{"title":"理事就任に際して","authors":"S. Awaji","doi":"10.2221/jcsj.56.1","DOIUrl":"https://doi.org/10.2221/jcsj.56.1","url":null,"abstract":"","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134044601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Synopsis : In the new SI, the unit of thermodynamic temperature, Kelvin (K), was defined based on the Boltzmann constant k determined through various thermodynamic temperature measurements. This paper describes a Johnson noise thermometer that uses a quantum voltage noise source, which is a type of precise thermodynamic temperature measurement method.
{"title":"Measurement of the Boltzmann Constant Using a Quantum Voltage Noise Source","authors":"C. Urano","doi":"10.2221/JCSJ.56.12","DOIUrl":"https://doi.org/10.2221/JCSJ.56.12","url":null,"abstract":"Synopsis : In the new SI, the unit of thermodynamic temperature, Kelvin (K), was defined based on the Boltzmann constant k determined through various thermodynamic temperature measurements. This paper describes a Johnson noise thermometer that uses a quantum voltage noise source, which is a type of precise thermodynamic temperature measurement method.","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132077064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"超電導応用研究会委員長就任のご挨拶","authors":"Yuichi Yamada","doi":"10.2221/jcsj.56.41","DOIUrl":"https://doi.org/10.2221/jcsj.56.41","url":null,"abstract":"","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123901236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Sakurai, M. Iguchi, E. Fujiwara, M. Nakahira, N. Koizumi
Synopsis : For the ITER, 18 of the world’s largest Toroidal Field (TF) coils will be installed. The components that connect each TF coils are called Inter-coil structure components. Inter-coil structure components will be cooled down to 4 K and exposed to radiation during ITER operation. These components must ensure huge magnetic force while insulating the TF coils. In this study, the authors developed glass fiber reinforced plastic (GFRP) having a compressive strength property that minimizes degradation even in a radiation environment. The compressive strength of this GFRP is demonstrated to satisfy the required value. The authors also manufactured a customized Ni-based superalloy (Alloy718) bar from a standard product. The mechanical properties at room temperature and 4 K were obtained, and it was confirmed that these properties exceed the requirements. The Inter-coil structure components used for the interface require tight tolerance, so an alumina coating is applied on the surface of stainless steel. Next, the authors tested the alumina coating to see if it deteriorated after a thermal cycle. It is reported the optimizing the component manufacturing process requires an alumina coating and high dimensional accuracy. This views and opinions expressed herein do not necessarily reflect those of the ITER organization.
{"title":"Development of Materials and Manufacturing Technologies for Inter-coil Structure Components of the ITER TF Coil","authors":"T. Sakurai, M. Iguchi, E. Fujiwara, M. Nakahira, N. Koizumi","doi":"10.2221/jcsj.55.393","DOIUrl":"https://doi.org/10.2221/jcsj.55.393","url":null,"abstract":"Synopsis : For the ITER, 18 of the world’s largest Toroidal Field (TF) coils will be installed. The components that connect each TF coils are called Inter-coil structure components. Inter-coil structure components will be cooled down to 4 K and exposed to radiation during ITER operation. These components must ensure huge magnetic force while insulating the TF coils. In this study, the authors developed glass fiber reinforced plastic (GFRP) having a compressive strength property that minimizes degradation even in a radiation environment. The compressive strength of this GFRP is demonstrated to satisfy the required value. The authors also manufactured a customized Ni-based superalloy (Alloy718) bar from a standard product. The mechanical properties at room temperature and 4 K were obtained, and it was confirmed that these properties exceed the requirements. The Inter-coil structure components used for the interface require tight tolerance, so an alumina coating is applied on the surface of stainless steel. Next, the authors tested the alumina coating to see if it deteriorated after a thermal cycle. It is reported the optimizing the component manufacturing process requires an alumina coating and high dimensional accuracy. This views and opinions expressed herein do not necessarily reflect those of the ITER organization.","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126282491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"環境・安全委員会委員長に就任して","authors":"M. Ikeuchi","doi":"10.2221/jcsj.55.431","DOIUrl":"https://doi.org/10.2221/jcsj.55.431","url":null,"abstract":"","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131277450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Nakamoto, Y. Kasai, Kazumi Yoshizawa, K. Sakamoto, N. Koizumi, M. Nakahira, M. Yamane, M. Hasegawa, Kengo Ohashi, T. Minato, K. Kuno
Synopsis : The ITER Toroidal Field (TF) coil is composed of a Winding Pack (WP) and a TF coil case (TFCC). In the manufacturing of a TF coil, the gap between the WP and the TFCC is filled with radiation resistant Triglycidyl-p-aminophenol (TGPAP) resin. Vacuum Pressure Impregnation (VPI) is adopted. The selected resin system displayed two potential problems: high viscosity and cracking after cure. A series of production optimizations have been performed to develop techniques to apply the selected resin for the TF coil production: crack countermeasure, narrow gap injection, and pressure control. For crack countermeasure, the addition of fiberglass tape or sheet layer was found to be effective in preventing fragmentation of cracked resin. Since the cracked resin would not harm the TF coil quality as long as it stays in the original position, addition of confining fiberglass layers solves the problem. In narrow gap qualification tests, resin injection into a 2 mm wide space was observed with proper selection of fiberglass layer addition conditions. The pressure qualification test showed that resin cured without additional pressurization can satisfy the compression strength requirements. From those results, techniques for the TF coil production have been developed, and with the implementation of those techniques the gap-filling of the first TF coil in Japan was successfully completed in 2019. Since then, two more TF coils have completed the gap-filling process with some improvements.
{"title":"Development of Gap-filling Impregnation Method of ITER TF Coils","authors":"M. Nakamoto, Y. Kasai, Kazumi Yoshizawa, K. Sakamoto, N. Koizumi, M. Nakahira, M. Yamane, M. Hasegawa, Kengo Ohashi, T. Minato, K. Kuno","doi":"10.2221/jcsj.55.409","DOIUrl":"https://doi.org/10.2221/jcsj.55.409","url":null,"abstract":"Synopsis : The ITER Toroidal Field (TF) coil is composed of a Winding Pack (WP) and a TF coil case (TFCC). In the manufacturing of a TF coil, the gap between the WP and the TFCC is filled with radiation resistant Triglycidyl-p-aminophenol (TGPAP) resin. Vacuum Pressure Impregnation (VPI) is adopted. The selected resin system displayed two potential problems: high viscosity and cracking after cure. A series of production optimizations have been performed to develop techniques to apply the selected resin for the TF coil production: crack countermeasure, narrow gap injection, and pressure control. For crack countermeasure, the addition of fiberglass tape or sheet layer was found to be effective in preventing fragmentation of cracked resin. Since the cracked resin would not harm the TF coil quality as long as it stays in the original position, addition of confining fiberglass layers solves the problem. In narrow gap qualification tests, resin injection into a 2 mm wide space was observed with proper selection of fiberglass layer addition conditions. The pressure qualification test showed that resin cured without additional pressurization can satisfy the compression strength requirements. From those results, techniques for the TF coil production have been developed, and with the implementation of those techniques the gap-filling of the first TF coil in Japan was successfully completed in 2019. Since then, two more TF coils have completed the gap-filling process with some improvements.","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128477044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Iguchi, T. Sakurai, K. Takano, Tatsuya Ohkawa, Nobuhiko Tanaka, T. Kurita, F. Tsutsumi, N. Koizumi, M. Nakahira, E. Fujiwara, Takamasa Shichijyo, Kazuhiro Toshimitsu, S. Hwang, Sang-yong Kim, Masakazu Abura, T. Hanaoka
s of CSSJ Conference 87(2013) 189井口将秀等人:《TF线圈结构采购的进展》,第87届2013年度春季低温工学·超导学会演讲概要集(2013)189辻村吉宽等人:“面向极低温的奥氏体不锈钢的自动提格焊接技术:适用于ITER - TFC线圈壳”,焊接技术67(2019)46-50井口将秀1982年5月生。2005年毕业于筑波大学第三学群。2007年同大学院构造能源工学专业结业。2010年在日本原子能研究开发机构(现量子科学技术研究开发机构)工作。主要从事极低温用结构材料的研发及ITER TF线圈结构的开发。低温工学及超导学会、日本机械学会、等离子体及核聚变学会会员。樱井武尊1987年5月生。2011年毕业于近畿大学理工学部电气电子工学科。2013年大阪大学大学院工学研究科博士前期课程(专攻环境·能源工学)结业。目前在量子科学技术研究开发机构工作。主要从事极低温用结构材料的研究开发。低温工学·超导学会、日本原子能学会会员。高野克敏,1974年5月生。1993年起在日本原子能研究所工作。2018年在量子科学技术研究开发机构工作。主要从事大型超导线圈及极低温结构材料的研究与开发。大河达也,1975年1月生。2019年在量子科学技术研究开发机构工作。主要从事大型超导线圈及超导线圈测试设备的研究与开发。田中信彦1956年10月生。1981年在九州大学综合理工学研究科材料开发专业结业。同年在东芝株式会社工作,2014年在日本原子能研究开发机构工作。主要从事各种材料、结构强度分析相关的研究开发。日本机械学会、日本原子能学会、日本金属学会会员。栗田智久2016年在量子科学技术研究开发机构工作。在ITER项目中从事TF线圈和TF线圈结构的研究和开发。堤史明1969年2月17日出生。1996年起在日本原子力研究所工作。2016年在量子科学研究开发机构工作。主要从事核聚变用超导导体及线圈的研究和开发。泉德洁,1964年5月8日出生。1988年毕业于早稻田大学理工学部机械工学系。1990年在同大学院机械工学专业毕业。同年在日本原子能研究所工作。2018年在量子科学技术研究开发机构工作。从事核聚变反应堆用超导导体及线圈的研究和开发。低温工学及超导学会、电学学会、等离子核聚变学会会员。工学博士中平昌隆,1967年3月15日出生。1990年毕业于早稻田大学工学部机械工学科。1992年在日本大学院机械工学专业领域毕业,在日本原子能研究所工作。2018年在量子科学技术研究开发机构工作。ITER项目部超导磁体开发小组组长。低温工程暨超导学会、日本机械学会、等离子体暨核聚变学会会员,博士(工学)。藤原英弘1982年5月16日出生。2006年毕业于立命馆大学学理工学部2008年毕业于同大学院创造理工学。同年在三菱重工业股份公司工作,从事ITER TF线圈的开发、制造。七条考政,1984年9月生。2005年毕业于北九州工业高等专门学校。同年在三菱重工业株式会社工作。从事ITER TF线圈的开路和制造。利光万弘,1987年1月23日出生。2009年毕业于早稻田大学学理工学部。2011年毕业于同大学院创造理工学研究科。同年在三菱重工业株式会社工作。主要从事ITER TF线圈结构件的制造。Se-sub HWANG Born in 1986. Hyundai Heavy Industries, ITER Project Department,Design Team. Engineer. Sang-yong KIM Born in 1967. Hyundai Heavy Industries,ITER Project Department, Project Management Team. Senior Engineer.大阪大学工学部,同大学院工学研究科修完了。在东芝能源系统株式会社工作。主要从事核反应堆内部结构的设计和维护以及ITER TF线圈结构的制造。日本原子能学会会员。花冈敏成大阪大学工学部,同大学院工学研究科修完了。在东芝能源系统株式会社工作。主要从事ITER TF线圈构造物的制造。等离子体核聚变学会会员。
{"title":"Development of Welding Deformation Control Technology for ITER TF Coil Structure","authors":"M. Iguchi, T. Sakurai, K. Takano, Tatsuya Ohkawa, Nobuhiko Tanaka, T. Kurita, F. Tsutsumi, N. Koizumi, M. Nakahira, E. Fujiwara, Takamasa Shichijyo, Kazuhiro Toshimitsu, S. Hwang, Sang-yong Kim, Masakazu Abura, T. Hanaoka","doi":"10.2221/jcsj.55.385","DOIUrl":"https://doi.org/10.2221/jcsj.55.385","url":null,"abstract":"s of CSSJ Conference 87 (2013) 189 井口将秀ら:「TF コイル構造物調達の進捗」,第 87 回 2013 年度春季低温工学・超電導学会講演概要集 (2013) 189 9) 辻村吉寛ら:「極低温向けオーステナイト系ステンレス鋼の 自動ティグ溶接技術 : ITER‐TFC‐コイルケースへの適用」, 溶接技術 67 (2019) 46-50 井 口 将 秀 1982年 5 月生。2005 年筑波大学第三学群卒 業。2007 年同大学院構造エネルギー工学専攻修了。2010 年日本 原子力研究開発機構(現量子科学技術研究開発機構)勤務。主に 極低温用構造材料の研究開発及び ITER TF コイル構造物の開発に 従事。低温工学・超電導学会,日本機械学会,プラズマ・核融合 学会会員。 櫻 井 武 尊 1987 年 5 月生。2011 年近畿大学理工学部電 気電子工学科卒業。2013年大阪大学大学院工学研究科博士前期課 程(環境・エネルギー工学専攻)修了。現在,量子科学技術研究 開発機構勤務。主に,極低温用構造材料の研究開発に従事。低温 工学・超電導学会,日本原子力学会会員。 高 野 克 敏 1974年 5 月生。1993 年より日本原子力研究 所に勤務。2018年に量子科学技術研究開発機構勤務。大型超伝導 コイル及び極低温構造材料の研究・開発に従事。 大 川 達 也 1975年 1 月生。2019 年に量子科学技術研究 開発機構勤務。主に大型超伝導コイル及び超伝導コイル試験装置 の研究・開発に従事。 田 中 信 彦 1956年 10 月生。1981 年 九州大学総合理工 学研究科材料開発専攻修了。同年より株式会社東芝,2014年より 日本原子力研究開発機構で勤務。主に材料・構造強度の各種解析 に関する研究開発に従事。日本機械学会,日本原子力学会,日本 金属学会会員。 栗 田 智 久 2016 年量子科学技術研究開発機構勤務。 ITER プロジェクトでの TF コイル,TF コイル構造物の研究・開 発に従事。 堤 史 明 1969 年 2 月 17 日生。1996 年より日本原子 力研究所に勤務。2016年量子科学研究開発機構勤務。主に核融合 用超電導導体及びコイルの研究・開発に従事。 小 泉 徳 潔 1964 年 5 月 8 日生。1988 年早稲田大学理工 学部機械工学科卒業。1990年同大学院機械工学専攻修了。同年日 本原子力研究所勤務。2018年量子科学技術研究開発機構勤務。核 融合炉用超電導導体及びコイルの研究・開発に従事。低温工学・ 超電導学会,電気学会,プラズマ核融合学会会員。工学博士。 中 平 昌 隆 1967 年 3 月 15 日生。1990 年早稲田大学工 学部機械工学科卒業。1992年同大学院機械工学専門分野修了,日 本原子力研究所勤務。2018 年量子科学技術研究開発機構勤務。 ITER プロジェクト部超伝導磁石開発グループリーダー。低温工 学・超電導学会,日本機械学会,プラズマ・核融合学会会員,博 士(工学)。 藤 原 英 弘 1982 年 5 月 16 日生。2006 年立命館大学理 工学部卒業 2008年同大学院創造理工学修了。同年三菱重工業株 式会社勤務 ITER TF コイルの開発・製造に従事。 七 條 考 政 1984年 9 月生。2005 年北九州工業高等専門 学校卒業。同年三菱重工業株式会社勤務。ITER TF コイルの開 発・製造に従事。 利 光 万 弘 1987 年 1 月 23 日生。2009 年早稲田大学理 工学部卒業。2011年同大学院創造理工学研究科修了。同年三菱重 工業株式会社勤務。主に ITER TF コイル構造物の製造に従事。 Se-sub HWANG Born in 1986. Hyundai Heavy Industries, ITER Project Department, Design Team. Engineer. Sang-yong KIM Born in 1967. Hyundai Heavy Industries, ITER Project Department, Project Management Team. Senior Engineer. 油 晶 紀 大阪大学工学部,同大学院工学研究科修 了。東芝エネルギーシステムズ株式会社勤務。主に,原子炉内構 造物の設計・保全および ITER TF コイル構造物の製造に従事。日 本原子力学会会員。 花 岡 敏 成 大阪大学工学部,同大学院工学研究科修 了。東芝エネルギーシステムズ株式会社勤務。主に,ITER TF コ イル構造物の製造に従事。プラズマ・核融合学会会員。","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134591059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"企画委員会委員長就任のご挨拶","authors":"N. Banno","doi":"10.2221/jcsj.55.430","DOIUrl":"https://doi.org/10.2221/jcsj.55.430","url":null,"abstract":"","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127891408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"象牙の塔と新型コロナウイルス","authors":"Hirotaka Nakai","doi":"10.2221/jcsj.55.379","DOIUrl":"https://doi.org/10.2221/jcsj.55.379","url":null,"abstract":"","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115750539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Amagai, M. Maruyama, H. Yamamori, T. Shimazaki, K. Okawa, H. Fujiki, N. Kaneko
Synopsis: Over the last half-century, the most fundamental measurement of AC voltage has been done by comparing the Joule heating of an unknown AC signal to that of a reference direct DC voltage using thermal voltage converters (TVCs). However, the accuracy of AC-DC difference measurements of the TVC is limited by the accuracy of the model describing the AC-DC difference of the reference TVC. To satisfy the requirements for improved AC voltage metrology, national metrology institutes are developing quantum standards based upon the Josephson effect. These quantum-based AC voltage standards have significant advantages over a conventional measurement method in terms of accuracy and versatility. This article reviews the fundamental principle of AC voltage measurements with a conventional method based on a TVC and application of the AC-programmable Josephson voltage standard system using a sampling technique for the measurement of the AC-DC difference at low frequency.
{"title":"Applications of Programmable Josephson Voltage Standard for AC Voltage Metrology","authors":"Y. Amagai, M. Maruyama, H. Yamamori, T. Shimazaki, K. Okawa, H. Fujiki, N. Kaneko","doi":"10.2221/jcsj.55.420","DOIUrl":"https://doi.org/10.2221/jcsj.55.420","url":null,"abstract":"Synopsis: Over the last half-century, the most fundamental measurement of AC voltage has been done by comparing the Joule heating of an unknown AC signal to that of a reference direct DC voltage using thermal voltage converters (TVCs). However, the accuracy of AC-DC difference measurements of the TVC is limited by the accuracy of the model describing the AC-DC difference of the reference TVC. To satisfy the requirements for improved AC voltage metrology, national metrology institutes are developing quantum standards based upon the Josephson effect. These quantum-based AC voltage standards have significant advantages over a conventional measurement method in terms of accuracy and versatility. This article reviews the fundamental principle of AC voltage measurements with a conventional method based on a TVC and application of the AC-programmable Josephson voltage standard system using a sampling technique for the measurement of the AC-DC difference at low frequency.","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115378031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}