Pub Date : 2024-10-01Epub Date: 2024-01-26DOI: 10.1007/s10123-024-00486-x
Adeline Su Yien Ting, Peck Ting Gan
The influence of light regulation on fungal growth and enzyme production was tested on endophytic isolates of Fusarium proliferatum (CCH), Colletotrichum boninense (PL1, PL9, OL2), Colletotrichum gloeosporiodes (OL3) and Colletotrichum siamense (PL3). The isolates were treated with blue, red, green, and yellow light, while white fluorescent light (12 h light/12 h dark photoperiod) and 24 h dark conditions were applied as control. Results revealed that coloured light treatments induced formation of circadian rings, while exposure to white light and dark conditions showed less pronounced circadian rings. Growth and sporulation of endophytes were not significantly influenced by light. By contrast, enzyme production was affected by coloured light treatments, notably with red (amylase), blue (cellulase) and yellow (cellulase, xylanase, L-asparaginase) light, resulting in lower enzyme levels for certain isolates. Under control conditions, enzyme production was relatively higher for amylase, cellulase, xylanase (for cultures incubated in the dark), and for L-asparaginase (for cultures incubated in white fluorescent light). Among the endophytic isolates, F. proliferatum (CCH) showed better response to coloured light treatment as higher sporulation and enzyme production was detected, although growth was significantly suppressed. On the contrary, C. gloeosporiodes (OL3) showed better growth but significantly lower enzyme production and sporulation when treated with the various coloured light. This study revealed that coloured light may have the potential to manipulate growth, sporulation and enzyme production in certain fungal species as strategies for fungal control or for harnessing of valuable enzymes.
{"title":"Influence of coloured lights on growth and enzyme production of beneficial endophytic fungi.","authors":"Adeline Su Yien Ting, Peck Ting Gan","doi":"10.1007/s10123-024-00486-x","DOIUrl":"10.1007/s10123-024-00486-x","url":null,"abstract":"<p><p>The influence of light regulation on fungal growth and enzyme production was tested on endophytic isolates of Fusarium proliferatum (CCH), Colletotrichum boninense (PL1, PL9, OL2), Colletotrichum gloeosporiodes (OL3) and Colletotrichum siamense (PL3). The isolates were treated with blue, red, green, and yellow light, while white fluorescent light (12 h light/12 h dark photoperiod) and 24 h dark conditions were applied as control. Results revealed that coloured light treatments induced formation of circadian rings, while exposure to white light and dark conditions showed less pronounced circadian rings. Growth and sporulation of endophytes were not significantly influenced by light. By contrast, enzyme production was affected by coloured light treatments, notably with red (amylase), blue (cellulase) and yellow (cellulase, xylanase, L-asparaginase) light, resulting in lower enzyme levels for certain isolates. Under control conditions, enzyme production was relatively higher for amylase, cellulase, xylanase (for cultures incubated in the dark), and for L-asparaginase (for cultures incubated in white fluorescent light). Among the endophytic isolates, F. proliferatum (CCH) showed better response to coloured light treatment as higher sporulation and enzyme production was detected, although growth was significantly suppressed. On the contrary, C. gloeosporiodes (OL3) showed better growth but significantly lower enzyme production and sporulation when treated with the various coloured light. This study revealed that coloured light may have the potential to manipulate growth, sporulation and enzyme production in certain fungal species as strategies for fungal control or for harnessing of valuable enzymes.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1405-1416"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139563617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-01-29DOI: 10.1007/s10123-024-00484-z
Javeria Akram, Muhammad Umar Hussain, Asma Aslam, Kalsoom Akhtar, Munir Ahmad Anwar, Mazhar Iqbal, Muhammad Tahir Hussain, Nasrin Akhtar
Direct combustion of sulfur-enriched liquid fuel oil causes sulfur oxide emission, which is one of the main contributors to air pollution. Biodesulfurization is a promising and eco-friendly method to desulfurize a wide range of thiophenic compounds present in fuel oil. Previously, numerous bacterial strains from genera such as Rhodococcus, Corynebacterium, Gordonia, Nocardia, Mycobacterium, Mycolicibacterium, Paenibacillus, Shewanella, Sphingomonas, Halothiobacillus, and Bacillus have been reported to be capable of desulfurizing model thiophenic compounds or fossil fuels. In the present study, we report a new desulfurizing bacterium, Tsukamurella sp. 3OW, capable of desulfurization of dibenzothiophene through the carbon-sulfur bond cleavage 4S pathway. The bacterium showed a high affinity for the hydrocarbon phase and broad substrate specificity towards various thiophenic compounds. The overall genome-related index analysis revealed that the bacterium is closely related to Tsukamurella paurometabola species. The genomic pool of strain 3OW contains 57 genes related to sulfur metabolism, including the key dszABC genes responsible for dibenzothiophene desulfurization. The DBT-adapted cells of the strain 3OW displayed significant resilience and viability in elevated concentrations of crude oil. The bacterium showed a 19 and 37% reduction in the total sulfur present in crude and diesel oil, respectively. Furthermore, FTIR analysis indicates that the oil's overall chemistry remained unaltered following biodesulfurization. This study implies that Tsukamurella paurometabola species, previously undocumented in the context of biodesulfurization, has good potential for application in the biodesulfurization of petroleum oils.
{"title":"Genomic analysis and biodesulfurization potential of a new carbon-sulfur bond cleaving Tsukamurella sp. 3OW.","authors":"Javeria Akram, Muhammad Umar Hussain, Asma Aslam, Kalsoom Akhtar, Munir Ahmad Anwar, Mazhar Iqbal, Muhammad Tahir Hussain, Nasrin Akhtar","doi":"10.1007/s10123-024-00484-z","DOIUrl":"10.1007/s10123-024-00484-z","url":null,"abstract":"<p><p>Direct combustion of sulfur-enriched liquid fuel oil causes sulfur oxide emission, which is one of the main contributors to air pollution. Biodesulfurization is a promising and eco-friendly method to desulfurize a wide range of thiophenic compounds present in fuel oil. Previously, numerous bacterial strains from genera such as Rhodococcus, Corynebacterium, Gordonia, Nocardia, Mycobacterium, Mycolicibacterium, Paenibacillus, Shewanella, Sphingomonas, Halothiobacillus, and Bacillus have been reported to be capable of desulfurizing model thiophenic compounds or fossil fuels. In the present study, we report a new desulfurizing bacterium, Tsukamurella sp. 3OW, capable of desulfurization of dibenzothiophene through the carbon-sulfur bond cleavage 4S pathway. The bacterium showed a high affinity for the hydrocarbon phase and broad substrate specificity towards various thiophenic compounds. The overall genome-related index analysis revealed that the bacterium is closely related to Tsukamurella paurometabola species. The genomic pool of strain 3OW contains 57 genes related to sulfur metabolism, including the key dszABC genes responsible for dibenzothiophene desulfurization. The DBT-adapted cells of the strain 3OW displayed significant resilience and viability in elevated concentrations of crude oil. The bacterium showed a 19 and 37% reduction in the total sulfur present in crude and diesel oil, respectively. Furthermore, FTIR analysis indicates that the oil's overall chemistry remained unaltered following biodesulfurization. This study implies that Tsukamurella paurometabola species, previously undocumented in the context of biodesulfurization, has good potential for application in the biodesulfurization of petroleum oils.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1429-1444"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139574355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hypervirulent Klebsiella pneumoniae (hvKp) is an emerging pathogen and causes endophthalmitis, liver abscess, osteomyelitis, meningitis, and necrotizing soft tissue infections in both immunodeficient and healthy people. The acquisition of the antibiotic resistance genes of hvKp has become an emerging concern throughout the globe. In this study, a total of 74 K. pneumoniae isolates were collected and identified by VITEK2 and blaSHV gene amplification. Out of these, 18.91% (14/74) isolates were identified as hvKp by both phenotypic string test and genotypic iucA PCR amplification. The antibiotic susceptibility revealed that 57.14% (8/14) isolates were multidrug-resistant (MDR) and 35.71% (5/14) isolates were extremely drug-resistant (XDR). All the isolates were resistant to β-lactam, β-lactamase + inhibitor groups of antibiotics, and the least resistance to colistin. Of 14 hvKp isolates, all isolates are positive for iroB (100%), followed by iutA (92.85%), peg344 (85.71%), rmpA (57.14%), and magA (21.42%) genes. Among serotypes, K1 was the most prevalent serotype 21.4% (3/14), followed by K5 14.3% (2/14). The most common carbapenemase gene was blaOXA-48 (78.57%) followed by blaNDM (14.28%) and blaKPC (14.28%) which co-carried multiple resistance genes such as blaSHV (100%), blaCTX-M (92.85%), and blaTEM (78.57%). About 92.85% (13/14) of hvKp isolates were strong biofilm producers, while one isolate (hvKp 10) was the only moderate biofilm producer. The (GTG)5-PCR molecular typing method revealed high diversity among the hvKp isolates in the tertiary care hospital. Our findings suggest that MDR-hvKp is an emerging pathogen and a challenge for clinical practice. In order to avoid hvKp strain outbreaks in hospital settings, robust infection control and effective surveillance should be implemented.
{"title":"Genotypic characterization of hypervirulent Klebsiella pneumoniae (hvKp) in a tertiary care Indian hospital.","authors":"Birasen Behera, Pragyan Paramita Swain, Bidyutprava Rout, Rajashree Panigrahy, Rajesh Kumar Sahoo","doi":"10.1007/s10123-024-00480-3","DOIUrl":"10.1007/s10123-024-00480-3","url":null,"abstract":"<p><p>Hypervirulent Klebsiella pneumoniae (hvKp) is an emerging pathogen and causes endophthalmitis, liver abscess, osteomyelitis, meningitis, and necrotizing soft tissue infections in both immunodeficient and healthy people. The acquisition of the antibiotic resistance genes of hvKp has become an emerging concern throughout the globe. In this study, a total of 74 K. pneumoniae isolates were collected and identified by VITEK2 and bla<sub>SHV</sub> gene amplification. Out of these, 18.91% (14/74) isolates were identified as hvKp by both phenotypic string test and genotypic iucA PCR amplification. The antibiotic susceptibility revealed that 57.14% (8/14) isolates were multidrug-resistant (MDR) and 35.71% (5/14) isolates were extremely drug-resistant (XDR). All the isolates were resistant to β-lactam, β-lactamase + inhibitor groups of antibiotics, and the least resistance to colistin. Of 14 hvKp isolates, all isolates are positive for iroB (100%), followed by iutA (92.85%), peg344 (85.71%), rmpA (57.14%), and magA (21.42%) genes. Among serotypes, K1 was the most prevalent serotype 21.4% (3/14), followed by K5 14.3% (2/14). The most common carbapenemase gene was bla<sub>OXA-48</sub> (78.57%) followed by bla<sub>NDM</sub> (14.28%) and bla<sub>KPC</sub> (14.28%) which co-carried multiple resistance genes such as bla<sub>SHV</sub> (100%), bla<sub>CTX-M</sub> (92.85%), and bla<sub>TEM</sub> (78.57%). About 92.85% (13/14) of hvKp isolates were strong biofilm producers, while one isolate (hvKp 10) was the only moderate biofilm producer. The (GTG)5-PCR molecular typing method revealed high diversity among the hvKp isolates in the tertiary care hospital. Our findings suggest that MDR-hvKp is an emerging pathogen and a challenge for clinical practice. In order to avoid hvKp strain outbreaks in hospital settings, robust infection control and effective surveillance should be implemented.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1373-1382"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-01-27DOI: 10.1007/s10123-024-00485-y
Xiaoce Zhu, Xingfang Tian, Meng Wang, Yan Li, Suzhen Yang, Jian Kong
Bifidobacteria are the most prevalent members of the intestinal microbiota in mammals and other animals, and they play a significant role in promoting gut health through their probiotic effects. Recently, the potential applications of Bifidobacteria have been extended to skin health. However, the beneficial mechanism of Bifidobacteria on the skin barrier remains unclear. In this study, keratinocyte HaCaT cells were used as models to evaluate the protective effects of the cell-free supernatant (CFS), heat-inactivated bacteria, and bacterial lysate of Bifidobacterium animalis CGMCC25262 on the skin barrier and inflammatory cytokines. The results showed that all the tested samples were able to upregulate the transcription levels of biomarker genes associated with the skin barrier, such as hyaluronic acid synthetase (HAS) and aquaporins (AQPs). Notably, the transcription of the hyaluronic acid synthetase gene-2 (HAS-2) is upregulated by 3~4 times, and AQP3 increased by 2.5 times when the keratinocyte HaCaT cells were co-incubated with 0.8 to 1% CFS. In particular, the expression level of Filaggrin (FLG) in HaCaT cells increased by 1.7 to 2.7 times when incubated with Bifidobacterial samples, reaching its peak at a concentration of 0.8% CFS. Moreover, B. animalis CGMCC25262 also decreased the expression of the proinflammatory cytokine RANTES to one-tenth compared to the levels observed in HaCaT cells induced with tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). These results demonstrate the potential of B. animalis CGMCC25262 in protecting the skin barrier and reducing inflammatory response.
{"title":"Protective effect of Bifidobacterium animalis CGMCC25262 on HaCaT keratinocytes.","authors":"Xiaoce Zhu, Xingfang Tian, Meng Wang, Yan Li, Suzhen Yang, Jian Kong","doi":"10.1007/s10123-024-00485-y","DOIUrl":"10.1007/s10123-024-00485-y","url":null,"abstract":"<p><p>Bifidobacteria are the most prevalent members of the intestinal microbiota in mammals and other animals, and they play a significant role in promoting gut health through their probiotic effects. Recently, the potential applications of Bifidobacteria have been extended to skin health. However, the beneficial mechanism of Bifidobacteria on the skin barrier remains unclear. In this study, keratinocyte HaCaT cells were used as models to evaluate the protective effects of the cell-free supernatant (CFS), heat-inactivated bacteria, and bacterial lysate of Bifidobacterium animalis CGMCC25262 on the skin barrier and inflammatory cytokines. The results showed that all the tested samples were able to upregulate the transcription levels of biomarker genes associated with the skin barrier, such as hyaluronic acid synthetase (HAS) and aquaporins (AQPs). Notably, the transcription of the hyaluronic acid synthetase gene-2 (HAS-2) is upregulated by 3~4 times, and AQP3 increased by 2.5 times when the keratinocyte HaCaT cells were co-incubated with 0.8 to 1% CFS. In particular, the expression level of Filaggrin (FLG) in HaCaT cells increased by 1.7 to 2.7 times when incubated with Bifidobacterial samples, reaching its peak at a concentration of 0.8% CFS. Moreover, B. animalis CGMCC25262 also decreased the expression of the proinflammatory cytokine RANTES to one-tenth compared to the levels observed in HaCaT cells induced with tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). These results demonstrate the potential of B. animalis CGMCC25262 in protecting the skin barrier and reducing inflammatory response.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1417-1428"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139567175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-01-31DOI: 10.1007/s10123-023-00477-4
Seung Soo Lee, Yu-Ri Oh, Young-Ah Jang, So Yeon Han, Gyeong Tae Eom
In previous and present studies, four enzymes (GCD1, GCD3, GCD4, and MQO1) have been found to act as lactose-oxidizing enzymes of Pseudomonas taetrolens. To investigate whether the four enzymes were the only lactose-oxidizing enzymes of P. taetrolens, we performed the inactivation of gcd1, gcd3, gcd4, and mqo1 genes in P. taetrolens. Compared to the wild-type strain, the lactobionic acid (LBA)-producing ability of P. taetrolens ∆gcd1 ∆gcd3 ∆gcd4 ∆mqo1 was only slightly decreased, implying that P. taetrolens possesses more lactose-oxidizing enzymes. Interestingly, the four lactose-oxidizing enzymes were all pyrroloquinoline quinone (PQQ)-dependent. To identify other unidentified lactose-oxidizing enzymes of P. taetrolens, we prevented the synthesis of PQQ in P. taetrolens by inactivating the genes related to PQQ synthesis such as pqqC, pqqD, and pqqE. Surprisingly, all three knocked-out strains were unable to convert lactose to LBA, indicating that all lactose-oxidizing enzymes in P. taetrolens were inactivated by eliminating PQQ synthesis. In addition, external PQQ supplementation restored the LBA production ability of P. taetrolens ∆pqqC, comparable to the wild-type strain. These results indicate that all lactose-oxidizing enzymes in P. taetrolens are PQQ-dependent.
{"title":"All lactose-oxidizing enzymes of Pseudomonas taetrolens, a highly efficient lactobionic acid-producing microorganism, are pyrroloquinoline quinone-dependent enzymes.","authors":"Seung Soo Lee, Yu-Ri Oh, Young-Ah Jang, So Yeon Han, Gyeong Tae Eom","doi":"10.1007/s10123-023-00477-4","DOIUrl":"10.1007/s10123-023-00477-4","url":null,"abstract":"<p><p>In previous and present studies, four enzymes (GCD1, GCD3, GCD4, and MQO1) have been found to act as lactose-oxidizing enzymes of Pseudomonas taetrolens. To investigate whether the four enzymes were the only lactose-oxidizing enzymes of P. taetrolens, we performed the inactivation of gcd1, gcd3, gcd4, and mqo1 genes in P. taetrolens. Compared to the wild-type strain, the lactobionic acid (LBA)-producing ability of P. taetrolens ∆gcd1 ∆gcd3 ∆gcd4 ∆mqo1 was only slightly decreased, implying that P. taetrolens possesses more lactose-oxidizing enzymes. Interestingly, the four lactose-oxidizing enzymes were all pyrroloquinoline quinone (PQQ)-dependent. To identify other unidentified lactose-oxidizing enzymes of P. taetrolens, we prevented the synthesis of PQQ in P. taetrolens by inactivating the genes related to PQQ synthesis such as pqqC, pqqD, and pqqE. Surprisingly, all three knocked-out strains were unable to convert lactose to LBA, indicating that all lactose-oxidizing enzymes in P. taetrolens were inactivated by eliminating PQQ synthesis. In addition, external PQQ supplementation restored the LBA production ability of P. taetrolens ∆pqqC, comparable to the wild-type strain. These results indicate that all lactose-oxidizing enzymes in P. taetrolens are PQQ-dependent.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1445-1455"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139642051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-01-18DOI: 10.1007/s10123-024-00481-2
Huijiang Shao, Xin Zhang, Yang Li, Yuanyuan Gao, Yunzhong Wang, Xuejun Shao, Ling Dai
Background: Children in the intensive care unit (ICU) who suffer from severe basic diseases and low immunity are usually in critical condition. It is crucial to assist clinicians in selecting the appropriate empirical antibiotic therapies for clinical infection control.
Methods: We retrospectively analyzed data from 281 children with bloodstream infection (BSI). Comparisons of basic data, pathogenic information, and drug resistance of the main bacteria were conducted.
Results: We detected 328 strains, including Gram-positive bacteria (223, 68%), mainly coagulase-negative Staphylococci (CoNS); Gram-negative bacteria (91, 27.7%); and fungi (14, 4.3%). The results of the binary logistic regression analysis showed that the main basic disease was an independent risk factor for death. Compared with Escherichia coli, Klebsiella pneumoniae exhibited a higher proportion of extended-spectrum β-lactamases (ESBLs), and its resistance to some β-lactamides and quinolones antibiotics were lower. Twenty-seven isolates of multidrug-resistant (MDR) bacteria were detected, of which carbapenem-resistant Acinetobacter baumannii (CRAB) accounted for the highest proportion (13, 48.2%).
Conclusions: CoNS was the principal pathogen causing BSI in children in the ICU of children, and Escherichia coli was the most common Gram-negative pathogen. The main basic disease was an independent risk factor for death. It is necessary to continuously monitor patients with positive blood cultures, pay special attention to detected MDR bacteria, and strengthen the management of antibiotics and prevention and control of nosocomial infections.
{"title":"Epidemiology and drug resistance analysis of bloodstream infections in an intensive care unit from a children's medical center in Eastern China for six consecutive years.","authors":"Huijiang Shao, Xin Zhang, Yang Li, Yuanyuan Gao, Yunzhong Wang, Xuejun Shao, Ling Dai","doi":"10.1007/s10123-024-00481-2","DOIUrl":"10.1007/s10123-024-00481-2","url":null,"abstract":"<p><strong>Background: </strong>Children in the intensive care unit (ICU) who suffer from severe basic diseases and low immunity are usually in critical condition. It is crucial to assist clinicians in selecting the appropriate empirical antibiotic therapies for clinical infection control.</p><p><strong>Methods: </strong>We retrospectively analyzed data from 281 children with bloodstream infection (BSI). Comparisons of basic data, pathogenic information, and drug resistance of the main bacteria were conducted.</p><p><strong>Results: </strong>We detected 328 strains, including Gram-positive bacteria (223, 68%), mainly coagulase-negative Staphylococci (CoNS); Gram-negative bacteria (91, 27.7%); and fungi (14, 4.3%). The results of the binary logistic regression analysis showed that the main basic disease was an independent risk factor for death. Compared with Escherichia coli, Klebsiella pneumoniae exhibited a higher proportion of extended-spectrum β-lactamases (ESBLs), and its resistance to some β-lactamides and quinolones antibiotics were lower. Twenty-seven isolates of multidrug-resistant (MDR) bacteria were detected, of which carbapenem-resistant Acinetobacter baumannii (CRAB) accounted for the highest proportion (13, 48.2%).</p><p><strong>Conclusions: </strong>CoNS was the principal pathogen causing BSI in children in the ICU of children, and Escherichia coli was the most common Gram-negative pathogen. The main basic disease was an independent risk factor for death. It is necessary to continuously monitor patients with positive blood cultures, pay special attention to detected MDR bacteria, and strengthen the management of antibiotics and prevention and control of nosocomial infections.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1345-1355"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452477/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139485536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-02-24DOI: 10.1007/s10123-024-00489-8
Jorge Cuamatzi-Flores, Maritrini Colón-González, Fernanda Requena-Romo, Samuel Quiñones-Galeana, José Antonio Cervantes-Chávez, Lucia Morales
The phytopathogenic fungus Ustilago maydis causes corn smut by suppressing host plant defenses, including the oxidative burst response. While many studies have investigated how U. maydis responds to oxidative stress during infection, the consequences of heightened resistance to oxidative stress on virulence remain understudied. This study aimed to identify the effects on virulence in U. maydis strains exhibiting enhanced resistance to hydrogen peroxide (H2O2).To achieve this, we exposed U. maydis SG200 to 20 escalating H2O2 shocks, resulting in an adapted strain resistant to concentrations as high as 60 mM of H2O2, a lethal dose for the initial strain. Genetic analysis of the adapted strain revealed five nucleotide substitutions, two minor copy number variants, and a large amplification event on chromosome nine (1-149 kb) encompassing the sole catalase gene. Overexpressing catalase increased resistance to H2O2; however, this resistance was lower than that observed in the adapted strain. Additionally, virulence was reduced in both strains with enhanced H2O2 resistance.In summary, enhanced H2O2 resistance, achieved through either continuous exposure to the oxidative agent or through catalase overexpression, decreased virulence. This suggests that the response to the oxidative stress burst in U. maydis is optimal and that increasing the resistance to H2O2 does not translate into increased virulence. These findings illuminate the intricate relationship between oxidative stress resistance and virulence in U. maydis, offering insights into its infection mechanisms.
植物病原真菌 Ustilago maydis 通过抑制寄主植物的防御能力(包括氧化猝灭反应)引起玉米烟粉虱病。虽然许多研究已经调查了 U. maydis 在感染期间如何应对氧化应激,但对氧化应激的抗性增强对毒力的影响仍未得到充分研究。为了实现这一目标,我们将 U. maydis SG200 暴露于 20 次不断升级的 H2O2 冲击中,结果产生了一种适应菌株,可抵抗高达 60 mM 的 H2O2 浓度,这对初始菌株来说是致死剂量。对适应菌株的遗传分析表明,该菌株有五个核苷酸置换、两个微小的拷贝数变异,以及九号染色体(1-149 kb)上包含唯一过氧化氢酶基因的大扩增事件。过表达过氧化氢酶增加了对 H2O2 的抗性,但这种抗性低于在适应菌株中观察到的抗性。总之,通过持续暴露于氧化剂或过氧化氢酶过表达实现的 H2O2 抗性增强会降低毒力。这表明,麦地那龙线虫对氧化应激爆发的反应是最佳的,对 H2O2 抗性的增强并不会转化为毒力的增强。这些发现揭示了麦地那龙线虫的氧化应激抗性与毒力之间错综复杂的关系,有助于深入了解其感染机制。
{"title":"Enhanced oxidative stress resistance in Ustilago maydis and its implications on the virulence.","authors":"Jorge Cuamatzi-Flores, Maritrini Colón-González, Fernanda Requena-Romo, Samuel Quiñones-Galeana, José Antonio Cervantes-Chávez, Lucia Morales","doi":"10.1007/s10123-024-00489-8","DOIUrl":"10.1007/s10123-024-00489-8","url":null,"abstract":"<p><p>The phytopathogenic fungus Ustilago maydis causes corn smut by suppressing host plant defenses, including the oxidative burst response. While many studies have investigated how U. maydis responds to oxidative stress during infection, the consequences of heightened resistance to oxidative stress on virulence remain understudied. This study aimed to identify the effects on virulence in U. maydis strains exhibiting enhanced resistance to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>).To achieve this, we exposed U. maydis SG200 to 20 escalating H<sub>2</sub>O<sub>2</sub> shocks, resulting in an adapted strain resistant to concentrations as high as 60 mM of H<sub>2</sub>O<sub>2</sub>, a lethal dose for the initial strain. Genetic analysis of the adapted strain revealed five nucleotide substitutions, two minor copy number variants, and a large amplification event on chromosome nine (1-149 kb) encompassing the sole catalase gene. Overexpressing catalase increased resistance to H<sub>2</sub>O<sub>2</sub>; however, this resistance was lower than that observed in the adapted strain. Additionally, virulence was reduced in both strains with enhanced H<sub>2</sub>O<sub>2</sub> resistance.In summary, enhanced H<sub>2</sub>O<sub>2</sub> resistance, achieved through either continuous exposure to the oxidative agent or through catalase overexpression, decreased virulence. This suggests that the response to the oxidative stress burst in U. maydis is optimal and that increasing the resistance to H<sub>2</sub>O<sub>2</sub> does not translate into increased virulence. These findings illuminate the intricate relationship between oxidative stress resistance and virulence in U. maydis, offering insights into its infection mechanisms.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1501-1511"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Candida infections are growing all over the world as a result of their resistance to anti-fungal drugs. This raises concerns about public health, particularly in cases of vulvovaginal candidiasis (VVC). Therefore, the need for effective treatment options for Candida infections has become crucial. The main goal of the study is to evaluate the efficacy of novel palladium metal complexes against fluconazole-resistant Candida spp., particularly C. albicans and C. auris. The process begins with identifying the minimum inhibitory concentration (MIC), followed by growth curve assays, colony morphology analysis, characterization, and gene expression analysis. The investigation revealed that sub-MIC of Pd(II) complex B (250 μg/mL) inhibited Candida spp. more effectively than amphotericin B (500 μg/mL). Further, Pd(II) complex B drastically reduced the growth of Candida spp. biofilms by 70-80% for nascent biofilms and 70-75% for mature biofilms. Additionally, the yeast-to-hyphal switch and SEM studies revealed that Pd(II) complex B effectively hinders the growth of drug-resistant Candida cells. The gene expression investigation also evidenced that Pd(II) complex B downregulated virulence genes in C. albicans (ERG, EFG, UME6, and HGC) and C. auris (ERG, CDR, and HGC). The findings showed that Pd(II) complex B effectively inhibited the growth of Candida biofilm formation and was reported as a potential anti-biofilm agent against Candida spp. that are resistant to drugs.
由于念珠菌对抗真菌药物产生抗药性,念珠菌感染在全世界范围内日益增多。这引起了人们对公共卫生的关注,尤其是外阴阴道念珠菌病(VVC)。因此,对念珠菌感染的有效治疗方案的需求变得至关重要。这项研究的主要目标是评估新型钯金属复合物对氟康唑耐药念珠菌属,尤其是白念珠菌和阿脲菌的疗效。首先要确定最低抑制浓度(MIC),然后进行生长曲线测定、菌落形态分析、特征描述和基因表达分析。调查显示,亚 MIC Pd(II) 复合物 B(250 μg/mL)比两性霉素 B(500 μg/mL)更有效地抑制念珠菌属。此外,Pd(II) 复合物 B 还能大幅减少念珠菌生物膜的生长,新生生物膜可减少 70-80% 的生长,成熟生物膜可减少 70-75% 的生长。此外,酵母菌到蘑菇的转换和扫描电镜研究表明,钯(II)复合物 B 能有效抑制耐药念珠菌细胞的生长。基因表达调查也证明,Pd(II) 复合物 B 能下调白念珠菌(ERG、EFG、UME6 和 HGC)和无柄念珠菌(ERG、CDR 和 HGC)的毒力基因。研究结果表明,Pd(II) 复合物 B 能有效抑制白色念珠菌生物膜的生长,被认为是一种潜在的抗白色念珠菌生物膜剂。
{"title":"Novel thiazolinyl-picolinamide-based palladium(II) complex extenuates the virulence and biofilms of vulvovaginal candidiasis (VVC) causing Candida.","authors":"Munieswaran Gayatri, Sowndarya Jothipandiyan, Mohamed Khalid Abdul Azeez, Murugesan Sudharsan, Devarajan Suresh, Paramasivam Nithyanand","doi":"10.1007/s10123-024-00497-8","DOIUrl":"10.1007/s10123-024-00497-8","url":null,"abstract":"<p><p>Candida infections are growing all over the world as a result of their resistance to anti-fungal drugs. This raises concerns about public health, particularly in cases of vulvovaginal candidiasis (VVC). Therefore, the need for effective treatment options for Candida infections has become crucial. The main goal of the study is to evaluate the efficacy of novel palladium metal complexes against fluconazole-resistant Candida spp., particularly C. albicans and C. auris. The process begins with identifying the minimum inhibitory concentration (MIC), followed by growth curve assays, colony morphology analysis, characterization, and gene expression analysis. The investigation revealed that sub-MIC of Pd(II) complex B (250 μg/mL) inhibited Candida spp. more effectively than amphotericin B (500 μg/mL). Further, Pd(II) complex B drastically reduced the growth of Candida spp. biofilms by 70-80% for nascent biofilms and 70-75% for mature biofilms. Additionally, the yeast-to-hyphal switch and SEM studies revealed that Pd(II) complex B effectively hinders the growth of drug-resistant Candida cells. The gene expression investigation also evidenced that Pd(II) complex B downregulated virulence genes in C. albicans (ERG, EFG, UME6, and HGC) and C. auris (ERG, CDR, and HGC). The findings showed that Pd(II) complex B effectively inhibited the growth of Candida biofilm formation and was reported as a potential anti-biofilm agent against Candida spp. that are resistant to drugs.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1527-1539"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140101575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-14DOI: 10.1007/s10123-024-00504-y
Caylin Bosch, Barbra Toplis, Anton DuPreez Van Staden, Heinrich Volschenk, Carine Smith, Leon Dicks, Alfred Botha
Previous studies have shown a correlation between nitrogen levels and Cryptococcus neoformans pathogenicity. Here we report on the in vivo effects of cryptococcal pre-exposure to ecologically relevant nitrogen levels. C. neoformans H99 was cultured in yeast carbon base (YCB) supplemented with 0.53 g/L NH4Cl and 0.21 g/L NH4Cl, respectively, and used to infect larvae of the Greater Wax moth, Galleria mellonella. Cells cultured in low nitrogen YCB (LN) were more virulent compared to cells cultured in high nitrogen YCB (HN). Microscopic examination of haemolymph collected from infected larvae revealed that cells cultured in LN were larger than cells cultured in HN, with the majority of LN cells exceeding 10 µm and possibly entering titanisation. Additionally, compared to HN-cultured cells, fewer LN-cultured cells were engulfed by macrophages. The enhanced virulence of LN-cultured cells was attributed to the increased cell size in vivo. In contrast, reduced macrophage uptake was attributed to increased capsule thickness of in vitro cells. Not only do these findings demonstrate the effects of culture conditions, specifically nitrogen levels, on C. neoformans virulence, but they also highlight the importance of isolate background in the cryptococcal-host interaction.
{"title":"Exposure of Cryptococcus neoformans to low nitrogen levels enhances virulence.","authors":"Caylin Bosch, Barbra Toplis, Anton DuPreez Van Staden, Heinrich Volschenk, Carine Smith, Leon Dicks, Alfred Botha","doi":"10.1007/s10123-024-00504-y","DOIUrl":"10.1007/s10123-024-00504-y","url":null,"abstract":"<p><p>Previous studies have shown a correlation between nitrogen levels and Cryptococcus neoformans pathogenicity. Here we report on the in vivo effects of cryptococcal pre-exposure to ecologically relevant nitrogen levels. C. neoformans H99 was cultured in yeast carbon base (YCB) supplemented with 0.53 g/L NH<sub>4</sub>Cl and 0.21 g/L NH<sub>4</sub>Cl, respectively, and used to infect larvae of the Greater Wax moth, Galleria mellonella. Cells cultured in low nitrogen YCB (LN) were more virulent compared to cells cultured in high nitrogen YCB (HN). Microscopic examination of haemolymph collected from infected larvae revealed that cells cultured in LN were larger than cells cultured in HN, with the majority of LN cells exceeding 10 µm and possibly entering titanisation. Additionally, compared to HN-cultured cells, fewer LN-cultured cells were engulfed by macrophages. The enhanced virulence of LN-cultured cells was attributed to the increased cell size in vivo. In contrast, reduced macrophage uptake was attributed to increased capsule thickness of in vitro cells. Not only do these findings demonstrate the effects of culture conditions, specifically nitrogen levels, on C. neoformans virulence, but they also highlight the importance of isolate background in the cryptococcal-host interaction.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1587-1595"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-01-23DOI: 10.1007/s10123-024-00482-1
Anna Glushakova, Aleksandra Tepeeva, Tatiana Prokof'eva, Aleksey Kachalkin
In urban ecosystems, processes associated with anthropogenic influences almost always lead to changes in soil micromycete complexes. The taxonomic structure of soil micromycete complexes is an important informative parameter of soil bioindication in the ecological control of urban environments. Unicellular fungi, such as culturable yeasts, are a very suitable and promising object of microbiological research for monitoring urban topsoil. This review aims to give an overview of the yeast communities in urban topsoil in different areas of Moscow (heating main area, household waste storage and disposal area, highway area) and to discuss the changes in the taxonomic structure of culturable yeast complexes depending on the type and intensity of anthropogenic impact.
{"title":"Culturable yeast diversity in urban topsoil influenced by various anthropogenic impacts.","authors":"Anna Glushakova, Aleksandra Tepeeva, Tatiana Prokof'eva, Aleksey Kachalkin","doi":"10.1007/s10123-024-00482-1","DOIUrl":"10.1007/s10123-024-00482-1","url":null,"abstract":"<p><p>In urban ecosystems, processes associated with anthropogenic influences almost always lead to changes in soil micromycete complexes. The taxonomic structure of soil micromycete complexes is an important informative parameter of soil bioindication in the ecological control of urban environments. Unicellular fungi, such as culturable yeasts, are a very suitable and promising object of microbiological research for monitoring urban topsoil. This review aims to give an overview of the yeast communities in urban topsoil in different areas of Moscow (heating main area, household waste storage and disposal area, highway area) and to discuss the changes in the taxonomic structure of culturable yeast complexes depending on the type and intensity of anthropogenic impact.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1383-1403"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}