is to investigate the possibility of improving electrical (cell) efficiency, thermal efficiency, and overall performance by adding w-rib roughness to the bottom of the absorber plate. the bottom of the absorber plate being given w-rib roughness. Based on a mathematical simulation of the PV/T system as a function of pertinent geometrical parameters, such as relative roughness pitch, relative roughness height, and angle of attack, as well as design parameters, such as temperature rise and insolation, the performance parameters—enhancement of electrical efficiency, thermal efficiency, and overall performance—have been assessed. The system was examined using this simulation in relation to important geometrical factors. The results show that adopting w-rib roughness yields a significant improvement over the performance metrics obtained using smooth absorber plates.
{"title":"Performance Enhancement of Solar Photovoltaic Thermal Energy Collection (PV/T) System with W-Shaped Rib Rouhgness","authors":"Subhan Ali, Vipin Uniyal","doi":"10.13052/jgeu0975-1416.1116","DOIUrl":"https://doi.org/10.13052/jgeu0975-1416.1116","url":null,"abstract":"The purpose of this study is to investigate the possibility of improving electrical (cell) efficiency, thermal efficiency, and overall performance by adding w-rib roughness to the bottom of the absorber plate. the bottom of the absorber plate being given w-rib roughness. Based on a mathematical simulation of the PV/T system as a function of pertinent geometrical parameters, such as relative roughness pitch, relative roughness height, and angle of attack, as well as design parameters, such as temperature rise and insolation, the performance parameters—enhancement of electrical efficiency, thermal efficiency, and overall performance—have been assessed. The system was examined using this simulation in relation to important geometrical factors. The results show that adopting w-rib roughness yields a significant improvement over the performance metrics obtained using smooth absorber plates.","PeriodicalId":142472,"journal":{"name":"Journal of Graphic Era University","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122512463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-07DOI: 10.13052/jgeu0975-1416.1117
Gaurav Kandpal, Satyendra Singh, S. Bisht, H. Kharkwal
Enhancement of heat exchangers with the usage of inserts which creates turbulence in fluid flow by enhancing heat transfer rate which is an appealing area for researchers to develop efficient and compact heat exchanger with low expenses. Present work deals with computational investigation on circular tube with ϕ� shaped circular ring inserts taken as enhancer for better experience in heat transfer. The geometric dimensions of insert are 68 mm outer diameter with inner ring is half of outer diameter concentric ring having varying DR of 0.8, 0.85 and 0.9 with varying PR 3, 4 & 5 in which hydraulic diameter is 68.1 mm. The length of test section is 1500 mm with 1000 W/m22 of regular heat flux is applied and Re ranges from 3000 to 21000. CFD analysis conducted, compared & results are presented where maximum augmentation of heat transfer could be obtained 5.02–11.21 times simultaneously TPF is 2.14–3.54 times as compared to smooth tube for inserts with DR 0.8 and PR 3 which attained maximum S˙S˙ 3.07–5.1. Keywords: Heat exchanger, thermal performance factor, CFD analysis. Nomenclature
{"title":"Influence of Phi (Φ) Shaped in Circular Ring Inserts on Thermal Performance in Circular Tube Heat Exchanger: CFD Study","authors":"Gaurav Kandpal, Satyendra Singh, S. Bisht, H. Kharkwal","doi":"10.13052/jgeu0975-1416.1117","DOIUrl":"https://doi.org/10.13052/jgeu0975-1416.1117","url":null,"abstract":"Enhancement of heat exchangers with the usage of inserts which creates turbulence in fluid flow by enhancing heat transfer rate which is an appealing area for researchers to develop efficient and compact heat exchanger with low expenses. Present work deals with computational investigation on circular tube with ϕ� shaped circular ring inserts taken as enhancer for better experience in heat transfer. The geometric dimensions of insert are 68 mm outer diameter with inner ring is half of outer diameter concentric ring having varying DR of 0.8, 0.85 and 0.9 with varying PR 3, 4 & 5 in which hydraulic diameter is 68.1 mm. The length of test section is 1500 mm with 1000 W/m22 of regular heat flux is applied and Re ranges from 3000 to 21000. \u0000CFD analysis conducted, compared & results are presented where maximum augmentation of heat transfer could be obtained 5.02–11.21 times simultaneously TPF is 2.14–3.54 times as compared to smooth tube for inserts with DR 0.8 and PR 3 which attained maximum S˙S˙ 3.07–5.1. \u0000Keywords: Heat exchanger, thermal performance factor, CFD analysis. \u0000Nomenclature","PeriodicalId":142472,"journal":{"name":"Journal of Graphic Era University","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124201724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-07DOI: 10.13052/jgeu0975-1416.1113
Priyanka Bisht, Kanches Sharma
The focus of the current majority of research efforts are focused on the investigation of passive flow control systems to provide wind turbine makers with efficient tools to increase the amount of energy that a wind turbine can use. In the current effort, our goal was to find a solution to enhance the HAWT blade aerofoil’s aerodynamic performance. Due to the ease of access to wind resources, wind energy is seen as one of the most significant energy alternatives for the future. From this, we may infer that multidisciplinary and necessary study in this area is required. This study aims to boost the operating capacity of wind turbines and their overall performance by performing full or partial flow attachment. The current work is focused on analyzing the flow around a wind turbine blade using CFD analysis. The current focus is on applying passive flow separation management to increase the aerodynamic efficiency of HAWT blades with S820 aerofoils.
{"title":"Drag Reduction of Wind Turbine Blade to Enhance Aerodynamic Performance: A CFD Study","authors":"Priyanka Bisht, Kanches Sharma","doi":"10.13052/jgeu0975-1416.1113","DOIUrl":"https://doi.org/10.13052/jgeu0975-1416.1113","url":null,"abstract":"The focus of the current majority of research efforts are focused on the investigation of passive flow control systems to provide wind turbine makers with efficient tools to increase the amount of energy that a wind turbine can use. In the current effort, our goal was to find a solution to enhance the HAWT blade aerofoil’s aerodynamic performance. Due to the ease of access to wind resources, wind energy is seen as one of the most significant energy alternatives for the future. From this, we may infer that multidisciplinary and necessary study in this area is required. This study aims to boost the operating capacity of wind turbines and their overall performance by performing full or partial flow attachment. The current work is focused on analyzing the flow around a wind turbine blade using CFD analysis. The current focus is on applying passive flow separation management to increase the aerodynamic efficiency of HAWT blades with S820 aerofoils.","PeriodicalId":142472,"journal":{"name":"Journal of Graphic Era University","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127771548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-07DOI: 10.13052/jgeu0975-1416.1111
A. Srivastav
Here, a for the purpose of investigating the thermo-hydraulic performance of, numerical simulation is performed. a fin with rib roughening and induced convection. The next paragraphs give the analysis. If we do numerical simulations under a variety of fluid flow situations and look at how they interact with one another, we might be able to obtain numerical information on the heat transfer and friction caused by a ribbed fin. We would need to examine how they interact in order to do this. There is a broad spectrum of rib pitch to rib height ratios (P/e) that are possible. it was feasible to gather data on fluid flow and temperature distribution in a validated numerical model by raising the Reynolds Number from 500 to 5000. These ratios were used to assess how effectively the model operated. To Charts that are based on the Nusselt Number and the friction factor are used in order to evaluate the thermal and hydraulic characteristics of rib-roughened fins. The findings from the rib roughened fin geometry are compared with those of a plain fin in order to determine the degree of efficiency that the test fin possesses in terms of eliminating heat from its base under operating conditions that are otherwise comparable to those previously described. This analysis was carried out to ascertain the degree of efficacy that the test fin possesses in terms of removing heat from its base. The ribbed fin’s P/e ratio of 6 contributes to the substantial increase in heat transport while also reducing friction.
{"title":"CFD Investigation of Thermo-hydraulic Performance in Rib Roughened Fin Under Forced Convection","authors":"A. Srivastav","doi":"10.13052/jgeu0975-1416.1111","DOIUrl":"https://doi.org/10.13052/jgeu0975-1416.1111","url":null,"abstract":"Here, a for the purpose of investigating the thermo-hydraulic performance of, numerical simulation is performed. a fin with rib roughening and induced convection. The next paragraphs give the analysis. If we do numerical simulations under a variety of fluid flow situations and look at how they interact with one another, we might be able to obtain numerical information on the heat transfer and friction caused by a ribbed fin. We would need to examine how they interact in order to do this. There is a broad spectrum of rib pitch to rib height ratios (P/e) that are possible. it was feasible to gather data on fluid flow and temperature distribution in a validated numerical model by raising the Reynolds Number from 500 to 5000. These ratios were used to assess how effectively the model operated. To Charts that are based on the Nusselt Number and the friction factor are used in order to evaluate the thermal and hydraulic characteristics of rib-roughened fins. The findings from the rib roughened fin geometry are compared with those of a plain fin in order to determine the degree of efficiency that the test fin possesses in terms of eliminating heat from its base under operating conditions that are otherwise comparable to those previously described. This analysis was carried out to ascertain the degree of efficacy that the test fin possesses in terms of removing heat from its base. The ribbed fin’s P/e ratio of 6 contributes to the substantial increase in heat transport while also reducing friction.","PeriodicalId":142472,"journal":{"name":"Journal of Graphic Era University","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123252822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-07DOI: 10.13052/jgeu0975-1416.1115
Saba Sabir, H. Pant, Nikhil Kanojia, Kuldeep Rawat
Energy is in higher demand than ever before since there are an increasing number of applications for it; nevertheless, the existing sources are unable to supply it in sufficient quantities. Alternate energy sources should be utilized, and as a consequence, energy conservation should be achieved through the utilization of waste heat from air conditioning systems. The major objective of this piece is to make use of waste heat generated by residential air conditioning systems while simultaneously increasing the coefficient of performance (COP). In order to achieve this goal, an experimental setup is utilized. In this configuration, an indirect kind of heat recovery equipment is used, and a heat exchanger that converts heat from a refrigerant to water is positioned between the compressor and the condenser of the host refrigeration system. The hot refrigerant gas generated by the compressor is sent via one side of the heat exchanger, while water is forced through the other side. The temperature of the water is raised as a result of the heated refrigerant gas. Because of this, the system’s COP might potentially increase by up to 16%.
{"title":"Design for Improvement of COP from Waste Heat Utilization Through Air Conditioning System","authors":"Saba Sabir, H. Pant, Nikhil Kanojia, Kuldeep Rawat","doi":"10.13052/jgeu0975-1416.1115","DOIUrl":"https://doi.org/10.13052/jgeu0975-1416.1115","url":null,"abstract":"Energy is in higher demand than ever before since there are an increasing number of applications for it; nevertheless, the existing sources are unable to supply it in sufficient quantities. Alternate energy sources should be utilized, and as a consequence, energy conservation should be achieved through the utilization of waste heat from air conditioning systems. The major objective of this piece is to make use of waste heat generated by residential air conditioning systems while simultaneously increasing the coefficient of performance (COP). In order to achieve this goal, an experimental setup is utilized. In this configuration, an indirect kind of heat recovery equipment is used, and a heat exchanger that converts heat from a refrigerant to water is positioned between the compressor and the condenser of the host refrigeration system. The hot refrigerant gas generated by the compressor is sent via one side of the heat exchanger, while water is forced through the other side. The temperature of the water is raised as a result of the heated refrigerant gas. Because of this, the system’s COP might potentially increase by up to 16%.","PeriodicalId":142472,"journal":{"name":"Journal of Graphic Era University","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121868333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-07DOI: 10.13052/jgeu0975-1416.1112
Nikhil Kanojia
The goal of the work is to analyze the impact of various factors on the fixed bed regenerator’s thermal characteristics while also examining the regenerator’s thermal characteristics. The thermal parameters of the regenerator are affected by a number of factors, including Heat storage capacity, switching time, residence time, bed height/length, regenerator diameter, particle diameter, and gas flow direction. The current study examines each of these variables quantitatively. Understanding the thermal regenerator’s temperature and fluid flow variations CFD analysis is conducted. For the analysis, Ansys Fluent is a for-profit program.
{"title":"Transient CFD Analysis of Thermal Regenerator","authors":"Nikhil Kanojia","doi":"10.13052/jgeu0975-1416.1112","DOIUrl":"https://doi.org/10.13052/jgeu0975-1416.1112","url":null,"abstract":"The goal of the work is to analyze the impact of various factors on the fixed bed regenerator’s thermal characteristics while also examining the regenerator’s thermal characteristics. The thermal parameters of the regenerator are affected by a number of factors, including Heat storage capacity, switching time, residence time, bed height/length, regenerator diameter, particle diameter, and gas flow direction. The current study examines each of these variables quantitatively. Understanding the thermal regenerator’s temperature and fluid flow variations CFD analysis is conducted. For the analysis, Ansys Fluent is a for-profit program.","PeriodicalId":142472,"journal":{"name":"Journal of Graphic Era University","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134072587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}