首页 > 最新文献

International Journal of Pharmaceutics: X最新文献

英文 中文
Evaluation of gender differences in the pharmacokinetics of oral zileuton nanocrystalline formulation using a rat model 利用大鼠模型评估齐来顿纳米晶体口服制剂药代动力学的性别差异
IF 4.7 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-05-04 DOI: 10.1016/j.ijpx.2024.100254
Chandra Mohan Reddy Muthumula , Sangeeta Khare , Rajan Jog , Bhagya Wickramaratne , Angela Lee , Sushanta Chakder , Diane J. Burgess , Kuppan Gokulan

Zileuton is a leukotriene inhibitor used to treat asthma. As a BCS class II drug it exhibits challenges with solubility which likely impact its absorption. As patient gender significantly impacts the pharmacokinetics of many drugs, this study aimed to investigate potential gender-based pharmacokinetic differences after oral zileuton administration in rats. Male and female Sprague Dawley rats received single oral gavage doses of pure zileuton as an active pharmaceutical ingredient (30 mg/kg body weight (bw)), physical mixture (PM; at 30 mg/kg bw of the formulation contains zileuton, kollidon VA64 fine, dowfax2A1 and trehalose), and nanocrystalline formulation of zileuton (NfZ; at 30 mg/kg bw of the formulation). Plasma, tissue, and urine concentrations were quantified using high performance liquid chromatography (HPLC). Noncompartmental pharmacokinetic analysis showed higher zileuton levels in the plasma of female versus male rats across all evaluated forms of zileuton (API, PM, and NfZ). Female rats demonstrated higher peak plasma concentrations (Cmax) and increased area under the plasma concentration-time curve (AUC) relative to males, regardless of formulation. These findings reveal substantial gender disparities in the pharmacokinetics of zileuton in the rat model. This study emphasizes the critical need to evaluate gender differences during preclinical drug development to enable gender-based precision dosing strategies for equivalent efficacy/safety outcomes in male and female patients. Additional studies are warranted to investigate underlying mechanisms of such pharmacokinetic gender divergences.

Zileuton是一种用于治疗哮喘的白三烯抑制剂。作为一种 BCS II 类药物,它在溶解性方面存在挑战,这可能会影响其吸收。由于患者的性别会对许多药物的药代动力学产生重大影响,本研究旨在调查大鼠口服齐鲁通后可能存在的基于性别的药代动力学差异。雄性和雌性 Sprague Dawley 大鼠分别单次口服灌胃剂量为 30 毫克/千克体重(bw)的活性药物成分纯齐留通、30 毫克/千克体重的物理混合物(PM;制剂中含有齐留通、kollidon VA64 fine、dowfax2A1 和曲哈糖)以及齐留通的纳米结晶制剂(NfZ;制剂中含有 30 毫克/千克体重)。使用高效液相色谱法(HPLC)对血浆、组织和尿液浓度进行定量。非室药代动力学分析表明,在所有评估的齐来顿(API、PM 和 NfZ)形式中,雌性大鼠血浆中的齐来顿含量高于雄性大鼠。与雄性大鼠相比,雌性大鼠的血浆浓度峰值(Cmax)更高,血浆浓度-时间曲线下的面积(AUC)也更大,而与制剂无关。这些研究结果表明,在大鼠模型中齐来顿的药代动力学存在很大的性别差异。这项研究强调了在临床前药物开发过程中评估性别差异的迫切性,以便制定基于性别的精确给药策略,实现男性和女性患者同等的疗效/安全性。我们还需要进行更多的研究来探究这种药代动力学性别差异的潜在机制。
{"title":"Evaluation of gender differences in the pharmacokinetics of oral zileuton nanocrystalline formulation using a rat model","authors":"Chandra Mohan Reddy Muthumula ,&nbsp;Sangeeta Khare ,&nbsp;Rajan Jog ,&nbsp;Bhagya Wickramaratne ,&nbsp;Angela Lee ,&nbsp;Sushanta Chakder ,&nbsp;Diane J. Burgess ,&nbsp;Kuppan Gokulan","doi":"10.1016/j.ijpx.2024.100254","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100254","url":null,"abstract":"<div><p>Zileuton is a leukotriene inhibitor used to treat asthma. As a BCS class II drug it exhibits challenges with solubility which likely impact its absorption. As patient gender significantly impacts the pharmacokinetics of many drugs, this study aimed to investigate potential gender-based pharmacokinetic differences after oral zileuton administration in rats. Male and female Sprague Dawley rats received single oral gavage doses of pure zileuton as an active pharmaceutical ingredient (30 mg/kg body weight (bw)), physical mixture (PM; at 30 mg/kg bw of the formulation contains zileuton, kollidon VA64 fine, dowfax2A1 and trehalose), and nanocrystalline formulation of zileuton (NfZ; at 30 mg/kg bw of the formulation). Plasma, tissue, and urine concentrations were quantified using high performance liquid chromatography (HPLC). Noncompartmental pharmacokinetic analysis showed higher zileuton levels in the plasma of female versus male rats across all evaluated forms of zileuton (API, PM, and NfZ). Female rats demonstrated higher peak plasma concentrations (C<sub>max</sub>) and increased area under the plasma concentration-time curve (AUC) relative to males, regardless of formulation. These findings reveal substantial gender disparities in the pharmacokinetics of zileuton in the rat model. This study emphasizes the critical need to evaluate gender differences during preclinical drug development to enable gender-based precision dosing strategies for equivalent efficacy/safety outcomes in male and female patients. Additional studies are warranted to investigate underlying mechanisms of such pharmacokinetic gender divergences.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"7 ","pages":"Article 100254"},"PeriodicalIF":4.7,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000264/pdfft?md5=e86c6e00a910abd55197a0d13539b17f&pid=1-s2.0-S2590156724000264-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140901358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stimuli-sensitive biomimetic nanoparticles for the inhibition of breast cancer recurrence and pulmonary metastasis 用于抑制乳腺癌复发和肺转移的刺激敏感型生物仿生纳米粒子
IF 4.7 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-05-03 DOI: 10.1016/j.ijpx.2024.100252
Dongjie Yang , Lan Zhang , Jiang Ni , Yang Ding , Anam Razzaq , Zaheer Ullah Khan , Haroon Iqbal , Yasmene Falah Alanazi , Naveed Ullah Khan , Rong Wang

Biomimetic nanoparticles represent a promising avenue for mitigating rapid clearance by the reticuloendothelial system (RES); however, current challenges include insufficient tumour targeting, suboptimal adhesion, and inadequate localized drug release within tumour regions. These shortcomings contribute to persistent contests, such as recurrence and pulmonary metastasis, even with advanced breast cancer therapies. Stimuli-sensitive drug release can furbish the membrane coated nanoparticles for their efficiency against the stated problems. To enhance the efficacy of biomimetic nanoparticles in addressing these issues, we proposed a versatile, stimuli-responsive drug delivery system by encapsulating doxorubicin (Dox) and perfluorohexane (PFH) within poly (lactic-co-glycolic acid) (PLGA) nanoparticles, subsequently coated with macrophage-derived cell membranes. Within this framework, PFH serves as the mediator for ultrasonic (US)-irradiation-triggered drug release specifically within tumour microenvironment, while the macrophage-derived cell membrane coating enhances cell adhesion, enables immune evasion, and natural tumour-homing ability. The characterization assays and in vitro evaluations yielded encouraging results, indicating enhanced targeting and release efficiencies. In vivo studies demonstrated marked inhibitory effects on both breast cancer recurrence and pulmonary metastasis. The resulting data indicate that these engineered nanoparticles have notable potential for targeted delivery and controlled release upon US irradiation, thereby offering significant therapeutic efficacy against primary breast cancer, pulmonary metastasis, and recurrent malignancies. Our findings lay the groundwork for a novel clinical approach, representing an intriguing direction for ongoing investigation by oncologists.

仿生纳米粒子是减轻网状内皮系统(RES)快速清除的一个很有前景的途径;然而,目前面临的挑战包括肿瘤靶向性不足、粘附性不理想以及在肿瘤区域的局部药物释放不充分。这些缺陷导致即使采用了先进的乳腺癌疗法,复发和肺转移等问题依然存在。对刺激敏感的药物释放可以提高膜包覆纳米粒子的效率,从而解决上述问题。为了提高仿生物纳米颗粒在解决这些问题方面的功效,我们提出了一种多功能、刺激响应型给药系统,它将多柔比星(Dox)和全氟己烷(PFH)封装在聚(乳酸-共-乙醇酸)(PLGA)纳米颗粒中,然后涂上巨噬细胞衍生的细胞膜。在此框架内,PFH 是超声波(US)-辐照触发的药物释放介质,特别是在肿瘤微环境中,而巨噬细胞衍生的细胞膜涂层可增强细胞粘附性,实现免疫逃避和天然肿瘤归宿能力。表征试验和体外评估取得了令人鼓舞的结果,表明靶向性和释放效率得到了提高。体内研究表明,它们对乳腺癌复发和肺转移有明显的抑制作用。由此得出的数据表明,这些工程纳米粒子在美国辐照下具有显著的靶向递送和控制释放潜力,从而对原发性乳腺癌、肺转移和复发性恶性肿瘤具有显著的疗效。我们的研究结果为一种新的临床方法奠定了基础,为肿瘤学家正在进行的研究提供了一个令人感兴趣的方向。
{"title":"Stimuli-sensitive biomimetic nanoparticles for the inhibition of breast cancer recurrence and pulmonary metastasis","authors":"Dongjie Yang ,&nbsp;Lan Zhang ,&nbsp;Jiang Ni ,&nbsp;Yang Ding ,&nbsp;Anam Razzaq ,&nbsp;Zaheer Ullah Khan ,&nbsp;Haroon Iqbal ,&nbsp;Yasmene Falah Alanazi ,&nbsp;Naveed Ullah Khan ,&nbsp;Rong Wang","doi":"10.1016/j.ijpx.2024.100252","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100252","url":null,"abstract":"<div><p>Biomimetic nanoparticles represent a promising avenue for mitigating rapid clearance by the reticuloendothelial system (RES); however, current challenges include insufficient tumour targeting, suboptimal adhesion, and inadequate localized drug release within tumour regions. These shortcomings contribute to persistent contests, such as recurrence and pulmonary metastasis, even with advanced breast cancer therapies. Stimuli-sensitive drug release can furbish the membrane coated nanoparticles for their efficiency against the stated problems. To enhance the efficacy of biomimetic nanoparticles in addressing these issues, we proposed a versatile, stimuli-responsive drug delivery system by encapsulating doxorubicin (Dox) and perfluorohexane (PFH) within poly (lactic-<em>co</em>-glycolic acid) (PLGA) nanoparticles, subsequently coated with macrophage-derived cell membranes. Within this framework, PFH serves as the mediator for ultrasonic (US)-irradiation-triggered drug release specifically within tumour microenvironment, while the macrophage-derived cell membrane coating enhances cell adhesion, enables immune evasion, and natural tumour-homing ability. The characterization assays and <em>in vitro</em> evaluations yielded encouraging results, indicating enhanced targeting and release efficiencies. <em>In vivo</em> studies demonstrated marked inhibitory effects on both breast cancer recurrence and pulmonary metastasis. The resulting data indicate that these engineered nanoparticles have notable potential for targeted delivery and controlled release upon US irradiation, thereby offering significant therapeutic efficacy against primary breast cancer, pulmonary metastasis, and recurrent malignancies. Our findings lay the groundwork for a novel clinical approach, representing an intriguing direction for ongoing investigation by oncologists.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"7 ","pages":"Article 100252"},"PeriodicalIF":4.7,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000240/pdfft?md5=b0467013f8ea70f40e3bfe7488374cfb&pid=1-s2.0-S2590156724000240-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140893395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polycaprolactone – Vitamin E TPGS micelles for delivery of paclitaxel: In vitro and in vivo evaluation 用于输送紫杉醇的聚己内酯-维生素 E TPGS 胶束:体外和体内评估
IF 4.7 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-05-03 DOI: 10.1016/j.ijpx.2024.100253
Ziyad Binkhathlan , Osman Yusuf , Raisuddin Ali , Abdullah H. Alomrani , Aws Alshamsan , Abdullah K. Alshememry , Aliyah Almomen , Musaed Alkholief , Ibrahim A. Aljuffali , Faleh Alqahtani , Saad Alobid , Essam A. Ali , Afsaneh Lavasanifar

This study aimed to present findings on a paclitaxel (PTX)-loaded polymeric micellar formulation based on polycaprolactone-vitamin E TPGS (PCL-TPGS) and evaluate its in vitro anticancer activity as well as its in vivo pharmacokinetic profile in healthy mice in comparison to a marketed formulation. Micelles were prepared by a co-solvent evaporation method. The micelle's average diameter and polydispersity were determined using dynamic light scattering (DLS) technique. Drug encapsulation efficiency was assessed using an HPLC assay. The in vitro cytotoxicity was performed on human breast cancer cells (MCF-7 and MDA-MB-231) using MTT assay. The in vivo pharmacokinetic profile was characterized following a single intravenous dose of 4 mg/kg to healthy mice. The mean diameters of the prepared micelles were ≤ 100 nm. Moreover, these micelles increased the aqueous solubility of PTX from ∼0.3 μg/mL to reach nearly 1 mg/mL. While the PTX-loaded micelles showed an in vitro cytotoxicity comparable to the marketed formulation (Ebetaxel), drug-free PCL-TPGS micelles did not show any cytotoxic effects on both types of breast cancer cells (∼100% viability). Pharmacokinetics of PTX as part of PCL-TPGS showed a significant increase in its volume of distribution compared to PTX conventional formulation, Ebetaxel, which is in line with what was reported for clinical nano formulations of PTX, i.e., Abraxane, Genexol-PM, or Apealea. The findings of our studies indicate a significant potential for PCL-TPGS micelles to act as an effective system for solubilization and delivery of PTX.

本研究旨在介绍一种基于聚己内酯-维生素 E TPGS(PCL-TPGS)的紫杉醇(PTX)负载聚合物胶束制剂的研究结果,并评估其体外抗癌活性及其在健康小鼠体内的药代动力学特征,并与市场上销售的制剂进行比较。胶束采用共溶剂蒸发法制备。使用动态光散射(DLS)技术测定了胶束的平均直径和多分散性。采用 HPLC 分析法评估药物的封装效率。采用 MTT 法对人乳腺癌细胞(MCF-7 和 MDA-MB-231)进行体外细胞毒性测试。对健康小鼠单次静脉注射 4 mg/kg 剂量后,对其体内药代动力学特征进行了研究。制备的胶束平均直径≤ 100 nm。此外,这些胶束还提高了 PTX 的水溶性,使其从 0.3 μg/mL 提高到接近 1 mg/mL。虽然负载 PTX 的胶束在体外显示出与市售制剂(Ebetaxel)相当的细胞毒性,但不含药物的 PCL-TPGS 胶束对两种类型的乳腺癌细胞均未显示出任何细胞毒性作用(存活率为 100%)。与 PTX 传统制剂 Ebetaxel 相比,作为 PCL-TPGS 一部分的 PTX 的药代动力学显示其分布容积显著增加,这与 PTX 的临床纳米制剂(即 Abraxane、Genexol-PM 或 Apealea)的报道一致。我们的研究结果表明,PCL-TPGS 胶束作为一种有效的 PTX 增溶和递送系统具有巨大的潜力。
{"title":"Polycaprolactone – Vitamin E TPGS micelles for delivery of paclitaxel: In vitro and in vivo evaluation","authors":"Ziyad Binkhathlan ,&nbsp;Osman Yusuf ,&nbsp;Raisuddin Ali ,&nbsp;Abdullah H. Alomrani ,&nbsp;Aws Alshamsan ,&nbsp;Abdullah K. Alshememry ,&nbsp;Aliyah Almomen ,&nbsp;Musaed Alkholief ,&nbsp;Ibrahim A. Aljuffali ,&nbsp;Faleh Alqahtani ,&nbsp;Saad Alobid ,&nbsp;Essam A. Ali ,&nbsp;Afsaneh Lavasanifar","doi":"10.1016/j.ijpx.2024.100253","DOIUrl":"10.1016/j.ijpx.2024.100253","url":null,"abstract":"<div><p>This study aimed to present findings on a paclitaxel (PTX)-loaded polymeric micellar formulation based on polycaprolactone-vitamin E TPGS (PCL-TPGS) and evaluate its in vitro anticancer activity as well as its in vivo pharmacokinetic profile in healthy mice in comparison to a marketed formulation. Micelles were prepared by a co-solvent evaporation method. The micelle's average diameter and polydispersity were determined using dynamic light scattering (DLS) technique. Drug encapsulation efficiency was assessed using an HPLC assay. The in vitro cytotoxicity was performed on human breast cancer cells (MCF-7 and MDA-MB-231) using MTT assay. The in vivo pharmacokinetic profile was characterized following a single intravenous dose of 4 mg/kg to healthy mice. The mean diameters of the prepared micelles were ≤ 100 nm. Moreover, these micelles increased the aqueous solubility of PTX from ∼0.3 μg/mL to reach nearly 1 mg/mL. While the PTX-loaded micelles showed an in vitro cytotoxicity comparable to the marketed formulation (Ebetaxel), drug-free PCL-TPGS micelles did not show any cytotoxic effects on both types of breast cancer cells (∼100% viability). Pharmacokinetics of PTX as part of PCL-TPGS showed a significant increase in its volume of distribution compared to PTX conventional formulation, Ebetaxel, which is in line with what was reported for clinical nano formulations of PTX, i.e., Abraxane, Genexol-PM, or Apealea. The findings of our studies indicate a significant potential for PCL-TPGS micelles to act as an effective system for solubilization and delivery of PTX.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"7 ","pages":"Article 100253"},"PeriodicalIF":4.7,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000252/pdfft?md5=2585d71757535ea96c12dfa95b6eeb05&pid=1-s2.0-S2590156724000252-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141037993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine excipient materials in carrier-based dry powder inhalation formulations: The interplay of particle size and concentration effects 以载体为基础的干粉吸入制剂中的精细辅料:粒度和浓度效应的相互作用
IF 4.7 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-05-01 DOI: 10.1016/j.ijpx.2024.100251
Mustafa M.A. Elsayed , Iman M. Alfagih , Katrina Brockbank , Fawaz Alheibshy , Alhassan H. Aodah , Raisuddin Ali , Khaled Almansour , Ahmed O. Shalash

The contributions of fine excipient materials to drug dispersibility from carrier-based dry powder inhalation (DPI) formulations are well recognized, although they are not completely understood. To improve the understanding of these contributions, we investigated the influences of the particle size of the fine excipient materials on characteristics of carrier-based DPI formulations. We studied two particle size grades of silica microspheres, with volume median diameters of 3.31 μm and 8.14 μm, as fine excipient materials. Inhalation formulations, each composed of a lactose carrier material, one of the fine excipient materials (2.5% or 15.0% w/w), and a drug (fluticasone propionate) material (1.5% w/w) were prepared. The physical microstructure, the rheological properties, the aerosolization pattern, and the aerodynamic performance of the formulations were studied. At low concentration, the large silica microspheres had a more beneficial influence on the drug dispersibility than the small silica microspheres. At high concentration, only the small silica microspheres had a beneficial influence on the drug dispersibility. The results reveal influences of fine excipient materials on mixing mechanics. At low concentration, the fine particles improved deaggregation and distribution of the drug particles over the surfaces of the carrier particles. The large silica microspheres were associated with a greater mixing energy and a greater improvement in the drug dispersibility than the small silica microspheres. At high concentration, the large silica microspheres kneaded the drug particles onto the surfaces of the carrier particles and thus impaired the drug dispersibility. As a critical attribute of fine excipient materials in carrier-based dry powder inhalation formulations, the particle size demands robust specification setting.

精细辅料对以载体为基础的干粉吸入(DPI)制剂中药物分散性的贡献已得到广泛认可,但人们对这些贡献并不完全了解。为了加深对这些影响的理解,我们研究了细小辅料的粒度对载体型干粉吸入制剂特性的影响。我们研究了两种粒度等级的二氧化硅微球,它们的体积中值直径分别为 3.31 μm 和 8.14 μm。制备了由乳糖载体材料、一种精细辅料材料(2.5% 或 15.0% w/w)和药物(丙酸氟替卡松)材料(1.5% w/w)组成的吸入制剂。研究了制剂的物理微观结构、流变特性、气溶胶模式和空气动力学性能。在低浓度下,大硅胶微球比小硅胶微球对药物分散性的影响更大。在高浓度下,只有小硅胶微球对药物分散性有有利影响。结果显示了细小辅料对混合机械的影响。在低浓度下,细颗粒改善了药物颗粒在载体颗粒表面的解聚和分布。与小硅胶微球相比,大硅胶微球的混合能更大,药物分散性的改善也更大。在高浓度下,大硅胶微球会将药物颗粒挤压到载体颗粒的表面,从而影响药物的分散性。作为载体型干粉吸入制剂中精细辅料的关键属性,粒度要求严格的规格设定。
{"title":"Fine excipient materials in carrier-based dry powder inhalation formulations: The interplay of particle size and concentration effects","authors":"Mustafa M.A. Elsayed ,&nbsp;Iman M. Alfagih ,&nbsp;Katrina Brockbank ,&nbsp;Fawaz Alheibshy ,&nbsp;Alhassan H. Aodah ,&nbsp;Raisuddin Ali ,&nbsp;Khaled Almansour ,&nbsp;Ahmed O. Shalash","doi":"10.1016/j.ijpx.2024.100251","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100251","url":null,"abstract":"<div><p>The contributions of fine excipient materials to drug dispersibility from carrier-based dry powder inhalation (DPI) formulations are well recognized, although they are not completely understood. To improve the understanding of these contributions, we investigated the influences of the particle size of the fine excipient materials on characteristics of carrier-based DPI formulations. We studied two particle size grades of silica microspheres, with volume median diameters of 3.31 μm and 8.14 μm, as fine excipient materials. Inhalation formulations, each composed of a lactose carrier material, one of the fine excipient materials (2.5% or 15.0% <em>w</em>/<em>w</em>), and a drug (fluticasone propionate) material (1.5% <em>w</em>/<em>w</em>) were prepared. The physical microstructure, the rheological properties, the aerosolization pattern, and the aerodynamic performance of the formulations were studied. At low concentration, the large silica microspheres had a more beneficial influence on the drug dispersibility than the small silica microspheres. At high concentration, only the small silica microspheres had a beneficial influence on the drug dispersibility. The results reveal influences of fine excipient materials on mixing mechanics. At low concentration, the fine particles improved deaggregation and distribution of the drug particles over the surfaces of the carrier particles. The large silica microspheres were associated with a greater mixing energy and a greater improvement in the drug dispersibility than the small silica microspheres. At high concentration, the large silica microspheres kneaded the drug particles onto the surfaces of the carrier particles and thus impaired the drug dispersibility. As a critical attribute of fine excipient materials in carrier-based dry powder inhalation formulations, the particle size demands robust specification setting.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"7 ","pages":"Article 100251"},"PeriodicalIF":4.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000239/pdfft?md5=62d18652a5012b5acacc30fc1fd8ae03&pid=1-s2.0-S2590156724000239-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140950844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-Cyclodextrin metal-organic framework as a green carrier to improve the dissolution, bioavailability, and liver protective effect of luteolin β-环糊精金属有机框架作为一种绿色载体,可提高叶黄素的溶解度、生物利用度和肝脏保护作用
IF 4.7 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-04-26 DOI: 10.1016/j.ijpx.2024.100250
Dan Yang , Min Zhao , Yihe Huang , Liwen Chen , Jiqin Fang , Jiaonan Liu , Miao Wang , Chunjie Zhao

The incidence of acetaminophen-induced liver injury has increased, but effective prevention methods are limited. Although luteolin has hepatoprotective activity, its low solubility and bioavailability limit its applications. Cyclodextrin metal-organic frameworks (CD-MOFs) possess 3D-network structures and large inner cavities, which make them excellent carriers of poorly soluble drugs. In this study, we used CD-MOFs as carriers to improve the dissolution of luteolin and assessed their antioxidant activity, bioavailability, and hepatoprotective effects. Luteolin was loaded into β-CD-MOF, γ-CD-MOF, β-CD, and γ-CD, and characterized by powder X-ray diffractometry (PXRD) and thermogravimetric analysis (TGA). Our results showed that luteolin-β-CD-MOF was the most stable. The main driving forces were hydrogen bonds and van der Waals forces, as determined by molecular simulation. The loading capacity of luteolin-β-CD-MOF was 14.67 wt%. Compared to raw luteolin, luteolin-β-CD-MOF exhibited a 4.50-fold increase in dissolution and increased antioxidant activity in vitro. Luteolin-β-CD-MOF increased the bioavailability of luteolin by approximately 4.04- and 11.07-fold in healthy rats and liver injured rats induced by acetaminophen in vivo, respectively. As determined by biochemical analysis, luteolin-β-CD-MOF exhibited a better hepatoprotective effect than raw luteolin in rats with acetaminophen-induced liver injury. This study provides a new approach for preventing acetaminophen-mediated liver damage.

对乙酰氨基酚诱发肝损伤的发病率有所上升,但有效的预防方法却很有限。虽然木犀草素具有保肝活性,但其溶解度和生物利用度较低,限制了其应用。环糊精金属有机框架(CD-MOFs)具有三维网络结构和较大的内腔,是溶解性较差药物的优良载体。在这项研究中,我们使用 CD-MOFs 作为载体来提高叶黄素的溶解度,并评估了它们的抗氧化活性、生物利用度和保肝作用。我们将叶黄素载入了β-CD-MOF、γ-CD-MOF、β-CD 和 γ-CD,并通过粉末 X 射线衍射仪(PXRD)和热重分析(TGA)对其进行了表征。结果表明,木犀草素-β-CD-MOF 最为稳定。分子模拟确定的主要驱动力是氢键和范德华力。木犀草素-β-CD-MOF 的负载能力为 14.67 wt%。与未加工的木犀草素相比,木犀草素-β-CD-MOF 的溶解度提高了 4.50 倍,体外抗氧化活性也有所提高。在健康大鼠和对乙酰氨基酚引起的肝损伤大鼠体内,叶黄素-β-CD-MOF 使叶黄素的生物利用率分别提高了约 4.04 倍和 11.07 倍。生化分析表明,在对乙酰氨基酚诱发肝损伤的大鼠体内,叶黄素-β-CD-MOF 的保肝效果优于未加工的叶黄素。这项研究为预防对乙酰氨基酚引起的肝损伤提供了一种新方法。
{"title":"β-Cyclodextrin metal-organic framework as a green carrier to improve the dissolution, bioavailability, and liver protective effect of luteolin","authors":"Dan Yang ,&nbsp;Min Zhao ,&nbsp;Yihe Huang ,&nbsp;Liwen Chen ,&nbsp;Jiqin Fang ,&nbsp;Jiaonan Liu ,&nbsp;Miao Wang ,&nbsp;Chunjie Zhao","doi":"10.1016/j.ijpx.2024.100250","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100250","url":null,"abstract":"<div><p>The incidence of acetaminophen-induced liver injury has increased, but effective prevention methods are limited. Although luteolin has hepatoprotective activity, its low solubility and bioavailability limit its applications. Cyclodextrin metal-organic frameworks (CD-MOFs) possess 3D-network structures and large inner cavities, which make them excellent carriers of poorly soluble drugs. In this study, we used CD-MOFs as carriers to improve the dissolution of luteolin and assessed their antioxidant activity, bioavailability, and hepatoprotective effects. Luteolin was loaded into β-CD-MOF, γ-CD-MOF, β-CD, and γ-CD, and characterized by powder X-ray diffractometry (PXRD) and thermogravimetric analysis (TGA). Our results showed that luteolin-β-CD-MOF was the most stable. The main driving forces were hydrogen bonds and van der Waals forces, as determined by molecular simulation. The loading capacity of luteolin-β-CD-MOF was 14.67 wt%. Compared to raw luteolin, luteolin-β-CD-MOF exhibited a 4.50-fold increase in dissolution and increased antioxidant activity <em>in vitro</em>. Luteolin-β-CD-MOF increased the bioavailability of luteolin by approximately 4.04- and 11.07-fold in healthy rats and liver injured rats induced by acetaminophen <em>in vivo</em>, respectively. As determined by biochemical analysis, luteolin-β-CD-MOF exhibited a better hepatoprotective effect than raw luteolin in rats with acetaminophen-induced liver injury. This study provides a new approach for preventing acetaminophen-mediated liver damage.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"7 ","pages":"Article 100250"},"PeriodicalIF":4.7,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000227/pdfft?md5=c6f32db4696c4216d3e1851761876fe9&pid=1-s2.0-S2590156724000227-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140816043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A drug repurposing approach of Atorvastatin calcium for its antiproliferative activity for effective treatment of breast cancer: In vitro and in vivo assessment 利用阿托伐他汀钙的抗增殖活性有效治疗乳腺癌的药物再利用方法:体外和体内评估
IF 4.7 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-04-20 DOI: 10.1016/j.ijpx.2024.100249
Dina M. Gaber , Sherihan S. Ibrahim , Ashraf K. Awaad , Yasmine M. Shahine , Salma Elmallah , Hebatallah S. Barakat , Noha I. Khamis

Breast cancer, the most common cancer among women, caused over 500,000 deaths in 2020. Conventional treatments are expensive and have severe side effects. Drug repurposing is a novel approach aiming to reposition clinically approved non-cancer drugs into newer cancer treatments. Atorvastatin calcium (ATR Ca) which is used for the treatment of hypercholesterolemia has potential to modulate cell growth and apoptosis. The study aimed at utilizing gelucire-based solid lipid nanoparticles (SLNs) and lactoferrin (Lf) as targeting ligand to enhance tumor targeting of atorvastatin calcium for effective management of breast cancer. Lf-decorated-ATR Ca-SLNs showed acceptable particle size and PDI values <200 nm and 0.35 respectively, entrapment efficiency >90% and sustained drug release profile with 78.97 ± 12.3% released after 24 h. In vitro cytotoxicity study on breast cancer cell lines (MCF-7) showed that Lf-decorated-ATR Ca-SLNs obviously improved anti-tumor activity by 2 to 2.5 folds compared to undecorated ATR Ca-SLNs and free drug. Further, In vivo study was also carried out using Ehrlich breast cancer model in mice. Caspase-3 apoptotic marker revealed superior antineoplastic and apoptosis-inducing activity in the groups treated with ATR Ca-SLNs either decorated/ undecorated with Lf in dosage 10 mg/kg/day p < 0.001 with superior activity for lactoferrin-decorated formulation.

乳腺癌是女性最常见的癌症,在 2020 年导致 50 多万人死亡。传统治疗费用昂贵,副作用严重。药物再利用是一种新方法,旨在将临床批准的非抗癌药物重新定位为更新的癌症治疗药物。用于治疗高胆固醇血症的阿托伐他汀钙(ATR Ca)具有调节细胞生长和凋亡的潜力。这项研究旨在利用基于凝胶的固体脂质纳米粒子(SLNs)和乳铁蛋白(Lf)作为靶向配体,增强阿托伐他汀钙的肿瘤靶向性,从而有效治疗乳腺癌。对乳腺癌细胞株(MCF-7)进行的体外细胞毒性研究表明,与未装饰的ATR Ca-SLNs和游离药物相比,Lf装饰的ATR Ca-SLNs明显提高了2至2.5倍的抗肿瘤活性。此外,还利用小鼠艾氏乳腺癌模型进行了体内研究。Caspase-3 细胞凋亡标记物显示,使用乳铁蛋白装饰/未装饰的 ATR Ca-SLNs 组(剂量为 10 毫克/千克/天)的抗肿瘤和诱导细胞凋亡活性均优于乳铁蛋白装饰制剂组(p < 0.001)。
{"title":"A drug repurposing approach of Atorvastatin calcium for its antiproliferative activity for effective treatment of breast cancer: In vitro and in vivo assessment","authors":"Dina M. Gaber ,&nbsp;Sherihan S. Ibrahim ,&nbsp;Ashraf K. Awaad ,&nbsp;Yasmine M. Shahine ,&nbsp;Salma Elmallah ,&nbsp;Hebatallah S. Barakat ,&nbsp;Noha I. Khamis","doi":"10.1016/j.ijpx.2024.100249","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100249","url":null,"abstract":"<div><p>Breast cancer, the most common cancer among women, caused over 500,000 deaths in 2020. Conventional treatments are expensive and have severe side effects. Drug repurposing is a novel approach aiming to reposition clinically approved non-cancer drugs into newer cancer treatments. Atorvastatin calcium (ATR Ca) which is used for the treatment of hypercholesterolemia has potential to modulate cell growth and apoptosis. The study aimed at utilizing gelucire-based solid lipid nanoparticles (SLNs) and lactoferrin (Lf) as targeting ligand to enhance tumor targeting of atorvastatin calcium for effective management of breast cancer. Lf-decorated-ATR Ca-SLNs showed acceptable particle size and PDI values &lt;200 nm and 0.35 respectively, entrapment efficiency &gt;90% and sustained drug release profile with 78.97 ± 12.3% released after 24 h. <em>In vitro</em> cytotoxicity study on breast cancer cell lines (MCF-7) showed that Lf-decorated-ATR Ca-SLNs obviously improved anti-tumor activity by 2 to 2.5 folds compared to undecorated ATR Ca-SLNs and free drug. Further, <em>In vivo</em> study was also carried out using Ehrlich breast cancer model in mice. Caspase-3 apoptotic marker revealed superior antineoplastic and apoptosis-inducing activity in the groups treated with ATR Ca-SLNs either decorated/ undecorated with Lf in dosage 10 mg/kg/day <em>p &lt;</em> <em>0.001</em> with superior activity for lactoferrin-decorated formulation.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"7 ","pages":"Article 100249"},"PeriodicalIF":4.7,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000215/pdfft?md5=f75da30078fb3cbd4ab1268e1bef84ed&pid=1-s2.0-S2590156724000215-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140632766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomedicine-based disulfiram and metal ion co-delivery strategies for cancer treatment 基于纳米药物的双硫仑和金属离子联合给药癌症治疗策略
IF 4.7 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-04-18 DOI: 10.1016/j.ijpx.2024.100248
Xinyue Shen , Huixiang Sheng , Ying Zhang , Xuan Dong , Longfa Kou , Qing Yao , Xinyu Zhao

Disulfiram (DSF) is a second-line drug for the clinical treatment of alcoholism and has long been proven to be safe for use in clinical practice. In recent years, researchers have discovered the cancer-killing activity of DSF, which is highly dependent on the presence of metal ions, particularly copper ions. Additionally, free DSF is highly unstable and easily degraded within few minutes in blood circulation. Therefore, an ideal DSF formulation should facilitate the co-delivery of metal ions and safeguard the DSF throughout its biological journey before reaching the targeted site. Extensive research have proved that nanotechnology based formulations can effectively realize this goal by strategic encapsulation therapeutic agents within nanoparticle. To be more specific, this is accomplished through precise delivery, coordinated release of metal ions at the tumor site, thereby amplifying its cytotoxic potential. Beyond traditional co-loading techniques, innovative approaches such as DSF-metal complex and metal nanomaterials, have also demonstrated promising results at the animal model stage. This review aims to elucidate the anticancer mechanism associated with DSF and its reliance on metal ions, as well as to provide a comprehensive overview of recent advances in the arena of nanomedicine based co-delivery strategies for DSF and metal ion in the context of cancer therapy.

双硫仑(DSF)是临床治疗酒精中毒的二线药物,在临床实践中的应用早已被证明是安全的。近年来,研究人员发现,DSF 的杀癌活性高度依赖于金属离子,尤其是铜离子的存在。此外,游离的 DSF 极不稳定,在血液循环中几分钟内就容易降解。因此,理想的 DSF 配方应有助于金属离子的共同传递,并在到达目标部位之前的整个生物过程中保护 DSF。广泛的研究证明,基于纳米技术的配方可以通过将治疗剂战略性地封装在纳米粒子中来有效实现这一目标。更具体地说,这是通过在肿瘤部位精确输送、协调释放金属离子,从而放大其细胞毒性潜力来实现的。除了传统的共负载技术,DSF-金属复合物和金属纳米材料等创新方法也在动物模型阶段取得了可喜的成果。本综述旨在阐明与 DSF 相关的抗癌机制及其对金属离子的依赖,并全面概述基于纳米药物的 DSF 和金属离子联合给药策略在癌症治疗领域的最新进展。
{"title":"Nanomedicine-based disulfiram and metal ion co-delivery strategies for cancer treatment","authors":"Xinyue Shen ,&nbsp;Huixiang Sheng ,&nbsp;Ying Zhang ,&nbsp;Xuan Dong ,&nbsp;Longfa Kou ,&nbsp;Qing Yao ,&nbsp;Xinyu Zhao","doi":"10.1016/j.ijpx.2024.100248","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100248","url":null,"abstract":"<div><p>Disulfiram (DSF) is a second-line drug for the clinical treatment of alcoholism and has long been proven to be safe for use in clinical practice. In recent years, researchers have discovered the cancer-killing activity of DSF, which is highly dependent on the presence of metal ions, particularly copper ions. Additionally, free DSF is highly unstable and easily degraded within few minutes in blood circulation. Therefore, an ideal DSF formulation should facilitate the co-delivery of metal ions and safeguard the DSF throughout its biological journey before reaching the targeted site. Extensive research have proved that nanotechnology based formulations can effectively realize this goal by strategic encapsulation therapeutic agents within nanoparticle. To be more specific, this is accomplished through precise delivery, coordinated release of metal ions at the tumor site, thereby amplifying its cytotoxic potential. Beyond traditional co-loading techniques, innovative approaches such as DSF-metal complex and metal nanomaterials, have also demonstrated promising results at the animal model stage. This review aims to elucidate the anticancer mechanism associated with DSF and its reliance on metal ions, as well as to provide a comprehensive overview of recent advances in the arena of nanomedicine based co-delivery strategies for DSF and metal ion in the context of cancer therapy.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"7 ","pages":"Article 100248"},"PeriodicalIF":4.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000203/pdfft?md5=52779c429393da062e4f422c900ca257&pid=1-s2.0-S2590156724000203-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140638813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and application of targeted ciprofloxacin nanocarriers for the treatment of chronic bacterial prostatitis 用于治疗慢性细菌性前列腺炎的靶向环丙沙星纳米载体的制作与应用
IF 4.7 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-04-18 DOI: 10.1016/j.ijpx.2024.100247
Sahar I. Mohammad , Basmah Nasser Aldosari , Magda M. Mehanni , Ahmed O. El-Gendy , Walaa G. Hozayen , Obaid Afzal , Randa Mohammed Zaki , Ossama M. Sayed

Pathogenic bacteria cause chronic bacterial prostatitis (CBP). CPB is characterized by urinary tract infection and persistence of pathogenic bacteria in prostatic secretion. Owing to poor blood supply to the prostate gland and limited drug penetration, CBP treatment is difficult. Transferosomes are ultradeformable vesicles for nanocarrier applications, which have become an important area of nanomedicine. Such carriers are specifically targeted to the pathological area to provide maximum therapeutic efficacy. It consists of a lipid bilayer soybean lecithin phosphatidylcholine (PC), an edge activator Tween 80 with various ratios, and a chloroform/methanol core. Depending on the lipophilicity of the active substance, it can be encapsulated within the core or among the lipid bilayer. Due to their exceptional flexibility, which enables them to squeeze themselves through narrow pores that are significantly smaller than their size, they can be a solution. One formulation (Cipro5 PEG) was selected for further in vitro analysis and was composed of phosphatidylcholine (PC), Tween 80, and polyethylene glycol-6 stearate (PEG-6 stearate) in a ratio of 3:3:1 in a chloroform/methanol mixture (1:2 v/v). In vitro, the results showed that PEGylated transferosomes had faster drug release, higher permeation, and increased bioavailability. The transferosomes were quantified with a particle size of 202.59 nm, a zeta potential of-49.38 mV, and a drug entrapment efficiency of 80.05%. The aim of this study was to investigate drug targeting. Therefore, Monoclonal antibody IgG was coupled with Cipro5 PEG, which has specificity and selectivity for conjugated nanoparticles. In vivo, a total of twenty-five adult Wistar rats were obtained and randomly divided into 5 groups, each of 5 rats at random: the control group, blank group, positive control group, Cipro 5PEG group, and Cipro 5PEG coupled with IgG antibody group. The cytokines levels (IL-1β, IL-8, and TNF-α) in the serum were detected by analysis kits. Compared with the control group, treatment with Cipro 5PEG coupled with the IgG antibody could significantly inhibit cytokines, according to histological analysis. Cipro 5PEG, coupled with the IgG antibody group, reduced prostate tissue inflammation. Hence, our results show a promising approach to delivering antibiotics for the targeted therapy of CBP.

致病菌会导致慢性细菌性前列腺炎(CBP)。慢性细菌性前列腺炎的特点是尿路感染和前列腺分泌物中致病菌的持续存在。由于前列腺供血不足,药物渗透力有限,慢性细菌性前列腺炎很难治疗。转运体是一种用于纳米载体应用的超变形囊泡,已成为纳米医学的一个重要领域。这种载体可特异性地靶向病理区域,以提供最大的疗效。它由脂质双分子层大豆卵磷脂磷脂酰胆碱(PC)、不同比例的边缘活化剂吐温 80 和氯仿/甲醇核心组成。根据活性物质的亲油性,可将其封装在核心中或脂质双分子层中。由于它们具有超强的柔韧性,可以通过明显小于其尺寸的狭窄孔隙进行挤压,因此可以成为一种溶液。我们选择了一种配方(Cipro5 PEG)进行进一步的体外分析,该配方由磷脂酰胆碱(PC)、吐温 80 和聚乙二醇-6 硬脂酸酯(PEG-6 硬脂酸酯)组成,在氯仿/甲醇混合物(1:2 v/v)中的比例为 3:3:1。体外实验结果表明,PEG 化的转移体具有更快的药物释放速度、更高的渗透性和更高的生物利用度。经测定,转移体的粒径为 202.59 nm,zeta 电位为 49.38 mV,药物包载效率为 80.05%。本研究的目的是研究药物靶向性。因此,将单克隆抗体 IgG 与具有特异性和选择性的 Cipro5 PEG 结合成共轭纳米粒子。在体内,共获得 25 只成年 Wistar 大鼠,随机分为 5 组,每组 5 只:对照组、空白对照组、阳性对照组、Cipro 5PEG 组和 Cipro 5PEG 与 IgG 抗体偶联组。用分析试剂盒检测血清中细胞因子(IL-1β、IL-8 和 TNF-α)的水平。根据组织学分析,与对照组相比,Cipro 5PEG 联合 IgG 抗体治疗组能显著抑制细胞因子。Cipro 5PEG 联合 IgG 抗体组能减轻前列腺组织炎症。因此,我们的研究结果表明了一种很有前景的抗生素递送方法,可用于 CBP 的靶向治疗。
{"title":"Fabrication and application of targeted ciprofloxacin nanocarriers for the treatment of chronic bacterial prostatitis","authors":"Sahar I. Mohammad ,&nbsp;Basmah Nasser Aldosari ,&nbsp;Magda M. Mehanni ,&nbsp;Ahmed O. El-Gendy ,&nbsp;Walaa G. Hozayen ,&nbsp;Obaid Afzal ,&nbsp;Randa Mohammed Zaki ,&nbsp;Ossama M. Sayed","doi":"10.1016/j.ijpx.2024.100247","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100247","url":null,"abstract":"<div><p>Pathogenic bacteria cause chronic bacterial prostatitis (CBP). CPB is characterized by urinary tract infection and persistence of pathogenic bacteria in prostatic secretion. Owing to poor blood supply to the prostate gland and limited drug penetration, CBP treatment is difficult. Transferosomes are ultradeformable vesicles for nanocarrier applications, which have become an important area of nanomedicine. Such carriers are specifically targeted to the pathological area to provide maximum therapeutic efficacy. It consists of a lipid bilayer soybean lecithin phosphatidylcholine (PC), an edge activator Tween 80 with various ratios, and a chloroform/methanol core. Depending on the lipophilicity of the active substance, it can be encapsulated within the core or among the lipid bilayer. Due to their exceptional flexibility, which enables them to squeeze themselves through narrow pores that are significantly smaller than their size, they can be a solution. One formulation (Cipro5 PEG) was selected for further in vitro analysis and was composed of phosphatidylcholine (PC), Tween 80, and polyethylene glycol-6 stearate (PEG-6 stearate) in a ratio of 3:3:1 in a chloroform/methanol mixture (1:2 <em>v</em>/v). In vitro, the results showed that PEGylated transferosomes had faster drug release, higher permeation, and increased bioavailability. The transferosomes were quantified with a particle size of 202.59 nm, a zeta potential of-49.38 mV, and a drug entrapment efficiency of 80.05%. The aim of this study was to investigate drug targeting. Therefore, Monoclonal antibody IgG was coupled with Cipro5 PEG, which has specificity and selectivity for conjugated nanoparticles. In vivo, a total of twenty-five adult Wistar rats were obtained and randomly divided into 5 groups, each of 5 rats at random: the control group, blank group, positive control group, Cipro 5PEG group, and Cipro 5PEG coupled with IgG antibody group. The cytokines levels (IL-1β, IL-8, and TNF-α) in the serum were detected by analysis kits. Compared with the control group, treatment with Cipro 5PEG coupled with the IgG antibody could significantly inhibit cytokines, according to histological analysis. Cipro 5PEG, coupled with the IgG antibody group, reduced prostate tissue inflammation. Hence, our results show a promising approach to delivering antibiotics for the targeted therapy of CBP.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"7 ","pages":"Article 100247"},"PeriodicalIF":4.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000197/pdfft?md5=2df5d3cf9672f87c7c6cb99c150ad6bb&pid=1-s2.0-S2590156724000197-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140647683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and in vitro/vivo evaluation of quercetin nanocrystals stabilized by glycyrrhizic acid for liver targeted drug delivery 用于肝脏靶向给药的甘草酸稳定槲皮素纳米晶体的制备和体内外评估
IF 4.7 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-04-09 DOI: 10.1016/j.ijpx.2024.100246
Baode Shen , Yuwen Zhu , Fengxia Wang , Xiang Deng , Pengfei Yue , Hailong Yuan , Chenying Shen

The purpose of this study was to design novel drug nanocrystals (NCs) stabilized by glycyrrhizic acid (GL) for achieving liver targeted drug delivery due to the presence of GL receptor in the hepatocytes. Quercetin (QT) exhibits good pharmacological activities for the treatment of liver diseases, including liver steatosis, fatty hepatitis, liver fibrosis, and liver cancer. It was selected as a model drug owing to its poor water solubility. QT NCs stabilized by GL (QT-NCs/GL) were fabricated by wet media milling technique and systemically evaluated. QT-NCs stabilized by poloxamer 188 (QT-NCs/P188) were prepared as a reference for comparison of in vitro and in vivo performance with QT-NCs/GL. QT-NCs/GL and QT-NCs/P188 with similar particle size around 130 nm were successfully fabricated by wet media milling technique. Both of QT-NCs/GL and QT-NCs/P188 showed irregular particles and short rods under SEM. XRPD revealed that QT-NCs/GL and QT-NCs/P188 remained in crystalline state with reduced crystallinity. QT-NCs/GL and QT-NCs/P188 exhibited significant solubility increase and drug release improvement of QT as compared to raw QT. No significant difference for the plasma concentration–time curves and pharmacokinetic parameters of QT were found following intravenous administration of QT-NCs/GL and QT-NCs/P188. However, a significantly higher liver distribution of QT following intravenous administration of QT-NCs/GL was observed in comparison to QT-NCs/P188, indicating QT-NCs stabilized by GL could achieve liver targeted delivery of QT. It could be concluded that GL used as stabilizer of QT NCs have a great potential for liver targeted drug delivery.

由于肝细胞中存在甘草酸受体,本研究旨在设计由甘草酸稳定的新型药物纳米晶体(NCs),以实现肝脏靶向给药。槲皮素(QT)在治疗肝脏疾病(包括肝脏脂肪变性、脂肪性肝炎、肝纤维化和肝癌)方面具有良好的药理活性。由于槲皮素的水溶性较差,因此被选为模型药物。通过湿介质研磨技术制备了由 GL 稳定的 QT NCs(QT-NCs/GL),并对其进行了系统评估。制备的 QT-NCs 由 poloxamer 188(QT-NCs/P188)稳定,作为与 QT-NCs/GL 进行体内外性能比较的参照物。通过湿介质研磨技术,成功制备出了粒径在 130 纳米左右的 QT-NCs/GL 和 QT-NCs/P188。在扫描电镜下,QT-NCs/GL 和 QT-NCs/P188 均显示出不规则颗粒和短棒。XRPD 显示 QT-NCs/GL 和 QT-NCs/P188 仍处于结晶状态,结晶度有所降低。与生药 QT 相比,QT-NCs/GL 和 QT-NCs/P188 的溶解度显著提高,药物释放也得到改善。静脉注射 QT-NCs/GL 和 QT-NCs/P188 后,QT 的血浆浓度-时间曲线和药代动力学参数无明显差异。然而,与 QT-NCs/P188 相比,静脉注射 QT-NCs/GL 后 QT 的肝脏分布明显增加,这表明经 GL 稳定的 QT-NCs 可实现 QT 的肝脏靶向给药。由此可以得出结论,GL 用作 QT NCs 的稳定剂在肝脏靶向给药方面具有巨大潜力。
{"title":"Fabrication and in vitro/vivo evaluation of quercetin nanocrystals stabilized by glycyrrhizic acid for liver targeted drug delivery","authors":"Baode Shen ,&nbsp;Yuwen Zhu ,&nbsp;Fengxia Wang ,&nbsp;Xiang Deng ,&nbsp;Pengfei Yue ,&nbsp;Hailong Yuan ,&nbsp;Chenying Shen","doi":"10.1016/j.ijpx.2024.100246","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100246","url":null,"abstract":"<div><p>The purpose of this study was to design novel drug nanocrystals (NCs) stabilized by glycyrrhizic acid (GL) for achieving liver targeted drug delivery due to the presence of GL receptor in the hepatocytes. Quercetin (QT) exhibits good pharmacological activities for the treatment of liver diseases, including liver steatosis, fatty hepatitis, liver fibrosis, and liver cancer. It was selected as a model drug owing to its poor water solubility. QT NCs stabilized by GL (QT-NCs/GL) were fabricated by wet media milling technique and systemically evaluated. QT-NCs stabilized by poloxamer 188 (QT-NCs/P188) were prepared as a reference for comparison of in vitro and in vivo performance with QT-NCs/GL. QT-NCs/GL and QT-NCs/P188 with similar particle size around 130 nm were successfully fabricated by wet media milling technique. Both of QT-NCs/GL and QT-NCs/P188 showed irregular particles and short rods under SEM. XRPD revealed that QT-NCs/GL and QT-NCs/P188 remained in crystalline state with reduced crystallinity. QT-NCs/GL and QT-NCs/P188 exhibited significant solubility increase and drug release improvement of QT as compared to raw QT. No significant difference for the plasma concentration–time curves and pharmacokinetic parameters of QT were found following intravenous administration of QT-NCs/GL and QT-NCs/P188. However, a significantly higher liver distribution of QT following intravenous administration of QT-NCs/GL was observed in comparison to QT-NCs/P188, indicating QT-NCs stabilized by GL could achieve liver targeted delivery of QT. It could be concluded that GL used as stabilizer of QT NCs have a great potential for liver targeted drug delivery.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"7 ","pages":"Article 100246"},"PeriodicalIF":4.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000185/pdfft?md5=97b6b11389ba07f9c16c6ab1f4ab2404&pid=1-s2.0-S2590156724000185-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140542484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation and evaluation of azithromycin-loaded silver nanoparticles for the treatment of infected wounds 用于治疗感染性伤口的阿奇霉素负载银纳米粒子的制备与评估
IF 4.7 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-04-09 DOI: 10.1016/j.ijpx.2024.100245
Mohammed S. Saddik , Mostafa F. Al-Hakkani , Ahmed M. Abu-Dief , Mohamed S. Mohamed , Islam A. Al-Fattah , Mahmoud Makki , Mohamed A. El-Mokhtar , Marwa A. Sabet , M.S. Amin , Hoda A. Ahmed , Khalaf Al-Ghamdi , Mostafa K. Mohammad , Mohammad H.A. Hassan

Infected wounds pose a significant challenge in healthcare, requiring innovative therapeutic strategies. Therefore, there is a critical need for innovative pharmaceutical materials to improve wound healing and combat bacterial growth. This study examined the efficacy of azithromycin-loaded silver nanoparticles (AZM-AgNPs) in treating infected wounds. AgNPs synthesized using a green method with Quinoa seed extract were loaded with AZM. Characterization techniques, including X-ray Powder Diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Uv-Vis analysis were utilized. The agar diffusion assay and determination of the MIC were used to assess the initial antibacterial impact of the formulations on both MRSA and E. coli. In addition, the antimicrobial, wound-healing effects and histological changes following treatment with the AZM-AgNPs were assessed using an infected rat model. The nanoparticles had size of 24.9 ± 15.2 nm for AgNPs and 34.7 ± 9.7 nm for AZM-AgNPs. The Langmuir model accurately characterized the adsorption of AZM onto the AgNP surface, indicating a maximum loading capacity of 162.73 mg/g. AZM-AgNPs exhibited superior antibacterial properties in vivo and in vitro compared to controls. Using the agar diffusion technique, AZM-AgNPs showed enhanced zones of inhibition against E. coli and MRSA, which was coupled with decreased MIC levels. In addition, in vivo studies showed that AZM-AgNP treated rats had the best outcome characterized by improved healing process, lower bacterial counts and superior epithelialization, compared to the control group. In conclusion, AZM-AgNPs can be synthesized using a green method with Quinoa seed with successful loading of azithromycin onto silver nanoparticles. In vitro and in vivo studies suggest the promising use of AZM-AgNPs as an effective therapeutic agent for infected wounds.

感染性伤口是医疗保健领域的一大挑战,需要创新的治疗策略。因此,亟需创新的药物材料来改善伤口愈合和抑制细菌生长。本研究考察了阿奇霉素载银纳米粒子(AZM-AgNPs)治疗感染伤口的功效。银纳米粒子采用藜麦种子提取物的绿色方法合成,并载入了 AZM。表征技术包括 X 射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和紫外可见光分析。琼脂扩散试验和 MIC 测定用于评估制剂对 MRSA 和大肠杆菌的初步抗菌效果。此外,还利用感染大鼠模型评估了 AZM-AgNPs 处理后的抗菌、伤口愈合效果和组织学变化。AgNPs 纳米粒子的尺寸为 24.9 ± 15.2 nm,AZM-AgNPs 纳米粒子的尺寸为 34.7 ± 9.7 nm。Langmuir 模型准确地描述了 AZM 在 AgNP 表面的吸附情况,表明其最大负载能力为 162.73 mg/g。与对照组相比,AZM-AgNPs 在体内和体外均表现出卓越的抗菌特性。利用琼脂扩散技术,AZM-AgNPs 对大肠杆菌和 MRSA 的抑制区增大,同时 MIC 水平降低。此外,体内研究表明,与对照组相比,AZM-AgNP 治疗大鼠的疗效最好,其特点是愈合过程得到改善,细菌数量减少,上皮化程度提高。总之,AZM-AgNPs 可以用一种绿色方法与 Quinoa 种子合成,并成功地将阿奇霉素负载到银纳米粒子上。体外和体内研究表明,AZM-AgNPs 可作为治疗感染伤口的有效药物。
{"title":"Formulation and evaluation of azithromycin-loaded silver nanoparticles for the treatment of infected wounds","authors":"Mohammed S. Saddik ,&nbsp;Mostafa F. Al-Hakkani ,&nbsp;Ahmed M. Abu-Dief ,&nbsp;Mohamed S. Mohamed ,&nbsp;Islam A. Al-Fattah ,&nbsp;Mahmoud Makki ,&nbsp;Mohamed A. El-Mokhtar ,&nbsp;Marwa A. Sabet ,&nbsp;M.S. Amin ,&nbsp;Hoda A. Ahmed ,&nbsp;Khalaf Al-Ghamdi ,&nbsp;Mostafa K. Mohammad ,&nbsp;Mohammad H.A. Hassan","doi":"10.1016/j.ijpx.2024.100245","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100245","url":null,"abstract":"<div><p>Infected wounds pose a significant challenge in healthcare, requiring innovative therapeutic strategies. Therefore, there is a critical need for innovative pharmaceutical materials to improve wound healing and combat bacterial growth. This study examined the efficacy of azithromycin-loaded silver nanoparticles (AZM-AgNPs) in treating infected wounds. AgNPs synthesized using a green method with <em>Quinoa</em> seed extract were loaded with AZM. Characterization techniques, including X-ray Powder Diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Uv-Vis analysis were utilized. The agar diffusion assay and determination of the MIC were used to assess the initial antibacterial impact of the formulations on both MRSA and <em>E. coli</em>. In addition, the antimicrobial, wound-healing effects and histological changes following treatment with the AZM-AgNPs were assessed using an infected rat model. The nanoparticles had size of 24.9 ± 15.2 nm for AgNPs and 34.7 ± 9.7 nm for AZM-AgNPs. The Langmuir model accurately characterized the adsorption of AZM onto the AgNP surface, indicating a maximum loading capacity of 162.73 mg/g. AZM-AgNPs exhibited superior antibacterial properties in vivo and in vitro compared to controls. Using the agar diffusion technique, AZM-AgNPs showed enhanced zones of inhibition against <em>E. coli</em> and MRSA, which was coupled with decreased MIC levels. In addition, in vivo studies showed that AZM-AgNP treated rats had the best outcome characterized by improved healing process, lower bacterial counts and superior epithelialization, compared to the control group. In conclusion, AZM-AgNPs can be synthesized using a green method with Quinoa seed with successful loading of azithromycin onto silver nanoparticles. In vitro and in vivo studies suggest the promising use of AZM-AgNPs as an effective therapeutic agent for infected wounds.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"7 ","pages":"Article 100245"},"PeriodicalIF":4.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000173/pdfft?md5=878bdaea5d9707834044e9e7361d307b&pid=1-s2.0-S2590156724000173-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140545960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Pharmaceutics: X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1