T. Felder, W. Gambogi, J. Kopchick, Lucas Amspacher, R. Peacock, Benjamin Foltz, K. Stika, A. Bradley, B. Hamzavy, Bao-Ling Yu, L. Garreau-iles, O. Fu, Hongjie Hu, T. Trout
Matching accelerated test results to field observations is an important objective in the photovoltaic industry. We continue to develop test methods to strengthen correlations. We have previously reported good correlation of FTIR spectra between accelerated tests and field measurements. The availability of portable FTIR spectrometers has made measurement in the field convenient and reliable. Recently, nano-indentation has shown promise to correlate changes in backsheet mechanical properties. A precisely shaped stylus is pressed into a sample, load vs displacement recorded and mechanical properties of interest calculated in a nondestructive test. This test can be done on full size modules, allowing area variations in mechanical properties to be recorded. Finally, we will discuss optical profilometry. In this technique a white light interferogram of a surface is Fourier transformed to produce a three-dimensional image. Height differences from 1 nm to 5 mm can be detected over an area of a few cm. This technique can be used on minimodules, and is useful to determine crack and defect dimensions. Results will be presented correlating accelerated tests with fielded modules covering spectroscopic, mechanical, and morphological changes.
{"title":"Development of backsheet tests and measurements to improve correlation of accelerated exposures to fielded modules","authors":"T. Felder, W. Gambogi, J. Kopchick, Lucas Amspacher, R. Peacock, Benjamin Foltz, K. Stika, A. Bradley, B. Hamzavy, Bao-Ling Yu, L. Garreau-iles, O. Fu, Hongjie Hu, T. Trout","doi":"10.1117/12.2188627","DOIUrl":"https://doi.org/10.1117/12.2188627","url":null,"abstract":"Matching accelerated test results to field observations is an important objective in the photovoltaic industry. We continue to develop test methods to strengthen correlations. We have previously reported good correlation of FTIR spectra between accelerated tests and field measurements. The availability of portable FTIR spectrometers has made measurement in the field convenient and reliable. Recently, nano-indentation has shown promise to correlate changes in backsheet mechanical properties. A precisely shaped stylus is pressed into a sample, load vs displacement recorded and mechanical properties of interest calculated in a nondestructive test. This test can be done on full size modules, allowing area variations in mechanical properties to be recorded. Finally, we will discuss optical profilometry. In this technique a white light interferogram of a surface is Fourier transformed to produce a three-dimensional image. Height differences from 1 nm to 5 mm can be detected over an area of a few cm. This technique can be used on minimodules, and is useful to determine crack and defect dimensions. Results will be presented correlating accelerated tests with fielded modules covering spectroscopic, mechanical, and morphological changes.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127759311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Hacke, K. Terwilliger, S. Glick, Greg Perrin, S. Kurtz
CdTe and CIGS type modules were tested for potential-‐induced degradation with positive and negative 1,000 V bias applied to the active cell circuit in an 85°C, 85% relative humidity environmental chamber. Both CdTe module types tested exhibited degradation under negative bias. I-‐V curve data indicated the first module type was affected sequentially by shunting followed by a recovery and then by series resistance losses; the second was affected by recombination losses. The first type showed transparent conductive oxide delamination from the glass after about 750 h of stress testing in the environmental chamber and exhibited power degradation within five weeks in field tests with -‐1,000 V system voltage. Performance of CIGS modules differed depending on the technology generation. Under negative bias, the older module design showed an initial 12% (relative) improvement, possibly because of the influx of sodium ions that has been reported to benefit the electrical properties, followed by severe degradation with continued stress testing. The newer design CIGS module exhibited the best stability of the four thin-‐film module types tested with a total loss of 9.5 % (relative) power drop after 3,100 h of test with negative voltage bias, but not clearly by system voltage stress effects considering similar behavior by a sister module in-‐chamber in open-‐circuit condition. Relative rates of current leakage-‐to-‐ground between chamber tests and modules placed outdoors under system voltage stress are compared to extrapolate anticipated coulombs transferred for given extents of degradation of the module power. This analysis correctly placed which module type failed in the field first, but overestimated the time to failure. The performance of modules at 85°C with dark current Imp applied through the cell circuit are discussed with respect to stand-‐alone fielded modules biased to near their maximum power point with load resistors.
{"title":"Survey of potential-induced degradation in thin-film modules","authors":"P. Hacke, K. Terwilliger, S. Glick, Greg Perrin, S. Kurtz","doi":"10.1117/12.2188958","DOIUrl":"https://doi.org/10.1117/12.2188958","url":null,"abstract":"CdTe and CIGS type modules were tested for potential-‐induced degradation with positive and negative 1,000 V bias applied to the active cell circuit in an 85°C, 85% relative humidity environmental chamber. Both CdTe module types tested exhibited degradation under negative bias. I-‐V curve data indicated the first module type was affected sequentially by shunting followed by a recovery and then by series resistance losses; the second was affected by recombination losses. The first type showed transparent conductive oxide delamination from the glass after about 750 h of stress testing in the environmental chamber and exhibited power degradation within five weeks in field tests with -‐1,000 V system voltage. Performance of CIGS modules differed depending on the technology generation. Under negative bias, the older module design showed an initial 12% (relative) improvement, possibly because of the influx of sodium ions that has been reported to benefit the electrical properties, followed by severe degradation with continued stress testing. The newer design CIGS module exhibited the best stability of the four thin-‐film module types tested with a total loss of 9.5 % (relative) power drop after 3,100 h of test with negative voltage bias, but not clearly by system voltage stress effects considering similar behavior by a sister module in-‐chamber in open-‐circuit condition. Relative rates of current leakage-‐to-‐ground between chamber tests and modules placed outdoors under system voltage stress are compared to extrapolate anticipated coulombs transferred for given extents of degradation of the module power. This analysis correctly placed which module type failed in the field first, but overestimated the time to failure. The performance of modules at 85°C with dark current Imp applied through the cell circuit are discussed with respect to stand-‐alone fielded modules biased to near their maximum power point with load resistors.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127820516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas R. Wheeler, A. Gok, T. Peshek, L. Bruckman, Nikhil Goel, Davis Zabiyaka, Cara Fagerholm, Thomas Dang, Christopher Alcantara, M. Terry, R. French
The expected lifetime performance and degradation of photovoltaic (PV) modules is a major issue facing the levelized cost of electricity of PV as a competitive energy source. Studies that quantify the rates and mechanisms of performance degradation are needed not only for bankability and adoption of these promising technologies, but also for the diagnosis and improvement of their mechanistic degradation pathways. Towards this goal, a generalizable approach to degradation science studies utilizing data science principles has been developed and applied to c-Si PV modules. By combining domain knowledge and data derived insights, mechanistic degradation pathways are indicated that link environmental stressors to the degradation of PV module performance characteristics. Targeted studies guided by these results have yielded predictive equations describing rates of degradation, and further studies are underway to achieve this for additional mechanistic pathways of interest.
{"title":"A data science approach to understanding photovoltaic module degradation","authors":"Nicholas R. Wheeler, A. Gok, T. Peshek, L. Bruckman, Nikhil Goel, Davis Zabiyaka, Cara Fagerholm, Thomas Dang, Christopher Alcantara, M. Terry, R. French","doi":"10.1117/12.2209204","DOIUrl":"https://doi.org/10.1117/12.2209204","url":null,"abstract":"The expected lifetime performance and degradation of photovoltaic (PV) modules is a major issue facing the levelized cost of electricity of PV as a competitive energy source. Studies that quantify the rates and mechanisms of performance degradation are needed not only for bankability and adoption of these promising technologies, but also for the diagnosis and improvement of their mechanistic degradation pathways. Towards this goal, a generalizable approach to degradation science studies utilizing data science principles has been developed and applied to c-Si PV modules. By combining domain knowledge and data derived insights, mechanistic degradation pathways are indicated that link environmental stressors to the degradation of PV module performance characteristics. Targeted studies guided by these results have yielded predictive equations describing rates of degradation, and further studies are underway to achieve this for additional mechanistic pathways of interest.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115670575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chiao-Chi Lin, Yadong Lyu, D. Hunston, J. H. Kim, K. Wan, D. Stanley, X. Gu
The channel crack and delamination phenomena that occurred during tensile tests were utilized to study surface cracking and delamination properties of a multilayered backsheet. A model sample of commercial PPE (polyethylene terephthalate (PET)/PET/ethylene vinyl acetate (EVA)) backsheet was studied. Fragmentation testing was performed after accelerated aging with and without ultraviolet (UV) irradiation in two relative humidity (RH) levels (5 % RH and 60 % RH) at elevated temperature (85 °C) conditions for 11 days and 22 days. Results suggest that the embrittled surface layer resulting from the UV photo-degradation is responsible for surface cracking when the strain applied on the sample is far below the yielding strain (2.2 %) of the PPE sample. There was no surface cracking observed on the un-aged sample and samples aged without UV irradiation. According to the fragmentation testing results, the calculated fracture toughness (KIC) values of the embrittled surface layer are as low as 0.027 MPa·m1/2 to 0.104 MPa·m1/2, depending on the humidity levels and aging times. Surface analysis using attenuated total reflectance Fourier transform infrared and atomic force microscopy shows the degradation mechanism of the embrittled surface layer is a combination of the photodegradation within a certain degradation depth and the moisture erosion effect depending on the moisture levels. Specifically, UV irradiation provides a chemical degradation effect while moisture plays a synergistic effect on surface erosion, which influences surface roughness after aging. Finally, there was no delamination observed during tensile testing in this study, suggesting the surface cracking problem is more significant than the delamination for the PPE backsheet material and conditions tested here.
{"title":"Cracking and delamination behaviors of photovoltaic backsheet after accelerated laboratory weathering","authors":"Chiao-Chi Lin, Yadong Lyu, D. Hunston, J. H. Kim, K. Wan, D. Stanley, X. Gu","doi":"10.1117/12.2188557","DOIUrl":"https://doi.org/10.1117/12.2188557","url":null,"abstract":"The channel crack and delamination phenomena that occurred during tensile tests were utilized to study surface cracking and delamination properties of a multilayered backsheet. A model sample of commercial PPE (polyethylene terephthalate (PET)/PET/ethylene vinyl acetate (EVA)) backsheet was studied. Fragmentation testing was performed after accelerated aging with and without ultraviolet (UV) irradiation in two relative humidity (RH) levels (5 % RH and 60 % RH) at elevated temperature (85 °C) conditions for 11 days and 22 days. Results suggest that the embrittled surface layer resulting from the UV photo-degradation is responsible for surface cracking when the strain applied on the sample is far below the yielding strain (2.2 %) of the PPE sample. There was no surface cracking observed on the un-aged sample and samples aged without UV irradiation. According to the fragmentation testing results, the calculated fracture toughness (KIC) values of the embrittled surface layer are as low as 0.027 MPa·m1/2 to 0.104 MPa·m1/2, depending on the humidity levels and aging times. Surface analysis using attenuated total reflectance Fourier transform infrared and atomic force microscopy shows the degradation mechanism of the embrittled surface layer is a combination of the photodegradation within a certain degradation depth and the moisture erosion effect depending on the moisture levels. Specifically, UV irradiation provides a chemical degradation effect while moisture plays a synergistic effect on surface erosion, which influences surface roughness after aging. Finally, there was no delamination observed during tensile testing in this study, suggesting the surface cracking problem is more significant than the delamination for the PPE backsheet material and conditions tested here.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"131 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131136768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Sasinková, J. Huran, A. Kleinová, P. Boháček, J. Arbet, M. Sekáčová
Amorphous silicon carbide films were deposited by plasma enhanced chemical vapor deposition (PECVD) technology using SiH4, CH4, H2 and NH3 gas as precursors. The concentration of elements in the films was determined by RBS and ERD analytical method. Chemical compositions were analyzed by FT-IR spectroscopy. Raman spectroscopy study of the SiC films were performed by using a Raman microscope. Irradiation of samples with neutrons to fluencies A(7.9x1014 cm-2), B(5x1015 cm-2) and C(3.4x1016 cm-2) was performed at room temperature. Raman spectroscopy results of SiC films showed decreasing of Raman band feature intensity after neutron irradiation and slightly decreased with increased neutron fluencies. Raman spectra differences between types of films before and after neutron irradiation are discussed. The electrical properties of SiC films were determined by the I-V measurement at 295 K. The measured currents were greater (about two order) after irradiation than the current before irradiation for all samples and rose up with neutron fluencies.
{"title":"Raman spectroscopy study of SiC thin films prepared by PECVD for solar cell working in hard environment","authors":"V. Sasinková, J. Huran, A. Kleinová, P. Boháček, J. Arbet, M. Sekáčová","doi":"10.1117/12.2186749","DOIUrl":"https://doi.org/10.1117/12.2186749","url":null,"abstract":"Amorphous silicon carbide films were deposited by plasma enhanced chemical vapor deposition (PECVD) technology using SiH4, CH4, H2 and NH3 gas as precursors. The concentration of elements in the films was determined by RBS and ERD analytical method. Chemical compositions were analyzed by FT-IR spectroscopy. Raman spectroscopy study of the SiC films were performed by using a Raman microscope. Irradiation of samples with neutrons to fluencies A(7.9x1014 cm-2), B(5x1015 cm-2) and C(3.4x1016 cm-2) was performed at room temperature. Raman spectroscopy results of SiC films showed decreasing of Raman band feature intensity after neutron irradiation and slightly decreased with increased neutron fluencies. Raman spectra differences between types of films before and after neutron irradiation are discussed. The electrical properties of SiC films were determined by the I-V measurement at 295 K. The measured currents were greater (about two order) after irradiation than the current before irradiation for all samples and rose up with neutron fluencies.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"319 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116509694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The dark measurements technique which were developed to analyze the material properties of solar cells in a PV module and performed either at DC or at AC conditions, can give useful information on the quality of the active material. This technique leads to better understanding the PV module degradation processes, occurring during indoor qualification testing or in real operating conditions. To this purpose an indoor testing laboratory has been set up to detect and monitor the PV modules degradation. A simple technique, based on the analysis of the behaviour of PV devices biased by an AC signal on dark conditions, has been developed to easily and quickly evaluate some parameters like the series, the shunt resistances and the capacitance affecting their electrical characteristics. In the present paper the technique basic concepts will be illustrated. Preliminary experimental results, achieved by applying the technique to some kinds of PV modules based on simple and triple junction’s silicon amorphous solar cells, will be presented.
{"title":"Analysis of PV modules based on thin film solar cells by dark measurements technique","authors":"K. Agroui, M. Pellegrino, F. Giovanni","doi":"10.1117/12.2187369","DOIUrl":"https://doi.org/10.1117/12.2187369","url":null,"abstract":"The dark measurements technique which were developed to analyze the material properties of solar cells in a PV module and performed either at DC or at AC conditions, can give useful information on the quality of the active material. This technique leads to better understanding the PV module degradation processes, occurring during indoor qualification testing or in real operating conditions. To this purpose an indoor testing laboratory has been set up to detect and monitor the PV modules degradation. A simple technique, based on the analysis of the behaviour of PV devices biased by an AC signal on dark conditions, has been developed to easily and quickly evaluate some parameters like the series, the shunt resistances and the capacitance affecting their electrical characteristics. In the present paper the technique basic concepts will be illustrated. Preliminary experimental results, achieved by applying the technique to some kinds of PV modules based on simple and triple junction’s silicon amorphous solar cells, will be presented.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116455058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Berghold, S. Koch, S. Pingel, S. Janke, A. Ukar, P. Grunow, T. Shioda
Although the main root causes and referring counter measures for PID are known, a significant part of the industrial modules are still found to be PID sensitive in testing and PID is increasingly evident in field. This paper discusses field occurrence of PID with respect to environmental conditions and material properties. Different PID pattern in field and in test are analyzed in terms of the potential distribution and surface conductivity. Examples are given for the correlation of PID lab tests of a (commercial) BOM with real outdoor degradation. PID progress is predicted for different locations and compared with measurement data. Suitable quality control measures are discussed for the modules as well as for the encapsulation material
{"title":"PID: from material properties to outdoor performance and quality control counter measures","authors":"J. Berghold, S. Koch, S. Pingel, S. Janke, A. Ukar, P. Grunow, T. Shioda","doi":"10.1117/12.2188464","DOIUrl":"https://doi.org/10.1117/12.2188464","url":null,"abstract":"Although the main root causes and referring counter measures for PID are known, a significant part of the industrial modules are still found to be PID sensitive in testing and PID is increasingly evident in field. This paper discusses field occurrence of PID with respect to environmental conditions and material properties. Different PID pattern in field and in test are analyzed in terms of the potential distribution and surface conductivity. Examples are given for the correlation of PID lab tests of a (commercial) BOM with real outdoor degradation. PID progress is predicted for different locations and compared with measurement data. Suitable quality control measures are discussed for the modules as well as for the encapsulation material","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133007660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Mohamad Shahimin, S. Suhaimi, Mohd Halim Abd Wahid, V. Retnasamy, N. A. Ahmad Hambali, A. Reshak
This paper reports on a précis of degradation mechanism for dye-sensitized solar cell (DSSCs). The review indicates progress in the understanding of degradation mechanism, in particular, the large improvement in the analysis of the materials used in DSSCs. The paper discussed on the stability issues of the dye, advancement of the photoelectrode film lifetime, changes in the electrolyte components and degradation analysis of the counter electrode. The photoelectrochemical parameters were evaluated in view of the possible degradation routes via open circuit voltage (Voc), short circuit current (Isc), fill factor (FF) and overall conversion efficiency (η) from the current-voltage curve. This analysis covers several types of materials that have paved the way for better-performing solar cells and directly influenced the stability and reliability of DSSCs. The new research trend together with the previous research has been highlighted to examine the key challenges faced in developing the ultimate DSSCs.
{"title":"Critical analysis on degradation mechanism of dye-sensitized solar cells","authors":"M. Mohamad Shahimin, S. Suhaimi, Mohd Halim Abd Wahid, V. Retnasamy, N. A. Ahmad Hambali, A. Reshak","doi":"10.1117/12.2186968","DOIUrl":"https://doi.org/10.1117/12.2186968","url":null,"abstract":"This paper reports on a précis of degradation mechanism for dye-sensitized solar cell (DSSCs). The review indicates progress in the understanding of degradation mechanism, in particular, the large improvement in the analysis of the materials used in DSSCs. The paper discussed on the stability issues of the dye, advancement of the photoelectrode film lifetime, changes in the electrolyte components and degradation analysis of the counter electrode. The photoelectrochemical parameters were evaluated in view of the possible degradation routes via open circuit voltage (Voc), short circuit current (Isc), fill factor (FF) and overall conversion efficiency (η) from the current-voltage curve. This analysis covers several types of materials that have paved the way for better-performing solar cells and directly influenced the stability and reliability of DSSCs. The new research trend together with the previous research has been highlighted to examine the key challenges faced in developing the ultimate DSSCs.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129821760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanokkorn Chenvidhya, M. Seapan, P. Parinya, B. Wiengmoon, D. Chenvidhya, R. Songprakorp, C. Limsakul, Yaowanee Sangpongsanont, Nittaya Tannil
PV rooftop system can generally be installed to produce electricity for the domestic house, office, small enterprise as well as factory. Such a system has direct useful for reducing peak load, meanwhile it also provides shaded area on the roof and hence the heat gain into the building is reduced. This study aims to investigate the shading effect on reduction of heat transfer into the building. The 49 kWp of PV rooftop system has been installed on the deck of the office building located in the middle of Thailand where the latitude of 14 ° above the equator. The estimation of heat gain into the building due to the solar irradiation throughout a day for one year has been carried out, before and after the installation of the PV rooftop system. Then the Newton’s law of cooling is applied to calculate the heat gain. The calculation and the measurement of the heat reduction are compared. Finally, the indirect benefit of the PV rooftop system installed is evaluated in terms of power value.
{"title":"Investigation of power values of PV rooftop systems based on heat gain reduction","authors":"Tanokkorn Chenvidhya, M. Seapan, P. Parinya, B. Wiengmoon, D. Chenvidhya, R. Songprakorp, C. Limsakul, Yaowanee Sangpongsanont, Nittaya Tannil","doi":"10.1117/12.2188534","DOIUrl":"https://doi.org/10.1117/12.2188534","url":null,"abstract":"PV rooftop system can generally be installed to produce electricity for the domestic house, office, small enterprise as well as factory. Such a system has direct useful for reducing peak load, meanwhile it also provides shaded area on the roof and hence the heat gain into the building is reduced. This study aims to investigate the shading effect on reduction of heat transfer into the building. The 49 kWp of PV rooftop system has been installed on the deck of the office building located in the middle of Thailand where the latitude of 14 ° above the equator. The estimation of heat gain into the building due to the solar irradiation throughout a day for one year has been carried out, before and after the installation of the PV rooftop system. Then the Newton’s law of cooling is applied to calculate the heat gain. The calculation and the measurement of the heat reduction are compared. Finally, the indirect benefit of the PV rooftop system installed is evaluated in terms of power value.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128668283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Chenvidhya, M. Seapan, Yaowanee Sangpongsanont, Tanokkorn Chenvidhya, C. Limsakul, R. Songprakorp
The PV applications in Thailand are now installed more than 1.2 GWp cumulatively. It is due to the National Renewable Energy Program and its targets. In the latest Alternative Energy Development Plan (AEDP), the PV electricity production target has increased from 2 GWp to 3 GWp. With this rapid growth, customers and manufacturers seek for module standard testing. So far over one thousands of PV modules per annum have been tested since 2012. The normal tests include type approval test according to TIS standard, acceptance test and testing for local standard development. For type test, the most module failure was found during damp heat test. For annual evaluation test, the power degradation and delamination of power was found between 0 to 6 percent from its nameplate after deployment of 0 to 5 years in the field. For thin-film module, the degradation and delamination was found in range of 0 to 13 percent (about 5 percent on average) from its nameplate for the modules in operation with less than 5 years. However, for the PV modules at the reference site on campus operated for 12 years, the power degradation was ranging from 10 to 15 percent. Therefore, a long term performance assessment needs to be considered to ensure the system reliability.
{"title":"PV industry growth and module reliability in Thailand","authors":"D. Chenvidhya, M. Seapan, Yaowanee Sangpongsanont, Tanokkorn Chenvidhya, C. Limsakul, R. Songprakorp","doi":"10.1117/12.2188494","DOIUrl":"https://doi.org/10.1117/12.2188494","url":null,"abstract":"The PV applications in Thailand are now installed more than 1.2 GWp cumulatively. It is due to the National Renewable Energy Program and its targets. In the latest Alternative Energy Development Plan (AEDP), the PV electricity production target has increased from 2 GWp to 3 GWp. With this rapid growth, customers and manufacturers seek for module standard testing. So far over one thousands of PV modules per annum have been tested since 2012. The normal tests include type approval test according to TIS standard, acceptance test and testing for local standard development. For type test, the most module failure was found during damp heat test. For annual evaluation test, the power degradation and delamination of power was found between 0 to 6 percent from its nameplate after deployment of 0 to 5 years in the field. For thin-film module, the degradation and delamination was found in range of 0 to 13 percent (about 5 percent on average) from its nameplate for the modules in operation with less than 5 years. However, for the PV modules at the reference site on campus operated for 12 years, the power degradation was ranging from 10 to 15 percent. Therefore, a long term performance assessment needs to be considered to ensure the system reliability.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124647960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}