首页 > 最新文献

TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)最新文献

英文 中文
理事就任に際して 就任董事之际
S. Awaji
{"title":"理事就任に際して","authors":"S. Awaji","doi":"10.2221/jcsj.56.1","DOIUrl":"https://doi.org/10.2221/jcsj.56.1","url":null,"abstract":"","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134044601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of the Boltzmann Constant Using a Quantum Voltage Noise Source 用量子电压噪声源测量玻尔兹曼常数
C. Urano
Synopsis : In the new SI, the unit of thermodynamic temperature, Kelvin (K), was defined based on the Boltzmann constant k determined through various thermodynamic temperature measurements. This paper describes a Johnson noise thermometer that uses a quantum voltage noise source, which is a type of precise thermodynamic temperature measurement method.
简介:在新的SI中,热力学温度的单位开尔文(K)是根据波尔兹曼常数K通过各种热力学温度测量确定的。本文介绍了一种采用量子电压噪声源的约翰逊噪声温度计,这是一种精确的热力学温度测量方法。
{"title":"Measurement of the Boltzmann Constant Using a Quantum Voltage Noise Source","authors":"C. Urano","doi":"10.2221/JCSJ.56.12","DOIUrl":"https://doi.org/10.2221/JCSJ.56.12","url":null,"abstract":"Synopsis : In the new SI, the unit of thermodynamic temperature, Kelvin (K), was defined based on the Boltzmann constant k determined through various thermodynamic temperature measurements. This paper describes a Johnson noise thermometer that uses a quantum voltage noise source, which is a type of precise thermodynamic temperature measurement method.","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132077064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
超電導応用研究会委員長就任のご挨拶 超电导応用研究会委员长就任のご挨拶
Yuichi Yamada
{"title":"超電導応用研究会委員長就任のご挨拶","authors":"Yuichi Yamada","doi":"10.2221/jcsj.56.41","DOIUrl":"https://doi.org/10.2221/jcsj.56.41","url":null,"abstract":"","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123901236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Materials and Manufacturing Technologies for Inter-coil Structure Components of the ITER TF Coil ITER TF线圈间圈结构部件材料与制造技术的发展
T. Sakurai, M. Iguchi, E. Fujiwara, M. Nakahira, N. Koizumi
Synopsis : For the ITER, 18 of the world’s largest Toroidal Field (TF) coils will be installed. The components that connect each TF coils are called Inter-coil structure components. Inter-coil structure components will be cooled down to 4 K and exposed to radiation during ITER operation. These components must ensure huge magnetic force while insulating the TF coils. In this study, the authors developed glass fiber reinforced plastic (GFRP) having a compressive strength property that minimizes degradation even in a radiation environment. The compressive strength of this GFRP is demonstrated to satisfy the required value. The authors also manufactured a customized Ni-based superalloy (Alloy718) bar from a standard product. The mechanical properties at room temperature and 4 K were obtained, and it was confirmed that these properties exceed the requirements. The Inter-coil structure components used for the interface require tight tolerance, so an alumina coating is applied on the surface of stainless steel. Next, the authors tested the alumina coating to see if it deteriorated after a thermal cycle. It is reported the optimizing the component manufacturing process requires an alumina coating and high dimensional accuracy. This views and opinions expressed herein do not necessarily reflect those of the ITER organization.
摘要:ITER将安装18个世界上最大的环面场(TF)线圈。连接每个TF线圈的组件称为线圈间结构组件。在ITER运行过程中,中间线圈结构部件将被冷却至4k并暴露在辐射中。这些元件在绝缘TF线圈时必须保证巨大的磁力。在这项研究中,作者开发了具有抗压强度特性的玻璃纤维增强塑料(GFRP),即使在辐射环境中也能最大限度地减少降解。结果表明,该GFRP的抗压强度满足要求值。作者还从标准产品中制造了定制的镍基高温合金(Alloy718)棒。得到了合金在室温和4k下的力学性能,证实了这些性能都超出了要求。用于接口的线圈间结构部件要求公差严格,因此在不锈钢表面涂上氧化铝涂层。接下来,作者测试了氧化铝涂层,看看它在热循环后是否会恶化。据报道,优化零件制造工艺需要氧化铝涂层和较高的尺寸精度。本文表达的观点和意见不一定反映ITER组织的观点和意见。
{"title":"Development of Materials and Manufacturing Technologies for Inter-coil Structure Components of the ITER TF Coil","authors":"T. Sakurai, M. Iguchi, E. Fujiwara, M. Nakahira, N. Koizumi","doi":"10.2221/jcsj.55.393","DOIUrl":"https://doi.org/10.2221/jcsj.55.393","url":null,"abstract":"Synopsis : For the ITER, 18 of the world’s largest Toroidal Field (TF) coils will be installed. The components that connect each TF coils are called Inter-coil structure components. Inter-coil structure components will be cooled down to 4 K and exposed to radiation during ITER operation. These components must ensure huge magnetic force while insulating the TF coils. In this study, the authors developed glass fiber reinforced plastic (GFRP) having a compressive strength property that minimizes degradation even in a radiation environment. The compressive strength of this GFRP is demonstrated to satisfy the required value. The authors also manufactured a customized Ni-based superalloy (Alloy718) bar from a standard product. The mechanical properties at room temperature and 4 K were obtained, and it was confirmed that these properties exceed the requirements. The Inter-coil structure components used for the interface require tight tolerance, so an alumina coating is applied on the surface of stainless steel. Next, the authors tested the alumina coating to see if it deteriorated after a thermal cycle. It is reported the optimizing the component manufacturing process requires an alumina coating and high dimensional accuracy. This views and opinions expressed herein do not necessarily reflect those of the ITER organization.","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126282491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
環境・安全委員会委員長に就任して 出任环境与安全委员会主席
M. Ikeuchi
{"title":"環境・安全委員会委員長に就任して","authors":"M. Ikeuchi","doi":"10.2221/jcsj.55.431","DOIUrl":"https://doi.org/10.2221/jcsj.55.431","url":null,"abstract":"","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131277450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Gap-filling Impregnation Method of ITER TF Coils ITER TF线圈间隙填充浸渍方法的发展
M. Nakamoto, Y. Kasai, Kazumi Yoshizawa, K. Sakamoto, N. Koizumi, M. Nakahira, M. Yamane, M. Hasegawa, Kengo Ohashi, T. Minato, K. Kuno
Synopsis : The ITER Toroidal Field (TF) coil is composed of a Winding Pack (WP) and a TF coil case (TFCC). In the manufacturing of a TF coil, the gap between the WP and the TFCC is filled with radiation resistant Triglycidyl-p-aminophenol (TGPAP) resin. Vacuum Pressure Impregnation (VPI) is adopted. The selected resin system displayed two potential problems: high viscosity and cracking after cure. A series of production optimizations have been performed to develop techniques to apply the selected resin for the TF coil production: crack countermeasure, narrow gap injection, and pressure control. For crack countermeasure, the addition of fiberglass tape or sheet layer was found to be effective in preventing fragmentation of cracked resin. Since the cracked resin would not harm the TF coil quality as long as it stays in the original position, addition of confining fiberglass layers solves the problem. In narrow gap qualification tests, resin injection into a 2 mm wide space was observed with proper selection of fiberglass layer addition conditions. The pressure qualification test showed that resin cured without additional pressurization can satisfy the compression strength requirements. From those results, techniques for the TF coil production have been developed, and with the implementation of those techniques the gap-filling of the first TF coil in Japan was successfully completed in 2019. Since then, two more TF coils have completed the gap-filling process with some improvements.
简介:ITER环形场(TF)线圈由一个绕组包(WP)和一个TF线圈盒(TFCC)组成。在TF线圈的制造中,WP和TFCC之间的间隙用耐辐射的甘油三酯-对氨基酚(TGPAP)树脂填充。采用真空加压浸渍(VPI)。所选择的树脂体系存在两个潜在的问题:高粘度和固化后开裂。为了开发将所选树脂应用于TF线圈生产的技术,进行了一系列的生产优化:裂缝对策、窄间隙注射和压力控制。在裂缝对策中,添加玻纤带或玻纤片层可有效防止裂缝树脂碎裂。由于开裂的树脂只要保持在原来的位置就不会影响TF线圈的质量,因此增加限制玻璃纤维层可以解决这个问题。在窄间隙定性试验中,通过选择适当的玻璃纤维层添加条件,观察了在2mm宽的空间内注射树脂的情况。压力鉴定试验表明,不加加压固化的树脂可满足抗压强度要求。根据这些结果,开发了TF线圈的生产技术,并且随着这些技术的实施,日本首个TF线圈的间隙填充于2019年成功完成。从那时起,又有两个TF线圈完成了一些改进的间隙填充过程。
{"title":"Development of Gap-filling Impregnation Method of ITER TF Coils","authors":"M. Nakamoto, Y. Kasai, Kazumi Yoshizawa, K. Sakamoto, N. Koizumi, M. Nakahira, M. Yamane, M. Hasegawa, Kengo Ohashi, T. Minato, K. Kuno","doi":"10.2221/jcsj.55.409","DOIUrl":"https://doi.org/10.2221/jcsj.55.409","url":null,"abstract":"Synopsis : The ITER Toroidal Field (TF) coil is composed of a Winding Pack (WP) and a TF coil case (TFCC). In the manufacturing of a TF coil, the gap between the WP and the TFCC is filled with radiation resistant Triglycidyl-p-aminophenol (TGPAP) resin. Vacuum Pressure Impregnation (VPI) is adopted. The selected resin system displayed two potential problems: high viscosity and cracking after cure. A series of production optimizations have been performed to develop techniques to apply the selected resin for the TF coil production: crack countermeasure, narrow gap injection, and pressure control. For crack countermeasure, the addition of fiberglass tape or sheet layer was found to be effective in preventing fragmentation of cracked resin. Since the cracked resin would not harm the TF coil quality as long as it stays in the original position, addition of confining fiberglass layers solves the problem. In narrow gap qualification tests, resin injection into a 2 mm wide space was observed with proper selection of fiberglass layer addition conditions. The pressure qualification test showed that resin cured without additional pressurization can satisfy the compression strength requirements. From those results, techniques for the TF coil production have been developed, and with the implementation of those techniques the gap-filling of the first TF coil in Japan was successfully completed in 2019. Since then, two more TF coils have completed the gap-filling process with some improvements.","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128477044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Development of Welding Deformation Control Technology for ITER TF Coil Structure ITER TF线圈结构焊接变形控制技术的发展
M. Iguchi, T. Sakurai, K. Takano, Tatsuya Ohkawa, Nobuhiko Tanaka, T. Kurita, F. Tsutsumi, N. Koizumi, M. Nakahira, E. Fujiwara, Takamasa Shichijyo, Kazuhiro Toshimitsu, S. Hwang, Sang-yong Kim, Masakazu Abura, T. Hanaoka
s of CSSJ Conference 87 (2013) 189 井口将秀ら:「TF コイル構造物調達の進捗」,第 87 回 2013 年度春季低温工学・超電導学会講演概要集 (2013) 189 9) 辻村吉寛ら:「極低温向けオーステナイト系ステンレス鋼の 自動ティグ溶接技術 : ITER‐TFC‐コイルケースへの適用」, 溶接技術 67 (2019) 46-50 井 口 将 秀 1982年 5 月生。2005 年筑波大学第三学群卒 業。2007 年同大学院構造エネルギー工学専攻修了。2010 年日本 原子力研究開発機構(現量子科学技術研究開発機構)勤務。主に 極低温用構造材料の研究開発及び ITER TF コイル構造物の開発に 従事。低温工学・超電導学会,日本機械学会,プラズマ・核融合 学会会員。 櫻 井 武 尊 1987 年 5 月生。2011 年近畿大学理工学部電 気電子工学科卒業。2013年大阪大学大学院工学研究科博士前期課 程(環境・エネルギー工学専攻)修了。現在,量子科学技術研究 開発機構勤務。主に,極低温用構造材料の研究開発に従事。低温 工学・超電導学会,日本原子力学会会員。 高 野 克 敏 1974年 5 月生。1993 年より日本原子力研究 所に勤務。2018年に量子科学技術研究開発機構勤務。大型超伝導 コイル及び極低温構造材料の研究・開発に従事。 大 川 達 也 1975年 1 月生。2019 年に量子科学技術研究 開発機構勤務。主に大型超伝導コイル及び超伝導コイル試験装置 の研究・開発に従事。 田 中 信 彦 1956年 10 月生。1981 年 九州大学総合理工 学研究科材料開発専攻修了。同年より株式会社東芝,2014年より 日本原子力研究開発機構で勤務。主に材料・構造強度の各種解析 に関する研究開発に従事。日本機械学会,日本原子力学会,日本 金属学会会員。 栗 田 智 久 2016 年量子科学技術研究開発機構勤務。 ITER プロジェクトでの TF コイル,TF コイル構造物の研究・開 発に従事。 堤 史 明 1969 年 2 月 17 日生。1996 年より日本原子 力研究所に勤務。2016年量子科学研究開発機構勤務。主に核融合 用超電導導体及びコイルの研究・開発に従事。 小 泉 徳 潔 1964 年 5 月 8 日生。1988 年早稲田大学理工 学部機械工学科卒業。1990年同大学院機械工学専攻修了。同年日 本原子力研究所勤務。2018年量子科学技術研究開発機構勤務。核 融合炉用超電導導体及びコイルの研究・開発に従事。低温工学・ 超電導学会,電気学会,プラズマ核融合学会会員。工学博士。 中 平 昌 隆 1967 年 3 月 15 日生。1990 年早稲田大学工 学部機械工学科卒業。1992年同大学院機械工学専門分野修了,日 本原子力研究所勤務。2018 年量子科学技術研究開発機構勤務。 ITER プロジェクト部超伝導磁石開発グループリーダー。低温工 学・超電導学会,日本機械学会,プラズマ・核融合学会会員,博 士(工学)。 藤 原 英 弘 1982 年 5 月 16 日生。2006 年立命館大学理 工学部卒業 2008年同大学院創造理工学修了。同年三菱重工業株 式会社勤務 ITER TF コイルの開発・製造に従事。 七 條 考 政 1984年 9 月生。2005 年北九州工業高等専門 学校卒業。同年三菱重工業株式会社勤務。ITER TF コイルの開 発・製造に従事。 利 光 万 弘 1987 年 1 月 23 日生。2009 年早稲田大学理 工学部卒業。2011年同大学院創造理工学研究科修了。同年三菱重 工業株式会社勤務。主に ITER TF コイル構造物の製造に従事。 Se-sub HWANG Born in 1986. Hyundai Heavy Industries, ITER Project Department, Design Team. Engineer. Sang-yong KIM Born in 1967. Hyundai Heavy Industries, ITER Project Department, Project Management Team. Senior Engineer. 油 晶 紀 大阪大学工学部,同大学院工学研究科修 了。東芝エネルギーシステムズ株式会社勤務。主に,原子炉内構 造物の設計・保全および ITER TF コイル構造物の製造に従事。日 本原子力学会会員。 花 岡 敏 成 大阪大学工学部,同大学院工学研究科修 了。東芝エネルギーシステムズ株式会社勤務。主に,ITER TF コ イル構造物の製造に従事。プラズマ・核融合学会会員。
s of CSSJ Conference 87(2013) 189井口将秀等人:《TF线圈结构采购的进展》,第87届2013年度春季低温工学·超导学会演讲概要集(2013)189辻村吉宽等人:“面向极低温的奥氏体不锈钢的自动提格焊接技术:适用于ITER - TFC线圈壳”,焊接技术67(2019)46-50井口将秀1982年5月生。2005年毕业于筑波大学第三学群。2007年同大学院构造能源工学专业结业。2010年在日本原子能研究开发机构(现量子科学技术研究开发机构)工作。主要从事极低温用结构材料的研发及ITER TF线圈结构的开发。低温工学及超导学会、日本机械学会、等离子体及核聚变学会会员。樱井武尊1987年5月生。2011年毕业于近畿大学理工学部电气电子工学科。2013年大阪大学大学院工学研究科博士前期课程(专攻环境·能源工学)结业。目前在量子科学技术研究开发机构工作。主要从事极低温用结构材料的研究开发。低温工学·超导学会、日本原子能学会会员。高野克敏,1974年5月生。1993年起在日本原子能研究所工作。2018年在量子科学技术研究开发机构工作。主要从事大型超导线圈及极低温结构材料的研究与开发。大河达也,1975年1月生。2019年在量子科学技术研究开发机构工作。主要从事大型超导线圈及超导线圈测试设备的研究与开发。田中信彦1956年10月生。1981年在九州大学综合理工学研究科材料开发专业结业。同年在东芝株式会社工作,2014年在日本原子能研究开发机构工作。主要从事各种材料、结构强度分析相关的研究开发。日本机械学会、日本原子能学会、日本金属学会会员。栗田智久2016年在量子科学技术研究开发机构工作。在ITER项目中从事TF线圈和TF线圈结构的研究和开发。堤史明1969年2月17日出生。1996年起在日本原子力研究所工作。2016年在量子科学研究开发机构工作。主要从事核聚变用超导导体及线圈的研究和开发。泉德洁,1964年5月8日出生。1988年毕业于早稻田大学理工学部机械工学系。1990年在同大学院机械工学专业毕业。同年在日本原子能研究所工作。2018年在量子科学技术研究开发机构工作。从事核聚变反应堆用超导导体及线圈的研究和开发。低温工学及超导学会、电学学会、等离子核聚变学会会员。工学博士中平昌隆,1967年3月15日出生。1990年毕业于早稻田大学工学部机械工学科。1992年在日本大学院机械工学专业领域毕业,在日本原子能研究所工作。2018年在量子科学技术研究开发机构工作。ITER项目部超导磁体开发小组组长。低温工程暨超导学会、日本机械学会、等离子体暨核聚变学会会员,博士(工学)。藤原英弘1982年5月16日出生。2006年毕业于立命馆大学学理工学部2008年毕业于同大学院创造理工学。同年在三菱重工业股份公司工作,从事ITER TF线圈的开发、制造。七条考政,1984年9月生。2005年毕业于北九州工业高等专门学校。同年在三菱重工业株式会社工作。从事ITER TF线圈的开路和制造。利光万弘,1987年1月23日出生。2009年毕业于早稻田大学学理工学部。2011年毕业于同大学院创造理工学研究科。同年在三菱重工业株式会社工作。主要从事ITER TF线圈结构件的制造。Se-sub HWANG Born in 1986. Hyundai Heavy Industries, ITER Project Department,Design Team. Engineer. Sang-yong KIM Born in 1967. Hyundai Heavy Industries,ITER Project Department, Project Management Team. Senior Engineer.大阪大学工学部,同大学院工学研究科修完了。在东芝能源系统株式会社工作。主要从事核反应堆内部结构的设计和维护以及ITER TF线圈结构的制造。日本原子能学会会员。花冈敏成大阪大学工学部,同大学院工学研究科修完了。在东芝能源系统株式会社工作。主要从事ITER TF线圈构造物的制造。等离子体核聚变学会会员。
{"title":"Development of Welding Deformation Control Technology for ITER TF Coil Structure","authors":"M. Iguchi, T. Sakurai, K. Takano, Tatsuya Ohkawa, Nobuhiko Tanaka, T. Kurita, F. Tsutsumi, N. Koizumi, M. Nakahira, E. Fujiwara, Takamasa Shichijyo, Kazuhiro Toshimitsu, S. Hwang, Sang-yong Kim, Masakazu Abura, T. Hanaoka","doi":"10.2221/jcsj.55.385","DOIUrl":"https://doi.org/10.2221/jcsj.55.385","url":null,"abstract":"s of CSSJ Conference 87 (2013) 189 井口将秀ら:「TF コイル構造物調達の進捗」,第 87 回 2013 年度春季低温工学・超電導学会講演概要集 (2013) 189 9) 辻村吉寛ら:「極低温向けオーステナイト系ステンレス鋼の 自動ティグ溶接技術 : ITER‐TFC‐コイルケースへの適用」, 溶接技術 67 (2019) 46-50 井 口 将 秀 1982年 5 月生。2005 年筑波大学第三学群卒 業。2007 年同大学院構造エネルギー工学専攻修了。2010 年日本 原子力研究開発機構(現量子科学技術研究開発機構)勤務。主に 極低温用構造材料の研究開発及び ITER TF コイル構造物の開発に 従事。低温工学・超電導学会,日本機械学会,プラズマ・核融合 学会会員。 櫻 井 武 尊 1987 年 5 月生。2011 年近畿大学理工学部電 気電子工学科卒業。2013年大阪大学大学院工学研究科博士前期課 程(環境・エネルギー工学専攻)修了。現在,量子科学技術研究 開発機構勤務。主に,極低温用構造材料の研究開発に従事。低温 工学・超電導学会,日本原子力学会会員。 高 野 克 敏 1974年 5 月生。1993 年より日本原子力研究 所に勤務。2018年に量子科学技術研究開発機構勤務。大型超伝導 コイル及び極低温構造材料の研究・開発に従事。 大 川 達 也 1975年 1 月生。2019 年に量子科学技術研究 開発機構勤務。主に大型超伝導コイル及び超伝導コイル試験装置 の研究・開発に従事。 田 中 信 彦 1956年 10 月生。1981 年 九州大学総合理工 学研究科材料開発専攻修了。同年より株式会社東芝,2014年より 日本原子力研究開発機構で勤務。主に材料・構造強度の各種解析 に関する研究開発に従事。日本機械学会,日本原子力学会,日本 金属学会会員。 栗 田 智 久 2016 年量子科学技術研究開発機構勤務。 ITER プロジェクトでの TF コイル,TF コイル構造物の研究・開 発に従事。 堤 史 明 1969 年 2 月 17 日生。1996 年より日本原子 力研究所に勤務。2016年量子科学研究開発機構勤務。主に核融合 用超電導導体及びコイルの研究・開発に従事。 小 泉 徳 潔 1964 年 5 月 8 日生。1988 年早稲田大学理工 学部機械工学科卒業。1990年同大学院機械工学専攻修了。同年日 本原子力研究所勤務。2018年量子科学技術研究開発機構勤務。核 融合炉用超電導導体及びコイルの研究・開発に従事。低温工学・ 超電導学会,電気学会,プラズマ核融合学会会員。工学博士。 中 平 昌 隆 1967 年 3 月 15 日生。1990 年早稲田大学工 学部機械工学科卒業。1992年同大学院機械工学専門分野修了,日 本原子力研究所勤務。2018 年量子科学技術研究開発機構勤務。 ITER プロジェクト部超伝導磁石開発グループリーダー。低温工 学・超電導学会,日本機械学会,プラズマ・核融合学会会員,博 士(工学)。 藤 原 英 弘 1982 年 5 月 16 日生。2006 年立命館大学理 工学部卒業 2008年同大学院創造理工学修了。同年三菱重工業株 式会社勤務 ITER TF コイルの開発・製造に従事。 七 條 考 政 1984年 9 月生。2005 年北九州工業高等専門 学校卒業。同年三菱重工業株式会社勤務。ITER TF コイルの開 発・製造に従事。 利 光 万 弘 1987 年 1 月 23 日生。2009 年早稲田大学理 工学部卒業。2011年同大学院創造理工学研究科修了。同年三菱重 工業株式会社勤務。主に ITER TF コイル構造物の製造に従事。 Se-sub HWANG Born in 1986. Hyundai Heavy Industries, ITER Project Department, Design Team. Engineer. Sang-yong KIM Born in 1967. Hyundai Heavy Industries, ITER Project Department, Project Management Team. Senior Engineer. 油 晶 紀 大阪大学工学部,同大学院工学研究科修 了。東芝エネルギーシステムズ株式会社勤務。主に,原子炉内構 造物の設計・保全および ITER TF コイル構造物の製造に従事。日 本原子力学会会員。 花 岡 敏 成 大阪大学工学部,同大学院工学研究科修 了。東芝エネルギーシステムズ株式会社勤務。主に,ITER TF コ イル構造物の製造に従事。プラズマ・核融合学会会員。","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134591059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
企画委員会委員長就任のご挨拶 企划委员会委员长就任致词
N. Banno
{"title":"企画委員会委員長就任のご挨拶","authors":"N. Banno","doi":"10.2221/jcsj.55.430","DOIUrl":"https://doi.org/10.2221/jcsj.55.430","url":null,"abstract":"","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127891408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
象牙の塔と新型コロナウイルス 象牙塔与新型冠状病毒
Hirotaka Nakai
{"title":"象牙の塔と新型コロナウイルス","authors":"Hirotaka Nakai","doi":"10.2221/jcsj.55.379","DOIUrl":"https://doi.org/10.2221/jcsj.55.379","url":null,"abstract":"","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115750539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of Programmable Josephson Voltage Standard for AC Voltage Metrology 可编程约瑟夫逊电压标准在交流电压计量中的应用
Y. Amagai, M. Maruyama, H. Yamamori, T. Shimazaki, K. Okawa, H. Fujiki, N. Kaneko
Synopsis: Over the last half-century, the most fundamental measurement of AC voltage has been done by comparing the Joule heating of an unknown AC signal to that of a reference direct DC voltage using thermal voltage converters (TVCs). However, the accuracy of AC-DC difference measurements of the TVC is limited by the accuracy of the model describing the AC-DC difference of the reference TVC. To satisfy the requirements for improved AC voltage metrology, national metrology institutes are developing quantum standards based upon the Josephson effect. These quantum-based AC voltage standards have significant advantages over a conventional measurement method in terms of accuracy and versatility. This article reviews the fundamental principle of AC voltage measurements with a conventional method based on a TVC and application of the AC-programmable Josephson voltage standard system using a sampling technique for the measurement of the AC-DC difference at low frequency.
摘要:在过去的半个世纪里,交流电压的最基本测量是通过使用热电压转换器(tvc)将未知交流信号的焦耳加热与参考直接直流电压的焦耳加热进行比较。然而,TVC的交直流差测量精度受到描述参考TVC的交直流差的模型精度的限制。为了满足交流电压计量技术发展的需要,各国计量机构正在开发基于约瑟夫森效应的量子标准。这些基于量子的交流电压标准在精度和通用性方面比传统测量方法具有显着优势。本文综述了基于TVC的传统交流电压测量方法的基本原理,以及采用采样技术测量低频交直流差的交流可编程约瑟夫森电压标准系统的应用。
{"title":"Applications of Programmable Josephson Voltage Standard for AC Voltage Metrology","authors":"Y. Amagai, M. Maruyama, H. Yamamori, T. Shimazaki, K. Okawa, H. Fujiki, N. Kaneko","doi":"10.2221/jcsj.55.420","DOIUrl":"https://doi.org/10.2221/jcsj.55.420","url":null,"abstract":"Synopsis: Over the last half-century, the most fundamental measurement of AC voltage has been done by comparing the Joule heating of an unknown AC signal to that of a reference direct DC voltage using thermal voltage converters (TVCs). However, the accuracy of AC-DC difference measurements of the TVC is limited by the accuracy of the model describing the AC-DC difference of the reference TVC. To satisfy the requirements for improved AC voltage metrology, national metrology institutes are developing quantum standards based upon the Josephson effect. These quantum-based AC voltage standards have significant advantages over a conventional measurement method in terms of accuracy and versatility. This article reviews the fundamental principle of AC voltage measurements with a conventional method based on a TVC and application of the AC-programmable Josephson voltage standard system using a sampling technique for the measurement of the AC-DC difference at low frequency.","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115378031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1