The U.S. Department of Energy’s SunShot Initiative was launched in 2011 to make subsidy-free solar electricity cost competitive with conventional energy sources by the end of the decade. Research in reliability can play a major role in realizing the SunShot goal of $0.06/kWh. By improving photovoltaic module lifetime and reducing degradation rates, a system’s lifetime energy output is increased. Increasing confidence in photovoltaic performance prediction can lower perceived investment risk and thus the cost of capital. Accordingly, in 2015, SunShot expects to award more than $40 million through its SunShot National Laboratory Multiyear Partnership (SuNLaMP) and Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) 2 funding programs, for research into reliability topics such as determining acceleration factors, modeling degradation rates and failure mechanisms, improving predictive performance models, and developing new test methods and instrumentation.
{"title":"The importance of reliability to the SunShot Initiative (Presentation Recording)","authors":"R. Jones-Albertus","doi":"10.1117/12.2188876","DOIUrl":"https://doi.org/10.1117/12.2188876","url":null,"abstract":"The U.S. Department of Energy’s SunShot Initiative was launched in 2011 to make subsidy-free solar electricity cost competitive with conventional energy sources by the end of the decade. Research in reliability can play a major role in realizing the SunShot goal of $0.06/kWh. By improving photovoltaic module lifetime and reducing degradation rates, a system’s lifetime energy output is increased. Increasing confidence in photovoltaic performance prediction can lower perceived investment risk and thus the cost of capital. Accordingly, in 2015, SunShot expects to award more than $40 million through its SunShot National Laboratory Multiyear Partnership (SuNLaMP) and Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) 2 funding programs, for research into reliability topics such as determining acceleration factors, modeling degradation rates and failure mechanisms, improving predictive performance models, and developing new test methods and instrumentation.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"126 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126469493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Stryckers, Lien D'Olieslaeger, J. Manca, A. Ethirajan, W. Deferme
Ultrasonic spray coating is currently proven to be a reliable, flexible and cost efficient fabrication method for printed electronics [1-2]. Ultrasonic nozzles are by design especially well-suited to deposit nano-suspension dispersions. Due to the ultrasonic vibration of the nozzle, droplets having a median diameter of 20 μm are created in a homogeneous droplet cloud and directed towards the substrate. When one prepares an ink having the right wetting properties, thin and homogeneous layers, fully covering the surface, can be achieved. Together with conjugated polymer nanoparticles (NPs), emerging as a new class of nanomaterials, [3] it opens possibilities towards eco-friendly roll-to-roll processing of state-of-the-art organic bulk heterojunction solar cells. A ultrasonic spray coater was used to print the conjugated polymer NP layers under different conditions. A first optimization of the spray coater settings (flow rate, spray speed and temperature) and the ink formulation (water and co-solvent mixture and NP content) was performed for polystyrene particles dissolved in a water-ethanol mixture. As a next step, the low bandgap donor polymer poly[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophene-diyl] (PCDTBT) [4] and the fullerene acceptor phenyl-C71-butyric acid methyl ester (PCBM[70]) were combined in a water-based blend NP dispersion which was prepared using the mini-emulsion technique. [5,6] Optical Microscopy, profilometry and Scanning Electron Microscopy (SEM) are performed to study the roughness, surface structure, thickness and coverage of the spray coated layers. Finally the printed NP layers are integrated in organic bulk heterojunction solar cells and compared to spin coated reference devices.
{"title":"Eco-friendly spray coating of organic solar cells through water-based nanoparticles ink (Presentation Recording)","authors":"J. Stryckers, Lien D'Olieslaeger, J. Manca, A. Ethirajan, W. Deferme","doi":"10.1117/12.2188420","DOIUrl":"https://doi.org/10.1117/12.2188420","url":null,"abstract":"Ultrasonic spray coating is currently proven to be a reliable, flexible and cost efficient fabrication method for printed electronics [1-2]. Ultrasonic nozzles are by design especially well-suited to deposit nano-suspension dispersions. Due to the ultrasonic vibration of the nozzle, droplets having a median diameter of 20 μm are created in a homogeneous droplet cloud and directed towards the substrate. When one prepares an ink having the right wetting properties, thin and homogeneous layers, fully covering the surface, can be achieved. Together with conjugated polymer nanoparticles (NPs), emerging as a new class of nanomaterials, [3] it opens possibilities towards eco-friendly roll-to-roll processing of state-of-the-art organic bulk heterojunction solar cells. A ultrasonic spray coater was used to print the conjugated polymer NP layers under different conditions. A first optimization of the spray coater settings (flow rate, spray speed and temperature) and the ink formulation (water and co-solvent mixture and NP content) was performed for polystyrene particles dissolved in a water-ethanol mixture. As a next step, the low bandgap donor polymer poly[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophene-diyl] (PCDTBT) [4] and the fullerene acceptor phenyl-C71-butyric acid methyl ester (PCBM[70]) were combined in a water-based blend NP dispersion which was prepared using the mini-emulsion technique. [5,6] Optical Microscopy, profilometry and Scanning Electron Microscopy (SEM) are performed to study the roughness, surface structure, thickness and coverage of the spray coated layers. Finally the printed NP layers are integrated in organic bulk heterojunction solar cells and compared to spin coated reference devices.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129777902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Pint, A. Westover, Adam P. Cohn, William R. Erwin, Keith Share, Thomas Metke, Rizia Bardhan
This work will discuss our recent advances focused on integrating high power energy storage directly into the native materials of both conventional photovoltaics (PV) and dye-sensitized solar cells (DSSCs). In the first case (PV), we demonstrate the ability to etch high surface-area porous silicon charge storage interfaces directly into the backside of a conventional polycrystalline silicon photovoltaic device exhibiting over 14% efficiency. These high surface area materials are then coupled with solid-state ionic liquid-polymer electrolytes to produce solid-state fully integrated devices where the PV device can directly inject charge into an on-board supercapacitor that can be separately discharged under dark conditions with a Coulombic efficiency of 84%. In a similar manner, we further demonstrate that surface engineered silicon materials can be utilized to replace Pt counterelectrodes in conventional DSSC energy conversion devices. As the silicon counterelectrodes rely strictly on surface Faradaic chemical reactions with the electrolyte on one side of the wafer electrode, we demonstrate double-sided processing of electrodes that enables dual-function of the material for simultaneous energy storage and conversion, each on opposing sides. In both of these devices, we demonstrate the ability to produce an all-silicon coupled energy conversion and storage system through the common ability to convert unused silicon in solar cells into high power silicon-based supercapacitors. Beyond the proof-of-concept design and performance of this integrated solar-storage system, this talk will conclude with a brief discussion of the hurdles and challenges that we envision for this emerging area both from a fundamental and technological viewpoint.
{"title":"Embedding solar cell materials with on-board integrated energy storage for load-leveling and dark power delivery (Presentation Recording)","authors":"C. Pint, A. Westover, Adam P. Cohn, William R. Erwin, Keith Share, Thomas Metke, Rizia Bardhan","doi":"10.1117/12.2188503","DOIUrl":"https://doi.org/10.1117/12.2188503","url":null,"abstract":"This work will discuss our recent advances focused on integrating high power energy storage directly into the native materials of both conventional photovoltaics (PV) and dye-sensitized solar cells (DSSCs). In the first case (PV), we demonstrate the ability to etch high surface-area porous silicon charge storage interfaces directly into the backside of a conventional polycrystalline silicon photovoltaic device exhibiting over 14% efficiency. These high surface area materials are then coupled with solid-state ionic liquid-polymer electrolytes to produce solid-state fully integrated devices where the PV device can directly inject charge into an on-board supercapacitor that can be separately discharged under dark conditions with a Coulombic efficiency of 84%. In a similar manner, we further demonstrate that surface engineered silicon materials can be utilized to replace Pt counterelectrodes in conventional DSSC energy conversion devices. As the silicon counterelectrodes rely strictly on surface Faradaic chemical reactions with the electrolyte on one side of the wafer electrode, we demonstrate double-sided processing of electrodes that enables dual-function of the material for simultaneous energy storage and conversion, each on opposing sides. In both of these devices, we demonstrate the ability to produce an all-silicon coupled energy conversion and storage system through the common ability to convert unused silicon in solar cells into high power silicon-based supercapacitors. Beyond the proof-of-concept design and performance of this integrated solar-storage system, this talk will conclude with a brief discussion of the hurdles and challenges that we envision for this emerging area both from a fundamental and technological viewpoint.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134537206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PV System Reliability Program at Sandia National Labs: From Material-Level to System-Level Analysis
桑迪亚国家实验室光伏系统可靠性项目:从材料级到系统级分析
{"title":"PV system reliability program at Sandia National Labs: From material-level to system-level analysis (Presentation Recording)","authors":"O. Lavrova","doi":"10.1117/12.2189750","DOIUrl":"https://doi.org/10.1117/12.2189750","url":null,"abstract":"PV System Reliability Program at Sandia National Labs: From Material-Level to System-Level Analysis","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114779349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
My research group in the State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi’an Jiaotong University has been focusing on renewable energy, especially solar hydrogen, for about 20 years. In this presentation, I will present the most recent progress in our group on solar hydrogen production using light and heat. Firstly, “cheap” photoelectrochemical and photocatalytic water splitting, including both nanostructured materials and pilot-scale demonstration in our group for light-driven solar hydrogen (artificial photosynthesis) will be introduced. Then I will make a deep introduction to the achievements on the thermal-driven solar hydrogen, i.e., biomass/coal gasification in supercritical water for large-scale and low-cost hydrogen production using concentrated solar light.
{"title":"Solar hydrogen: harvesting light and heat from sun (Presentation Recording)","authors":"Liejin Guo, D. Jing","doi":"10.1117/12.2195425","DOIUrl":"https://doi.org/10.1117/12.2195425","url":null,"abstract":"My research group in the State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi’an Jiaotong University has been focusing on renewable energy, especially solar hydrogen, for about 20 years. In this presentation, I will present the most recent progress in our group on solar hydrogen production using light and heat. Firstly, “cheap” photoelectrochemical and photocatalytic water splitting, including both nanostructured materials and pilot-scale demonstration in our group for light-driven solar hydrogen (artificial photosynthesis) will be introduced. Then I will make a deep introduction to the achievements on the thermal-driven solar hydrogen, i.e., biomass/coal gasification in supercritical water for large-scale and low-cost hydrogen production using concentrated solar light.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130810086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Weingarten, Michael D. LaCount, G. Rumbles, J. van de Lagemaat, M. Lusk, S. Shaheen
Solid-state energy upconversion has many potential applications, from nonlinear photonics and biophotonics to expanding the spectrum available for solar energy harvest. In organic molecular systems, upconversion is frequently done in solution to mitigate aggregation-induced photoluminescence quenching or to facilitate the diffusion of triplet donors in Triplet-Triplet Annihilation (TTA) systems. Here we demonstrate an organic thin film upconversion system utilizing two-photon absorption (TPA) properties to improve upconversion efficiency. In blend films of Stilbene-420 and Rhodamine 6G we observe a tenfold increase in up-converted fluorescence compared to the fluorescence yield of TPA in pristine stilbene films. While TPA normally has quadratic dependence on excitation intensity, these blend films exhibit sub-quadratic intensity dependence, indicating a combination of linear and quadratic upconversion processes and dramatically improving upconversion efficiency at lower excitation intensities. This improvement in intensity dependence allows for relatively efficient upconversion upon excitation by a nanosecond laser pulse, in contrast to the more expensive femtosecond lasers generally required for excitation in TPA microscopy and similar systems. Time-resolved photoluminescence decay measurements reveal that all excited states involved in this upconversion process are singlets, which indicates the potential for reduced energy losses when compared to TTA upconversion systems and their inherent intersystem-crossing energy losses. We observe emission from both the Rhodamine 6G donor molecules and Stilbene-420 acceptor molecules, indicating the presence of prompt fluorescence from the donor as well as upconversion to the acceptor, and FRET losses from acceptor back to donor. By fitting to a kinetic model we extract rates for these competing processes.
{"title":"Singlet-based photon upconversion in multichromophore organic thin films (Presentation Recording)","authors":"D. Weingarten, Michael D. LaCount, G. Rumbles, J. van de Lagemaat, M. Lusk, S. Shaheen","doi":"10.1117/12.2188991","DOIUrl":"https://doi.org/10.1117/12.2188991","url":null,"abstract":"Solid-state energy upconversion has many potential applications, from nonlinear photonics and biophotonics to expanding the spectrum available for solar energy harvest. In organic molecular systems, upconversion is frequently done in solution to mitigate aggregation-induced photoluminescence quenching or to facilitate the diffusion of triplet donors in Triplet-Triplet Annihilation (TTA) systems. Here we demonstrate an organic thin film upconversion system utilizing two-photon absorption (TPA) properties to improve upconversion efficiency. In blend films of Stilbene-420 and Rhodamine 6G we observe a tenfold increase in up-converted fluorescence compared to the fluorescence yield of TPA in pristine stilbene films. While TPA normally has quadratic dependence on excitation intensity, these blend films exhibit sub-quadratic intensity dependence, indicating a combination of linear and quadratic upconversion processes and dramatically improving upconversion efficiency at lower excitation intensities. This improvement in intensity dependence allows for relatively efficient upconversion upon excitation by a nanosecond laser pulse, in contrast to the more expensive femtosecond lasers generally required for excitation in TPA microscopy and similar systems. Time-resolved photoluminescence decay measurements reveal that all excited states involved in this upconversion process are singlets, which indicates the potential for reduced energy losses when compared to TTA upconversion systems and their inherent intersystem-crossing energy losses. We observe emission from both the Rhodamine 6G donor molecules and Stilbene-420 acceptor molecules, indicating the presence of prompt fluorescence from the donor as well as upconversion to the acceptor, and FRET losses from acceptor back to donor. By fitting to a kinetic model we extract rates for these competing processes.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"421 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125854089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Organic-inorganic perovskites are quickly overrunning research activities in new materials for cost-effective and high-efficiency photovoltaic technologies. Since the first demonstration from Kojima and co-workers in 2009, several perovskite-based solar cells have been reported and certified with rapidly improving power conversion efficiency. Recent reports demonstrate that perovskites can compete with the most efficient inorganic materials, while they still allow processing from solution as potential advantage to deliver a cost-effective solar technology. Compare to the impressive progress in power conversion efficiency, stability studies are rather poor and often controversial. An intrinsic complication comes from the fact that the stability of perovskite solar cells is strongly affected by any small difference in the device architecture, preparation procedure, materials composition and testing procedure. In the present talk we will focus on the stability of perovskite solar cells in working condition. We will discuss a measuring protocol to extract reliable and reproducible ageing data. We will present new materials and preparation procedures which improve the device lifetime without giving up on high power conversion efficiency.
{"title":"Novel materials for stable perovskite solar cells (Presentation Recording)","authors":"A. Abate","doi":"10.1117/12.2186953","DOIUrl":"https://doi.org/10.1117/12.2186953","url":null,"abstract":"Organic-inorganic perovskites are quickly overrunning research activities in new materials for cost-effective and high-efficiency photovoltaic technologies. Since the first demonstration from Kojima and co-workers in 2009, several perovskite-based solar cells have been reported and certified with rapidly improving power conversion efficiency. Recent reports demonstrate that perovskites can compete with the most efficient inorganic materials, while they still allow processing from solution as potential advantage to deliver a cost-effective solar technology. Compare to the impressive progress in power conversion efficiency, stability studies are rather poor and often controversial. An intrinsic complication comes from the fact that the stability of perovskite solar cells is strongly affected by any small difference in the device architecture, preparation procedure, materials composition and testing procedure. In the present talk we will focus on the stability of perovskite solar cells in working condition. We will discuss a measuring protocol to extract reliable and reproducible ageing data. We will present new materials and preparation procedures which improve the device lifetime without giving up on high power conversion efficiency.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125511309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sungmo Ahn, A. Nardes, D. Rourke, J. van de Lagemaat, N. Kopidakis, W. Park
We have theoretically and experimentally investigated the effects of Ag-grating electrode on the performance of polymer:fullerene based bulk heterojunction organic solar cells. First, an integrated numerical model has been developed, which is capable of describing both the optical and the electrical properties simultaneously. The Ag-grating patterned back electrode was then designed to enhance the absorption in sub-bandgap region of P3HT:PCBM binary devices. Laser interference lithography and metal lift-off technique were adopted to realize highly-uniform and large-area nanograting patterns. We measured almost 5 times enhancement of the external quantum efficiency at the surface plasmon resonance wavelength. However, the overall improvement in power conversion efficiency was not significant due to the low intrinsic absorption of active layer in this sub-bandgap region. We, then, investigated about the effect of surface plasmon on the ternary device of P3HT:Si-PCPDTBT:ICBA. It was demonstrated that the infrared absorption by the Si-PCPDTBT sensitizer can be substantially enhanced by matching the surface plasmon resonance to the sensitizer absorption band. Besides, we also observed an additional enhancement in the visible range which is due to the scattering effect of the gratings. An overall short-circuit current enhancement of up to 40% was predicted numerically. We have then fabricated the device by the lamination technique and observed a 30% increase in the short circuit current. Plasmon enhancement of sensitized organic solar cell presents a promising pathway to high-efficiency, broadband-absorbing polymer:fullerene bulk heterojunction organic solar cells.
本文从理论上和实验上研究了银光栅电极对聚合物富勒烯基体异质结有机太阳能电池性能的影响。首先,建立了一个能够同时描述光学和电学性质的综合数值模型。然后设计ag光栅背电极,增强P3HT:PCBM二元器件亚带隙区的吸收。采用激光干涉光刻和金属剥离技术实现了高度均匀的大面积纳米光栅图样。在表面等离子体共振波长处,我们测量到外量子效率提高了近5倍。然而,由于该子带隙区域有源层的本征吸收较低,功率转换效率的整体提高并不显著。研究了表面等离激元对P3HT: si - pcpdbt:ICBA三元器件的影响。结果表明,通过将表面等离子体共振与增敏剂的吸收带相匹配,si - pcpdbt增敏剂的红外吸收可以得到显著增强。此外,我们还观察到由于光栅的散射效应,在可见光范围内有额外的增强。从数值上预测,总体短路电流增强可达40%。然后,我们通过层压技术制造了该器件,并观察到短路电流增加了30%。等离子体增强敏化有机太阳电池为制备高效、宽带吸收聚合物富勒烯体异质结有机太阳电池提供了一条有前途的途径。
{"title":"Surface plasmon enhanced infrared absorption in P3HT-based organic solar cells: the effect of infrared sensitizer (Presentation Recording)","authors":"Sungmo Ahn, A. Nardes, D. Rourke, J. van de Lagemaat, N. Kopidakis, W. Park","doi":"10.1117/12.2188710","DOIUrl":"https://doi.org/10.1117/12.2188710","url":null,"abstract":"We have theoretically and experimentally investigated the effects of Ag-grating electrode on the performance of polymer:fullerene based bulk heterojunction organic solar cells. First, an integrated numerical model has been developed, which is capable of describing both the optical and the electrical properties simultaneously. The Ag-grating patterned back electrode was then designed to enhance the absorption in sub-bandgap region of P3HT:PCBM binary devices. Laser interference lithography and metal lift-off technique were adopted to realize highly-uniform and large-area nanograting patterns. We measured almost 5 times enhancement of the external quantum efficiency at the surface plasmon resonance wavelength. However, the overall improvement in power conversion efficiency was not significant due to the low intrinsic absorption of active layer in this sub-bandgap region. We, then, investigated about the effect of surface plasmon on the ternary device of P3HT:Si-PCPDTBT:ICBA. It was demonstrated that the infrared absorption by the Si-PCPDTBT sensitizer can be substantially enhanced by matching the surface plasmon resonance to the sensitizer absorption band. Besides, we also observed an additional enhancement in the visible range which is due to the scattering effect of the gratings. An overall short-circuit current enhancement of up to 40% was predicted numerically. We have then fabricated the device by the lamination technique and observed a 30% increase in the short circuit current. Plasmon enhancement of sensitized organic solar cell presents a promising pathway to high-efficiency, broadband-absorbing polymer:fullerene bulk heterojunction organic solar cells.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125463017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Varley, Xiaoqing He, N. Mackie, A. Rockett, V. Lordi
Advances in thin-film photovoltaics have largely focused on modifying the absorber layer(s), while the choices for other layers in the solar cell stack have remained somewhat limited. In particular, cadmium sulfide (CdS) is widely used as the buffer layer in typical record devices utilizing absorbers like Cu(In,Ga)Se2 (CIGSe) or Cu2ZnSnS4 (CZTS) despite leading to a loss of solar photocurrent due to its band gap of 2.4 eV. While different buffers such as Zn(S,O,OH) are beginning to become competitive with CdS, the identification of additional wider-band gap alternatives with electrical properties comparable to or better than CdS is highly desirable. Here we use hybrid density functional calculations to characterize CdxZn1-xOyS1-y candidate buffer layers in the quaternary phase space composed by Cd, Zn, O, and S. We focus on the band gaps and band offsets of the alloys to assess strategies for improving absorption losses from conventional CdS buffers while maintaining similar conduction band offsets known to facilitate good device performance. We also consider additional criteria such as lattice matching to identify regions in the composition space that may provide improved epitaxy to CIGSe and CZTS absorbers. Lastly, we incorporate our calculated alloy properties into device model simulations of typical CIGSe devices to identify the CdxZn1-xOyS1-y buffer compositions that lead to the best performance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Department of Energy office of Energy Efficiency and Renewable Energy (EERE) through the SunShot Bridging Research Interactions through collaborative Development Grants in Energy (BRIDGE) program.
{"title":"Cd-Zn-O-S alloys for optimal buffer layers in thin-film photovoltaics (Presentation Recording)","authors":"J. Varley, Xiaoqing He, N. Mackie, A. Rockett, V. Lordi","doi":"10.1117/12.2188373","DOIUrl":"https://doi.org/10.1117/12.2188373","url":null,"abstract":"Advances in thin-film photovoltaics have largely focused on modifying the absorber layer(s), while the choices for other layers in the solar cell stack have remained somewhat limited. In particular, cadmium sulfide (CdS) is widely used as the buffer layer in typical record devices utilizing absorbers like Cu(In,Ga)Se2 (CIGSe) or Cu2ZnSnS4 (CZTS) despite leading to a loss of solar photocurrent due to its band gap of 2.4 eV. While different buffers such as Zn(S,O,OH) are beginning to become competitive with CdS, the identification of additional wider-band gap alternatives with electrical properties comparable to or better than CdS is highly desirable. Here we use hybrid density functional calculations to characterize CdxZn1-xOyS1-y candidate buffer layers in the quaternary phase space composed by Cd, Zn, O, and S. We focus on the band gaps and band offsets of the alloys to assess strategies for improving absorption losses from conventional CdS buffers while maintaining similar conduction band offsets known to facilitate good device performance. We also consider additional criteria such as lattice matching to identify regions in the composition space that may provide improved epitaxy to CIGSe and CZTS absorbers. Lastly, we incorporate our calculated alloy properties into device model simulations of typical CIGSe devices to identify the CdxZn1-xOyS1-y buffer compositions that lead to the best performance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Department of Energy office of Energy Efficiency and Renewable Energy (EERE) through the SunShot Bridging Research Interactions through collaborative Development Grants in Energy (BRIDGE) program.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126268999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Currently, the surface-plasmon-polariton (SPP) waves can be excited only at certain wavelength and certain incidence angle. It is remarkably noticed that the wavenumber of the SPP waves decreases as the incident wavelength increases. This stands against the continuous excitation of SPP waves at certain incidence angle using a practical grating configuration. We hypothesized that the theoretical modeling of SPP waves guided by the interface of a dielectric grating and a metal will help to solve that problem. The aim of the study is to prove that the proposed grating/metal configuration has propensity of guiding SPP waves of relative wavenumber that increases as the incident electromagnetic wavelength increases. This may enable the continuous excitation of SPP waves. The successful attempt of proving the aim of this study will validate the excitation of SPP waves at certain incidence angle but at wider range of incident wavelength. This result will have a great impact on the communication and energy harvesting applications. The rigorous coupled wave analysis (RCWA) is used to solve the Maxwell equations in its differential form. The Newton-Raphson method is used to solve the dispersion equation at the grating/metal interface for the SPP wavenumber. This provides the wavenumber of the SPP waves that can propagate at the grating metal interface. A study for the SPP wave energy decay will also be made through the calculation of the Poynting vector, and show that the propagating SPP waves decay away from the grating/metal interface, which infers the surfacing property of the propagating waves.
{"title":"On the broadband continuous excitation of surface-plasmon-polariton waves in an amorphous silicon solar cell (Presentation Recording)","authors":"M. Atalla","doi":"10.1117/12.2188874","DOIUrl":"https://doi.org/10.1117/12.2188874","url":null,"abstract":"Currently, the surface-plasmon-polariton (SPP) waves can be excited only at certain wavelength and certain incidence angle. It is remarkably noticed that the wavenumber of the SPP waves decreases as the incident wavelength increases. This stands against the continuous excitation of SPP waves at certain incidence angle using a practical grating configuration. We hypothesized that the theoretical modeling of SPP waves guided by the interface of a dielectric grating and a metal will help to solve that problem. The aim of the study is to prove that the proposed grating/metal configuration has propensity of guiding SPP waves of relative wavenumber that increases as the incident electromagnetic wavelength increases. This may enable the continuous excitation of SPP waves. The successful attempt of proving the aim of this study will validate the excitation of SPP waves at certain incidence angle but at wider range of incident wavelength. This result will have a great impact on the communication and energy harvesting applications. The rigorous coupled wave analysis (RCWA) is used to solve the Maxwell equations in its differential form. The Newton-Raphson method is used to solve the dispersion equation at the grating/metal interface for the SPP wavenumber. This provides the wavenumber of the SPP waves that can propagate at the grating metal interface. A study for the SPP wave energy decay will also be made through the calculation of the Poynting vector, and show that the propagating SPP waves decay away from the grating/metal interface, which infers the surfacing property of the propagating waves.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"25 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131874328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}