Pub Date : 2023-05-01DOI: 10.1123/ijsnem.2022-0175
Laura Alvarez-Jimenez, Alfonso Moreno-Cabañas, Felix Morales-Palomo, Juan F Ortega, Ricardo Mora-Rodriguez
Objective: To determine whether statin medication in individuals with obesity, dyslipidemia, and metabolic syndrome affects their capacity to mobilize and oxidize fat during exercise.
Methods: Twelve individuals with metabolic syndrome pedaled during 75 min at 54 ± 13% V˙O2max (5.7 ± 0.5 metabolic equivalents) while taking statins (STATs) or after 96-hr statin withdrawal (PLAC) in a randomized double-blind fashion.
Results: At rest, PLAC increased low-density lipoprotein cholesterol (i.e., STAT 2.55 ± 0.96 vs. PLAC 3.16 ± 0.76 mmol/L; p = .004) and total cholesterol blood levels (i.e., STAT 4.39 ± 1.16 vs. PLAC 4.98 ± 0.97 mmol/L; p = .008). At rest, fat oxidation (0.99 ± 0.34 vs. 0.76 ± 0.37 μmol·kg-1·min-1 for STAT vs. PLAC; p = .068) and the rates of plasma appearance of glucose and glycerol (i.e., Ra glucose-glycerol) were not affected by PLAC. After 70 min of exercise, fat oxidation was similar between trials (2.94 ± 1.56 vs. 3.06 ± 1.94 μmol·kg-1·min-1, STA vs. PLAC; p = .875). PLAC did not alter the rates of disappearance of glucose in plasma during exercise (i.e., 23.9 ± 6.9 vs. 24.5 ± 8.2 μmol·kg-1·min-1 for STAT vs. PLAC; p = .611) or the rate of plasma appearance of glycerol (i.e., 8.5 ± 1.9 vs. 7.9 ± 1.8 μmol·kg-1·min-1 for STAT vs. PLAC; p = .262).
Conclusions: In patients with obesity, dyslipidemia, and metabolic syndrome, statins do not compromise their ability to mobilize and oxidize fat at rest or during prolonged, moderately intense exercise (i.e., equivalent to brisk walking). In these patients, the combination of statins and exercise could help to better manage their dyslipidemia.
目的:确定肥胖、血脂异常和代谢综合征患者服用他汀类药物是否会影响他们在运动中动员和氧化脂肪的能力。方法:12例代谢综合征患者在服用他汀类药物(STATs)或停药96小时(placc)后,在54±13% V˙O2max(5.7±0.5代谢当量)下骑行75分钟,采用随机双盲方法。结果:静息时,PLAC使低密度脂蛋白胆固醇升高(即STAT为2.55±0.96,PLAC为3.16±0.76 mmol/L;p = 0.004)和总胆固醇血水平(即STAT 4.39±1.16 vs plac4.98±0.97 mmol/L;P = .008)。静止状态下,STAT和placc的脂肪氧化(0.99±0.34 vs 0.76±0.37 μmol·kg-1·min-1);p = 0.068),血浆葡萄糖和甘油(即Ra葡萄糖-甘油)的出现率不受placc的影响。运动70 min后,两组之间的脂肪氧化相似(STA vs. PLAC, 2.94±1.56 vs. 3.06±1.94 μmol·kg-1·min-1;P = .875)。PLAC没有改变运动期间血浆中葡萄糖的消失率(即STAT和PLAC分别为23.9±6.9 μmol·kg-1·min-1和24.5±8.2 μmol·kg-1);p = 0.611)或血浆甘油出现率(即STAT和placc的8.5±1.9 vs. 7.9±1.8 μmol·kg-1·min-1;P = .262)。结论:在肥胖、血脂异常和代谢综合征患者中,他汀类药物在休息或长时间中等强度运动(即相当于快走)时不会损害其动员和氧化脂肪的能力。在这些患者中,他汀类药物和运动的结合可以帮助更好地控制他们的血脂异常。
{"title":"Chronic Statin Treatment Does Not Impair Exercise Lipolysis or Fat Oxidation in Exercise-Trained Individuals With Obesity and Dyslipidemia.","authors":"Laura Alvarez-Jimenez, Alfonso Moreno-Cabañas, Felix Morales-Palomo, Juan F Ortega, Ricardo Mora-Rodriguez","doi":"10.1123/ijsnem.2022-0175","DOIUrl":"https://doi.org/10.1123/ijsnem.2022-0175","url":null,"abstract":"<p><strong>Objective: </strong>To determine whether statin medication in individuals with obesity, dyslipidemia, and metabolic syndrome affects their capacity to mobilize and oxidize fat during exercise.</p><p><strong>Methods: </strong>Twelve individuals with metabolic syndrome pedaled during 75 min at 54 ± 13% V˙O2max (5.7 ± 0.5 metabolic equivalents) while taking statins (STATs) or after 96-hr statin withdrawal (PLAC) in a randomized double-blind fashion.</p><p><strong>Results: </strong>At rest, PLAC increased low-density lipoprotein cholesterol (i.e., STAT 2.55 ± 0.96 vs. PLAC 3.16 ± 0.76 mmol/L; p = .004) and total cholesterol blood levels (i.e., STAT 4.39 ± 1.16 vs. PLAC 4.98 ± 0.97 mmol/L; p = .008). At rest, fat oxidation (0.99 ± 0.34 vs. 0.76 ± 0.37 μmol·kg-1·min-1 for STAT vs. PLAC; p = .068) and the rates of plasma appearance of glucose and glycerol (i.e., Ra glucose-glycerol) were not affected by PLAC. After 70 min of exercise, fat oxidation was similar between trials (2.94 ± 1.56 vs. 3.06 ± 1.94 μmol·kg-1·min-1, STA vs. PLAC; p = .875). PLAC did not alter the rates of disappearance of glucose in plasma during exercise (i.e., 23.9 ± 6.9 vs. 24.5 ± 8.2 μmol·kg-1·min-1 for STAT vs. PLAC; p = .611) or the rate of plasma appearance of glycerol (i.e., 8.5 ± 1.9 vs. 7.9 ± 1.8 μmol·kg-1·min-1 for STAT vs. PLAC; p = .262).</p><p><strong>Conclusions: </strong>In patients with obesity, dyslipidemia, and metabolic syndrome, statins do not compromise their ability to mobilize and oxidize fat at rest or during prolonged, moderately intense exercise (i.e., equivalent to brisk walking). In these patients, the combination of statins and exercise could help to better manage their dyslipidemia.</p>","PeriodicalId":14334,"journal":{"name":"International journal of sport nutrition and exercise metabolism","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9474017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1123/ijsnem.2022-0236
Nathalia Saffioti Rezende, Giulia Cazetta Bestetti, Luana Farias de Oliveira, Bruna Caruso Mazzolani, Fabiana Infante Smaira, Alina Dumas, Paul Swinton, Bryan Saunders, Eimear Dolan
β-Alanine (BA) is one of the most widely used sport supplements, due to its capacity to improve high-intensity exercise performance by increasing muscle carnosine (MCarn) content, and consequently, the buffering capacity of the muscle. BA is also available in a variety of animal foods, but little is currently known about the influence of dietary BA intake on MCarn. The aim of the current study was to compile a detailed summary of available data on the BA content of commonly consumed foods, and to explore whether associations could be detected between self-reported dietary BA intake and skeletal MCarn in a group of 60 healthy, active, omnivorous men and women. Dietary BA intake was assessed via 3-day food records, and MCarn content assessed by high-performance liquid chromatography. A series of univariate and multivariate linear regression models were used to explore associations between estimated dietary BA and MCarn. No evidence of associations between dietary BA intake and MCarn were identified, with effect sizes close to zero calculated from models accounting for key demographic variables (f2 ≤ 0.02 for all analyses). These findings suggest that capacity to increase MCarn via dietary strategies may be limited, and that supplementation may be required to induce increases of the magnitude required to improve performance.
{"title":"Dietary β-Alanine Intake Assessed by Food Records Does Not Associate With Muscle Carnosine Content in Healthy, Active, Omnivorous Men and Women.","authors":"Nathalia Saffioti Rezende, Giulia Cazetta Bestetti, Luana Farias de Oliveira, Bruna Caruso Mazzolani, Fabiana Infante Smaira, Alina Dumas, Paul Swinton, Bryan Saunders, Eimear Dolan","doi":"10.1123/ijsnem.2022-0236","DOIUrl":"https://doi.org/10.1123/ijsnem.2022-0236","url":null,"abstract":"<p><p>β-Alanine (BA) is one of the most widely used sport supplements, due to its capacity to improve high-intensity exercise performance by increasing muscle carnosine (MCarn) content, and consequently, the buffering capacity of the muscle. BA is also available in a variety of animal foods, but little is currently known about the influence of dietary BA intake on MCarn. The aim of the current study was to compile a detailed summary of available data on the BA content of commonly consumed foods, and to explore whether associations could be detected between self-reported dietary BA intake and skeletal MCarn in a group of 60 healthy, active, omnivorous men and women. Dietary BA intake was assessed via 3-day food records, and MCarn content assessed by high-performance liquid chromatography. A series of univariate and multivariate linear regression models were used to explore associations between estimated dietary BA and MCarn. No evidence of associations between dietary BA intake and MCarn were identified, with effect sizes close to zero calculated from models accounting for key demographic variables (f2 ≤ 0.02 for all analyses). These findings suggest that capacity to increase MCarn via dietary strategies may be limited, and that supplementation may be required to induce increases of the magnitude required to improve performance.</p>","PeriodicalId":14334,"journal":{"name":"International journal of sport nutrition and exercise metabolism","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9827054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1123/ijsnem.2023-0010
Andrew T Askow, Nicholas A Burd
{"title":"Reply to G. Escalante and D. St. Mart.","authors":"Andrew T Askow, Nicholas A Burd","doi":"10.1123/ijsnem.2023-0010","DOIUrl":"https://doi.org/10.1123/ijsnem.2023-0010","url":null,"abstract":"","PeriodicalId":14334,"journal":{"name":"International journal of sport nutrition and exercise metabolism","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9756277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1123/ijsnem.2022-0177
Ian A J Darragh, Lorraine O'Driscoll, Brendan Egan
This study investigated within-subject variability in the circulating metabolome under controlled conditions, and whether divergent exercise training backgrounds were associated with alterations in the circulating metabolome assessed in resting samples. Thirty-seven men comprising of endurance athletes (END; body mass, 71.0 ± 6.8 kg; fat-free mass index, 16.9 ± 1.1 kg/m2), strength athletes (STR; 94.5 ± 8.8 kg; 23.0 ± 1.8 kg/m2), and recreationally active controls (CON; 77.6 ± 7.7 kg; 18.1 ± 1.0 kg/m2) provided blood samples after an overnight fast on two separate occasions controlled for time of day of sampling, recent dietary intake, time since last meal, and time since last exercise training session. A targeted profile of metabolites, performed using liquid chromatography and mass spectrometry on plasma samples, identified 166 individual metabolites and metabolite features, which were analyzed with intraclass correlation coefficients, a multilevel principal component analysis, and univariate t tests adjusted for multiple comparisons. The median intraclass correlation coefficient was .49, with 46 metabolites displaying good reliability and 31 metabolites displaying excellent reliability. No difference in the abundance of any individual metabolite was identified within groups when compared between visits, but a combined total of 44 metabolites were significantly different (false discovery rate <0.05) between groups (END vs. CON, 42 metabolites; STR vs. CON, 10 metabolites; and END vs. STR, five metabolites). Under similar measurement conditions, the reliability of resting plasma metabolite concentrations varies largely at the level of individual metabolites with ∼48% of metabolites displaying good-to-excellent reliability. However, a history of exercise training was associated with alterations in the abundance of ∼28% of metabolites in the targeted profile employed in this study.
{"title":"Within-Subject Variability and the Influence of Exercise Training History on the Resting Plasma Metabolome in Men.","authors":"Ian A J Darragh, Lorraine O'Driscoll, Brendan Egan","doi":"10.1123/ijsnem.2022-0177","DOIUrl":"https://doi.org/10.1123/ijsnem.2022-0177","url":null,"abstract":"<p><p>This study investigated within-subject variability in the circulating metabolome under controlled conditions, and whether divergent exercise training backgrounds were associated with alterations in the circulating metabolome assessed in resting samples. Thirty-seven men comprising of endurance athletes (END; body mass, 71.0 ± 6.8 kg; fat-free mass index, 16.9 ± 1.1 kg/m2), strength athletes (STR; 94.5 ± 8.8 kg; 23.0 ± 1.8 kg/m2), and recreationally active controls (CON; 77.6 ± 7.7 kg; 18.1 ± 1.0 kg/m2) provided blood samples after an overnight fast on two separate occasions controlled for time of day of sampling, recent dietary intake, time since last meal, and time since last exercise training session. A targeted profile of metabolites, performed using liquid chromatography and mass spectrometry on plasma samples, identified 166 individual metabolites and metabolite features, which were analyzed with intraclass correlation coefficients, a multilevel principal component analysis, and univariate t tests adjusted for multiple comparisons. The median intraclass correlation coefficient was .49, with 46 metabolites displaying good reliability and 31 metabolites displaying excellent reliability. No difference in the abundance of any individual metabolite was identified within groups when compared between visits, but a combined total of 44 metabolites were significantly different (false discovery rate <0.05) between groups (END vs. CON, 42 metabolites; STR vs. CON, 10 metabolites; and END vs. STR, five metabolites). Under similar measurement conditions, the reliability of resting plasma metabolite concentrations varies largely at the level of individual metabolites with ∼48% of metabolites displaying good-to-excellent reliability. However, a history of exercise training was associated with alterations in the abundance of ∼28% of metabolites in the targeted profile employed in this study.</p>","PeriodicalId":14334,"journal":{"name":"International journal of sport nutrition and exercise metabolism","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9527855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1123/ijsnem.2022-0229
George Wilson, Carl Langan-Evans, Dan Martin, Andreas M Kasper, James P Morton, Graeme L Close
Jockeys are unique given that they make weight daily and, therefore, often resort to fasting and dehydration. Through increasing daily food frequency (during energy deficit), we have reported short-term improvements in jockey's body composition. While these changes were observed over 6-12 weeks with food provided, it is unclear whether such improvements can be maintained over an extended period during free-living conditions. We, therefore, assessed jockeys over 5 years using dual X-ray absorptiometry, resting metabolic rate, and hydration measurements. Following dietary and exercise advice, jockeys reduced fat mass from baseline of 7.1 ± 1.4 kg to 6.1 ± 0.7 kg and 6.1 ± 0.6 kg (p < .001) at Years 1 and 5, respectively. In addition, fat-free mass was maintained with resting metabolic rate increasing significantly from 1,500 ± 51 kcal/day at baseline to 1,612 ± 95 kcal/day and 1,620 ± 92 kcal/day (p < .001) at Years 1 and 5, respectively. Urine osmolality reduced from 816 ± 236 mOsmol/L at baseline to 564 ± 175 mOsmol/L and 524 ± 156 mOsmol/L (p < .001) at Years 1 and 5, respectively. The percent of jockeys consuming a regular breakfast significantly increased from 48% at baseline to 83% (p = .009) and 87% (p = .003) at Years 1 and 5, alongside regular lunch from 35% to 92% (p < .001) and 96% (p < .001) from baseline to Years 1 and 5, respectively. In conclusion, we report that improved body composition can be maintained in free-living jockeys over a 5-year period when appropriate guidance has been provided.
{"title":"Longitudinal Changes in Body Composition and Resting Metabolic Rate in Male Professional Flat Jockeys: Preliminary Outcomes and Implications for Future Research Directions.","authors":"George Wilson, Carl Langan-Evans, Dan Martin, Andreas M Kasper, James P Morton, Graeme L Close","doi":"10.1123/ijsnem.2022-0229","DOIUrl":"https://doi.org/10.1123/ijsnem.2022-0229","url":null,"abstract":"<p><p>Jockeys are unique given that they make weight daily and, therefore, often resort to fasting and dehydration. Through increasing daily food frequency (during energy deficit), we have reported short-term improvements in jockey's body composition. While these changes were observed over 6-12 weeks with food provided, it is unclear whether such improvements can be maintained over an extended period during free-living conditions. We, therefore, assessed jockeys over 5 years using dual X-ray absorptiometry, resting metabolic rate, and hydration measurements. Following dietary and exercise advice, jockeys reduced fat mass from baseline of 7.1 ± 1.4 kg to 6.1 ± 0.7 kg and 6.1 ± 0.6 kg (p < .001) at Years 1 and 5, respectively. In addition, fat-free mass was maintained with resting metabolic rate increasing significantly from 1,500 ± 51 kcal/day at baseline to 1,612 ± 95 kcal/day and 1,620 ± 92 kcal/day (p < .001) at Years 1 and 5, respectively. Urine osmolality reduced from 816 ± 236 mOsmol/L at baseline to 564 ± 175 mOsmol/L and 524 ± 156 mOsmol/L (p < .001) at Years 1 and 5, respectively. The percent of jockeys consuming a regular breakfast significantly increased from 48% at baseline to 83% (p = .009) and 87% (p = .003) at Years 1 and 5, alongside regular lunch from 35% to 92% (p < .001) and 96% (p < .001) from baseline to Years 1 and 5, respectively. In conclusion, we report that improved body composition can be maintained in free-living jockeys over a 5-year period when appropriate guidance has been provided.</p>","PeriodicalId":14334,"journal":{"name":"International journal of sport nutrition and exercise metabolism","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9472363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1123/ijsnem.2022-0251
Guillermo Escalante, Dean St Mart
participants
{"title":"Comment on: \"Creatine Monohydrate Supplementation, but not Creatyl-L-Leucine Increased Muscle Creatine Content in Healthy Young Adults: A Double-Blind Placebo-Controlled Trial\".","authors":"Guillermo Escalante, Dean St Mart","doi":"10.1123/ijsnem.2022-0251","DOIUrl":"https://doi.org/10.1123/ijsnem.2022-0251","url":null,"abstract":"participants","PeriodicalId":14334,"journal":{"name":"International journal of sport nutrition and exercise metabolism","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9756278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1123/ijsnem.2022-0153
Edward M Balog, Mateo Golloshi, HyunGyu Suh, Melinda Millard-Stafford
Deuterium oxide (D2O) appearance in blood is a marker of fluid bioavailability. However, whether biomarker robustness (e.g., relative fluid delivery speed) is consistent across analytical methods (e.g., cavity ring-down spectroscopy) remains unclear. Fourteen men ingested fluid (6 ml/kg body mass) containing 0.15 g/kg D2O followed by 45 min blood sampling. Plasma (D2O) was detected (n = 8) by the following: isotope-ratio mass spectrometry after vapor equilibration (IRMS-equilibrated water) or distillation (IRMS-plasma) and cavity ring-down spectroscopy. Two models calculated D2O halftime to peak (t1/2max): sigmoid curve fit versus asymmetric triangle (TRI). Background (D2O) differed (p < .001, η2 = .98) among IRMS-equilibrated water, IRMS-plasma, and cavity ring-down spectroscopy (152.2 ± 0.8, 147.2 ± 1.5, and 137.7 ± 2.2 ppm), but did not influence (p > .05) D2O appearance (Δppm), time to peak, or t1/2max. Stratifying participants based on mean t1/2max (12 min) into "slow" versus "fast" subgroups resulted in a 5.8 min difference (p < .001, η2 = .73). Significant t1/2max model (p = .01, η2 = .44) and Model × Speed Subgroup interaction (p = .005, η2 = .50) effects were observed. Bias between TRI and sigmoid curve fit increased with t1/2max speed: no difference (p = .75) for fast (9.0 min vs. 9.2 min, respectively) but greater t1/2max (p = .001) with TRI for the slow subgroup (16.1 min vs. 13.7 min). Fluid bioavailability markers are less influenced by which laboratory method is used to measure D2O as compared with the individual variability effects that influence models for calculating t1/2max. Thus, TRI model may not be appropriate for individuals with slow fluid delivery speeds.
{"title":"Individual Variability Is More Important Than Analytical Methods When Calculating Relative Speed of Beverage Bioavailability.","authors":"Edward M Balog, Mateo Golloshi, HyunGyu Suh, Melinda Millard-Stafford","doi":"10.1123/ijsnem.2022-0153","DOIUrl":"https://doi.org/10.1123/ijsnem.2022-0153","url":null,"abstract":"<p><p>Deuterium oxide (D2O) appearance in blood is a marker of fluid bioavailability. However, whether biomarker robustness (e.g., relative fluid delivery speed) is consistent across analytical methods (e.g., cavity ring-down spectroscopy) remains unclear. Fourteen men ingested fluid (6 ml/kg body mass) containing 0.15 g/kg D2O followed by 45 min blood sampling. Plasma (D2O) was detected (n = 8) by the following: isotope-ratio mass spectrometry after vapor equilibration (IRMS-equilibrated water) or distillation (IRMS-plasma) and cavity ring-down spectroscopy. Two models calculated D2O halftime to peak (t1/2max): sigmoid curve fit versus asymmetric triangle (TRI). Background (D2O) differed (p < .001, η2 = .98) among IRMS-equilibrated water, IRMS-plasma, and cavity ring-down spectroscopy (152.2 ± 0.8, 147.2 ± 1.5, and 137.7 ± 2.2 ppm), but did not influence (p > .05) D2O appearance (Δppm), time to peak, or t1/2max. Stratifying participants based on mean t1/2max (12 min) into \"slow\" versus \"fast\" subgroups resulted in a 5.8 min difference (p < .001, η2 = .73). Significant t1/2max model (p = .01, η2 = .44) and Model × Speed Subgroup interaction (p = .005, η2 = .50) effects were observed. Bias between TRI and sigmoid curve fit increased with t1/2max speed: no difference (p = .75) for fast (9.0 min vs. 9.2 min, respectively) but greater t1/2max (p = .001) with TRI for the slow subgroup (16.1 min vs. 13.7 min). Fluid bioavailability markers are less influenced by which laboratory method is used to measure D2O as compared with the individual variability effects that influence models for calculating t1/2max. Thus, TRI model may not be appropriate for individuals with slow fluid delivery speeds.</p>","PeriodicalId":14334,"journal":{"name":"International journal of sport nutrition and exercise metabolism","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10742435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1123/ijsnem.2022-0267
{"title":"Abstracts From the 2022 International Sport + Exercise Nutrition Conference","authors":"","doi":"10.1123/ijsnem.2022-0267","DOIUrl":"https://doi.org/10.1123/ijsnem.2022-0267","url":null,"abstract":"","PeriodicalId":14334,"journal":{"name":"International journal of sport nutrition and exercise metabolism","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135837862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1123/ijsnem.2022-0111
Harry Pope, Max Davis, M Begona Delgado-Charro, Oliver J Peacock, Javier Gonzalez, James A Betts
Phosphate is integral to numerous metabolic processes, several of which strongly predict exercise performance (i.e., cardiac function, oxygen transport, and oxidative metabolism). Evidence regarding phosphate loading is limited and equivocal, at least partly because studies have examined sodium phosphate supplements of varied molar mass (e.g., mono/di/tribasic, dodecahydrate), thus delivering highly variable absolute quantities of phosphate. Within a randomized cross-over design and in a single-blind manner, 16 well-trained cyclists (age 38 ± 16 years, mass 74.3 ± 10.8 kg, training 340 ± 171 min/week; mean ± SD) ingested either 3.5 g/day of dibasic sodium phosphate (Na2HPO4: 24.7 mmol/day phosphate; 49.4 mmol/day sodium) or a sodium chloride placebo (NaCl: 49.4 mmol/day sodium and chloride) for 4 days prior to each of two 30-km time trials, separated by a washout interval of 14 days. There was no evidence of any ergogenic benefit associated with phosphate loading. Time to complete the 30-km time trial did not differ following ingestion of sodium phosphate and sodium chloride (3,059 ± 531 s vs. 2,995 ± 467 s). Accordingly, neither absolute mean power output (221 ± 48 W vs. 226 ± 48 W) nor relative mean power output (3.02 ± 0.78 W/kg vs. 3.08 ± 0.71 W/kg) differed meaningfully between the respective intervention and placebo conditions. Measures of cardiovascular strain and ratings of perceived exertion were very closely matched between treatments (i.e., average heart rate 161 ± 11 beats per minute vs. 159 ± 12 beats per minute; Δ2 beats per minute; and ratings of perceived exertion 18 [14-20] units vs. 17 [14-20] units). In conclusion, supplementing with relatively high absolute doses of phosphate (i.e., >10 mmol daily for 4 days) exerted no ergogenic effects on trained cyclists completing 30-km time trials.
磷酸盐是许多代谢过程的组成部分,其中一些代谢过程强烈预测运动表现(即心功能、氧运输和氧化代谢)。关于磷酸盐负荷的证据是有限和模棱两可的,至少部分原因是研究已经检查了不同摩尔质量的磷酸钠补充剂(例如,单/二/三碱,十二水),因此提供的磷酸盐绝对数量变化很大。在随机交叉设计和单盲方式下,16名训练有素的自行车手(年龄38±16岁,体重74.3±10.8 kg,训练340±171分钟/周;平均±SD)分别摄入3.5 g/天的磷酸二钠(Na2HPO4: 24.7 mmol/天磷酸;49.4 mmol/天钠)或氯化钠安慰剂(NaCl: 49.4 mmol/天钠和氯化物),分别在两次30公里时间试验前4天进行,间隔14天的洗脱期。没有证据表明磷酸盐负荷对人体有任何益处。摄入磷酸钠和氯化钠后完成30公里时间试验的时间没有差异(3,059±531秒vs 2,995±467秒)。因此,绝对平均功率输出(221±48 W vs 226±48 W)和相对平均功率输出(3.02±0.78 W/kg vs 3.08±0.71 W/kg)在各自的干预组和安慰剂组之间都没有显著差异。在两组治疗中,心血管疲劳测量和感知劳累评分非常接近(即,平均心率161±11次/分钟vs 159±12次/分钟;Δ2每分钟心跳数;知觉劳累评分18[14-20]单位vs. 17[14-20]单位)。综上所述,补充相对高绝对剂量的磷酸盐(即每天>10 mmol,持续4天)对完成30公里计时试验的训练自行车运动员没有产生人体效应。
{"title":"Phosphate Loading Does not Improve 30-km Cycling Time-Trial Performance in Trained Cyclists.","authors":"Harry Pope, Max Davis, M Begona Delgado-Charro, Oliver J Peacock, Javier Gonzalez, James A Betts","doi":"10.1123/ijsnem.2022-0111","DOIUrl":"https://doi.org/10.1123/ijsnem.2022-0111","url":null,"abstract":"<p><p>Phosphate is integral to numerous metabolic processes, several of which strongly predict exercise performance (i.e., cardiac function, oxygen transport, and oxidative metabolism). Evidence regarding phosphate loading is limited and equivocal, at least partly because studies have examined sodium phosphate supplements of varied molar mass (e.g., mono/di/tribasic, dodecahydrate), thus delivering highly variable absolute quantities of phosphate. Within a randomized cross-over design and in a single-blind manner, 16 well-trained cyclists (age 38 ± 16 years, mass 74.3 ± 10.8 kg, training 340 ± 171 min/week; mean ± SD) ingested either 3.5 g/day of dibasic sodium phosphate (Na2HPO4: 24.7 mmol/day phosphate; 49.4 mmol/day sodium) or a sodium chloride placebo (NaCl: 49.4 mmol/day sodium and chloride) for 4 days prior to each of two 30-km time trials, separated by a washout interval of 14 days. There was no evidence of any ergogenic benefit associated with phosphate loading. Time to complete the 30-km time trial did not differ following ingestion of sodium phosphate and sodium chloride (3,059 ± 531 s vs. 2,995 ± 467 s). Accordingly, neither absolute mean power output (221 ± 48 W vs. 226 ± 48 W) nor relative mean power output (3.02 ± 0.78 W/kg vs. 3.08 ± 0.71 W/kg) differed meaningfully between the respective intervention and placebo conditions. Measures of cardiovascular strain and ratings of perceived exertion were very closely matched between treatments (i.e., average heart rate 161 ± 11 beats per minute vs. 159 ± 12 beats per minute; Δ2 beats per minute; and ratings of perceived exertion 18 [14-20] units vs. 17 [14-20] units). In conclusion, supplementing with relatively high absolute doses of phosphate (i.e., >10 mmol daily for 4 days) exerted no ergogenic effects on trained cyclists completing 30-km time trials.</p>","PeriodicalId":14334,"journal":{"name":"International journal of sport nutrition and exercise metabolism","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9791542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1123/ijsnem.2022-0115
Sarah de Jager, Stefaan Van Damme, Siegrid De Baere, Siska Croubels, Ralf Jäger, Martin Purpura, Eline Lievens, Jan G Bourgois, Wim Derave
Carnosine (β-alanyl-L-histidine) and its methylated analogues anserine and balenine are highly concentrated endogenous dipeptides in mammalian skeletal muscle that are implicated in exercise performance. Balenine has a much better bioavailability and stability in human circulation upon acute ingestion, compared to carnosine and anserine. Therefore, ergogenic effects observed with acute carnosine and anserine supplementation may be even more pronounced with balenine. This study investigated whether acute balenine supplementation improves physical performance in four maximal and submaximal exercise modalities. A total of 20 healthy, active volunteers (14 males; six females) performed cycling sprints, maximal isometric contractions, a 4-km TT and 20-km TT following either preexercise placebo or 10 mg/kg of balenine ingestion. Physical, as well as mental performance, along with acid-base balance and glucose concentration were assessed. Balenine was unable to augment peak power (p = .3553), peak torque (p = .3169), time to complete the 4 km (p = .8566), nor 20 km time trial (p = .2660). None of the performances were correlated with plasma balenine or CN1 enzyme activity. In addition, no effect on pH, bicarbonate, and lactate was observed. Also, the supplement did not affect mental performance. In contrast, glucose remained higher during and after the 20 km time trial following balenine ingestion. In conclusion, these results overall indicate that the functionality of balenine does not fully resemble that of carnosine and anserine, since it was unable to elicit performance improvements with similar and even higher plasma concentrations.
{"title":"No Effect of Acute Balenine Supplementation on Maximal and Submaximal Exercise Performance in Recreational Cyclists.","authors":"Sarah de Jager, Stefaan Van Damme, Siegrid De Baere, Siska Croubels, Ralf Jäger, Martin Purpura, Eline Lievens, Jan G Bourgois, Wim Derave","doi":"10.1123/ijsnem.2022-0115","DOIUrl":"https://doi.org/10.1123/ijsnem.2022-0115","url":null,"abstract":"<p><p>Carnosine (β-alanyl-L-histidine) and its methylated analogues anserine and balenine are highly concentrated endogenous dipeptides in mammalian skeletal muscle that are implicated in exercise performance. Balenine has a much better bioavailability and stability in human circulation upon acute ingestion, compared to carnosine and anserine. Therefore, ergogenic effects observed with acute carnosine and anserine supplementation may be even more pronounced with balenine. This study investigated whether acute balenine supplementation improves physical performance in four maximal and submaximal exercise modalities. A total of 20 healthy, active volunteers (14 males; six females) performed cycling sprints, maximal isometric contractions, a 4-km TT and 20-km TT following either preexercise placebo or 10 mg/kg of balenine ingestion. Physical, as well as mental performance, along with acid-base balance and glucose concentration were assessed. Balenine was unable to augment peak power (p = .3553), peak torque (p = .3169), time to complete the 4 km (p = .8566), nor 20 km time trial (p = .2660). None of the performances were correlated with plasma balenine or CN1 enzyme activity. In addition, no effect on pH, bicarbonate, and lactate was observed. Also, the supplement did not affect mental performance. In contrast, glucose remained higher during and after the 20 km time trial following balenine ingestion. In conclusion, these results overall indicate that the functionality of balenine does not fully resemble that of carnosine and anserine, since it was unable to elicit performance improvements with similar and even higher plasma concentrations.</p>","PeriodicalId":14334,"journal":{"name":"International journal of sport nutrition and exercise metabolism","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9301272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}