首页 > 最新文献

International Journal of Thermodynamics最新文献

英文 中文
Enriched Oxygen for Crude Oil Preheating in Petroleum Refining 富氧用于石油炼制中原油预热
IF 0.8 Q3 Engineering Pub Date : 2021-05-26 DOI: 10.5541/IJOT.880620
Y. Alqaheem, Abdulaziz A. Alomair
The crude distillation unit is one of the energy-intensive processes in the refinery. This is because of the crude preheater that suffers from excessive energy loss due to the use of air in the combustion furnace. Alternatively, fuel combustion by enriched oxygen can improve heat efficiency, minimize fuel consumption and reduce emissions. In this paper, enriched oxygen has been simulated by UniSim for preheating Kuwaiti crude in one of the distillation columns in the Clean Fuels Project. Results show that the use of 30 mol% of concentrated oxygen reduced fuel consumption by 5%. Carbon dioxide emissions were also minimized by 22,240 tons per year. A membrane system made from perfluoropolymer was simulated for the production of 5,298 tons of enriched oxygen (per day) and it required an area of 39,000 m 2 with a capital investment of 6.9 million $.
原油蒸馏装置是炼油厂的能源密集型工艺之一。这是因为粗预热器由于在燃烧炉中使用空气而遭受过度的能量损失。或者,通过富氧燃烧燃料可以提高热效率,最大限度地减少燃料消耗并减少排放。本文用UniSim模拟了清洁燃料项目中一个蒸馏塔中的富氧预热科威特原油。结果表明,使用30mol%的浓氧可使燃料消耗减少5%。二氧化碳排放量也减少到每年22240吨。模拟了一个由全氟聚合物制成的膜系统,用于生产5298吨富氧(每天),该系统占地39000平方米,资本投资690万美元。
{"title":"Enriched Oxygen for Crude Oil Preheating in Petroleum Refining","authors":"Y. Alqaheem, Abdulaziz A. Alomair","doi":"10.5541/IJOT.880620","DOIUrl":"https://doi.org/10.5541/IJOT.880620","url":null,"abstract":"The crude distillation unit is one of the energy-intensive processes in the refinery. This is because of the crude preheater that suffers from excessive energy loss due to the use of air in the combustion furnace. Alternatively, fuel combustion by enriched oxygen can improve heat efficiency, minimize fuel consumption and reduce emissions. In this paper, enriched oxygen has been simulated by UniSim for preheating Kuwaiti crude in one of the distillation columns in the Clean Fuels Project. Results show that the use of 30 mol% of concentrated oxygen reduced fuel consumption by 5%. Carbon dioxide emissions were also minimized by 22,240 tons per year. A membrane system made from perfluoropolymer was simulated for the production of 5,298 tons of enriched oxygen (per day) and it required an area of 39,000 m 2 with a capital investment of 6.9 million $.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41593928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An Endoreversible Model for the Regenerators of Vuilleumier Refrigerators 维勒米耶制冷机蓄热器的内可逆模型
IF 0.8 Q3 Engineering Pub Date : 2021-05-26 DOI: 10.5541/IJOT.877687
R. Paul, A. Khodja, K. Hoffmann
{"title":"An Endoreversible Model for the Regenerators of Vuilleumier Refrigerators","authors":"R. Paul, A. Khodja, K. Hoffmann","doi":"10.5541/IJOT.877687","DOIUrl":"https://doi.org/10.5541/IJOT.877687","url":null,"abstract":"","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70937303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Evaluation of Cancer Progression Using Dynamic Entropy Changes and Thermography 利用动态熵变和热成像技术评估癌症进展
IF 0.8 Q3 Engineering Pub Date : 2021-05-26 DOI: 10.5541/IJOT.885583
M. K. Manesh, A. Rezazadeh, Tayebeh Modaresi Movahed, H. Mirzaei
Entropy is producing during any irreversible process. In the cancer cells, the entropy generation measures the irreversibility; so, the cancer cells have higher entropy generation than the healthy cells. The entropy generation rate shows the amount of robustness, progression, and invasion of the cancer cells. From a thermodynamic aspect, cancer's origin and growth is an irreversible process, and the thermodynamic variables such as the cell volume, temperature, and entropy will change during this process. In this paper, a procedure based on experimental data is proposed to calculate dynamic entropy generation in the tumoral tissues by dynamic thermography and measurement of tumor size. The dynamic changes in the volume, temperature, and entropy associated with tumor cells over time are tested and evaluated in this regard. An in vivo assay has been developed to measure and analyze these changes. This assay investigated the growth of 4T1 Breast Tumor in 55 BALB/c mice over time. Infrared thermography has been employed to evaluate dynamic temperature changes of the tumors. The computer code has been developed to gather important data from tumoral and healthy mice's images to compute considered temperature differences and entropy generation associated with tumoral tissues. To better evaluate tumor tissue, the Micro PET Images are used to verify volume changes of tumors. The relation between the volume and temperature gradient of tumor cells has detected by measuring during the experiment. The entropy of tumor cells was studying and calculating during the process of tumor changes. Results show that entropy generation as the main concept of thermodynamic is a strong tool for the analysis of cancer cells and has a strong relationship with cancer growth.
熵是在任何不可逆的过程中产生的。在癌症细胞中,熵生成测量不可逆性;因此,癌症细胞具有比健康细胞更高的熵生成。熵生成率显示癌症细胞的鲁棒性、进展和侵袭的量。从热力学角度来看,癌症的起源和生长是一个不可逆的过程,细胞体积、温度和熵等热力学变量在这个过程中会发生变化。本文提出了一种基于实验数据的程序,通过动态热成像和测量肿瘤大小来计算肿瘤组织中的动态熵生成。在这方面测试和评估了与肿瘤细胞相关的体积、温度和熵随时间的动态变化。已经开发了一种体内测定法来测量和分析这些变化。该测定研究了4T1乳腺肿瘤在55只BALB/c小鼠中随时间的生长。红外热成像已被用于评估肿瘤的动态温度变化。开发该计算机代码是为了从肿瘤和健康小鼠的图像中收集重要数据,以计算所考虑的与肿瘤组织相关的温差和熵生成。为了更好地评估肿瘤组织,使用显微PET图像来验证肿瘤的体积变化。通过实验测量,检测了肿瘤细胞体积与温度梯度的关系。肿瘤细胞的熵是在肿瘤发生变化的过程中进行研究和计算的。结果表明,熵产生作为热力学的主要概念是分析癌症细胞的有力工具,并且与癌症的生长有很强的关系。
{"title":"Evaluation of Cancer Progression Using Dynamic Entropy Changes and Thermography","authors":"M. K. Manesh, A. Rezazadeh, Tayebeh Modaresi Movahed, H. Mirzaei","doi":"10.5541/IJOT.885583","DOIUrl":"https://doi.org/10.5541/IJOT.885583","url":null,"abstract":"Entropy is producing during any irreversible process. In the cancer cells, the entropy generation measures the irreversibility; so, the cancer cells have higher entropy generation than the healthy cells. The entropy generation rate shows the amount of robustness, progression, and invasion of the cancer cells. From a thermodynamic aspect, cancer's origin and growth is an irreversible process, and the thermodynamic variables such as the cell volume, temperature, and entropy will change during this process. In this paper, a procedure based on experimental data is proposed to calculate dynamic entropy generation in the tumoral tissues by dynamic thermography and measurement of tumor size. The dynamic changes in the volume, temperature, and entropy associated with tumor cells over time are tested and evaluated in this regard. An in vivo assay has been developed to measure and analyze these changes. This assay investigated the growth of 4T1 Breast Tumor in 55 BALB/c mice over time. Infrared thermography has been employed to evaluate dynamic temperature changes of the tumors. The computer code has been developed to gather important data from tumoral and healthy mice's images to compute considered temperature differences and entropy generation associated with tumoral tissues. To better evaluate tumor tissue, the Micro PET Images are used to verify volume changes of tumors. The relation between the volume and temperature gradient of tumor cells has detected by measuring during the experiment. The entropy of tumor cells was studying and calculating during the process of tumor changes. Results show that entropy generation as the main concept of thermodynamic is a strong tool for the analysis of cancer cells and has a strong relationship with cancer growth.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44929132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Augmentation on Heat Transfer and Friction Factor in Three Sides Solar Air Heaters Having an Arrangement of Multi-V and Transverse Wire Roughness on the Absorber Plate 多v布置和吸收板横向钢丝粗糙度对三面太阳能空气加热器传热和摩擦系数的增强
IF 0.8 Q3 Engineering Pub Date : 2021-05-26 DOI: 10.5541/IJOT.796532
Dhananjay Kumar, L. Prasad
This paper present the experimental inquiry on heat transfer and friction features enrichment adopting new-fangled of three side’s synthetically rugged rectangular duct solar air heaters (SAHs). The roughened rectangular SAH ducts has been an arrangement of multi-v and transverse wire (top wall multi-v and two side walls transverse) covered with glass on three sides. It has various appliances such as crop drying, seasoning of timber, space heating, industrial purpose, etc. The rectangular duct used has a width to height ratio, W/H, equal to 8, relative raggedness pitch, P/e, wide-ranging from 10 25, relative raggedness height, e/D, varied from 0.018 – 0.042 and flow Reynolds number, Re, occupied from 3500 – 12,000 for fixed values of relative raggedness width, W/w, of 6 and an angle of attack, αα, equal to 60°. The heat transmission and friction features of this roughened duct is compared with plane ones under identical working conditions. The maximum augmentation in heat transmission and friction feature is identified to be 6.42 and 6.44 times over the smooth duct respectively. The enhancement in air temperature streaming under three side’s synthetically rugged SAH duct is found to be 54.47% more than that of the smooth one. Three side’s artificially rugged rectangular duct SAHs are preferable over plane ones collectively and tentatively
本文对采用新型三面综合加固矩形风道太阳能空气加热器(SAHs)的传热和增强摩擦特性进行了实验研究。粗糙的矩形SAH风管是一种多v和横向导线的排列(顶壁多v和两侧壁横向),三面覆盖玻璃。可用于农作物烘干、木材调味、空间加热、工业用途等。矩形风管的宽高比W/H为8,相对破碎节距P/e范围为10 25,相对破碎高度e/D范围为0.018 ~ 0.042,相对破碎宽度W/ W为6,攻角αα为60°时,流动雷诺数Re为3500 ~ 12000。在相同工作条件下,将该粗糙管道的传热和摩擦特性与平面管道进行了比较。传热和摩擦特性的最大增益分别是光滑风管的6.42倍和6.44倍。三面综合凹凸型SAH风管对空气温度流的增强比光滑型SAH风管高54.47%。三面人工崎岖的矩形风管SAHs总体上优于平面SAHs
{"title":"Augmentation on Heat Transfer and Friction Factor in Three Sides Solar Air Heaters Having an Arrangement of Multi-V and Transverse Wire Roughness on the Absorber Plate","authors":"Dhananjay Kumar, L. Prasad","doi":"10.5541/IJOT.796532","DOIUrl":"https://doi.org/10.5541/IJOT.796532","url":null,"abstract":"This paper present the experimental inquiry on heat transfer and friction features enrichment adopting new-fangled of three side’s synthetically rugged rectangular duct solar air heaters (SAHs). The roughened rectangular SAH ducts has been an arrangement of multi-v and transverse wire (top wall multi-v and two side walls transverse) covered with glass on three sides. It has various appliances such as crop drying, seasoning of timber, space heating, industrial purpose, etc. The rectangular duct used has a width to height ratio, W/H, equal to 8, relative raggedness pitch, P/e, wide-ranging from 10 25, relative raggedness height, e/D, varied from 0.018 – 0.042 and flow Reynolds number, Re, occupied from 3500 – 12,000 for fixed values of relative raggedness width, W/w, of 6 and an angle of attack, αα, equal to 60°. The heat transmission and friction features of this roughened duct is compared with plane ones under identical working conditions. The maximum augmentation in heat transmission and friction feature is identified to be 6.42 and 6.44 times over the smooth duct respectively. The enhancement in air temperature streaming under three side’s synthetically rugged SAH duct is found to be 54.47% more than that of the smooth one. Three side’s artificially rugged rectangular duct SAHs are preferable over plane ones collectively and tentatively","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48950899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy, exergy, exergoeconomic, and exergoenvironmental analyses and multi-objective optimization of a CPC driven solar combined cooling and power cycle with different working fluids CPC驱动的不同工质太阳能联合冷却与动力循环的能量、火用、能量经济性和能量环境分析及多目标优化
IF 0.8 Q3 Engineering Pub Date : 2021-05-26 DOI: 10.5541/IJOT.873456
S. Zandi, Kamyar Golbaten Mofrad, Afsane Moradifaraj, G. Salehi
This paper aims to provide comprehensive 4E (energy, exergy, exergoeconomic, and exergoenvironmental) and advanced exergy analyses of the Refrigeration Cycle (RC) and Heat Recovery Refrigeration Cycle (HRRC) and comparison of the performance with R744 (CO2) and R744A (N2O) working fluids. Moreover, multi-objective optimization of the systems has been considered to define the optimal conditions and the best cycle from various perspectives. In HRRC, heat recovery is used as a heat source for an organic Rankine cycle. The energy and exergy analysis results show that utilizing HRRC with both refrigerants increases the coefficient of performance (COP) and exergy efficiency. COP and exergy efficiency for HRRC-R744 have been obtained 2.82 and 30.7%, respectively. Due to the better thermodynamic performance of HRRC, other analyses have been performed on this cycle. Exergoeconomic analysis results show that using R744A leads to an increase in the total product cost. Total product cost with R744 and R744A have been calculated by 1.56 $/h and 1.96$/h, respectively. Additionally, to obtain the processes' environmental impact, Life Cycle Assessment (LCA) is used. Exergoenvironmental analysis showed that using R744A increases the product environmental impact by 32%. Owning to the high amount of endogenous exergy destruction rate in the compressor and ejector compared to other equipment, they have more priority for improvement. Multi-objective optimization has been performed with exergy efficiency and total product cost objective functions as well as COP and product environmental impact for both refrigerants, which indicates that HRRC-R744 has better performance economically and environmentally. In optimal condition, the value of exergy efficiency, total product cost, COP, and the product environmental impact have been accounted for by 28.51%, 1.44 $/h, 2.76, and 149.01 mpts/h, respectively.
本文旨在对制冷循环(RC)和热回收制冷循环(HRRC)进行全面的4E(能量、火用、火用经济、火用环境)和先进的火用分析,并与R744 (CO2)和R744A (N2O)工质进行性能比较。此外,还考虑了系统的多目标优化,从多个角度定义了系统的最优条件和最优周期。在HRRC中,热回收被用作有机朗肯循环的热源。能量和火用分析结果表明,两种制冷剂同时使用HRRC可提高性能系数(COP)和火用效率。HRRC-R744的COP和火用效率分别为2.82%和30.7%。由于HRRC具有较好的热力学性能,因此对该循环进行了其他分析。exgo经济分析结果表明,使用R744A会导致产品总成本的增加。R744和R744A的总产品成本分别为1.56美元/小时和1.96美元/小时。此外,为了获得过程的环境影响,使用生命周期评价(LCA)。exgo环境分析表明,使用R744A使产品对环境的影响增加了32%。与其他设备相比,压缩机和喷射器的内源火能破坏率较高,因此具有改进的优先性。通过对两种制冷剂的火用效率和产品总成本目标函数以及COP和产品环境影响进行多目标优化,表明HRRC-R744具有更好的经济和环境性能。在最优工况下,火用效率、产品总成本、COP和产品环境影响分别占28.51%、1.44美元/h、2.76美元/h和149.01美元/h。
{"title":"Energy, exergy, exergoeconomic, and exergoenvironmental analyses and multi-objective optimization of a CPC driven solar combined cooling and power cycle with different working fluids","authors":"S. Zandi, Kamyar Golbaten Mofrad, Afsane Moradifaraj, G. Salehi","doi":"10.5541/IJOT.873456","DOIUrl":"https://doi.org/10.5541/IJOT.873456","url":null,"abstract":"This paper aims to provide comprehensive 4E (energy, exergy, exergoeconomic, and exergoenvironmental) and advanced exergy analyses of the Refrigeration Cycle (RC) and Heat Recovery Refrigeration Cycle (HRRC) and comparison of the performance with R744 (CO2) and R744A (N2O) working fluids. Moreover, multi-objective optimization of the systems has been considered to define the optimal conditions and the best cycle from various perspectives. In HRRC, heat recovery is used as a heat source for an organic Rankine cycle. The energy and exergy analysis results show that utilizing HRRC with both refrigerants increases the coefficient of performance (COP) and exergy efficiency. COP and exergy efficiency for HRRC-R744 have been obtained 2.82 and 30.7%, respectively. Due to the better thermodynamic performance of HRRC, other analyses have been performed on this cycle. Exergoeconomic analysis results show that using R744A leads to an increase in the total product cost. Total product cost with R744 and R744A have been calculated by 1.56 $/h and 1.96$/h, respectively. Additionally, to obtain the processes' environmental impact, Life Cycle Assessment (LCA) is used. Exergoenvironmental analysis showed that using R744A increases the product environmental impact by 32%. Owning to the high amount of endogenous exergy destruction rate in the compressor and ejector compared to other equipment, they have more priority for improvement. Multi-objective optimization has been performed with exergy efficiency and total product cost objective functions as well as COP and product environmental impact for both refrigerants, which indicates that HRRC-R744 has better performance economically and environmentally. In optimal condition, the value of exergy efficiency, total product cost, COP, and the product environmental impact have been accounted for by 28.51%, 1.44 $/h, 2.76, and 149.01 mpts/h, respectively.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45864336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Performance and Techno-Economic Analysis of Inlet Fogging System Implementation in Heavy Duty Industrial Gas Turbines 重型工业燃气轮机进气雾化系统的性能及技术经济分析
IF 0.8 Q3 Engineering Pub Date : 2021-05-26 DOI: 10.5541/IJOT.782485
R. Agbadede, B. Kainga
This study investigates the performance and economic benefits of applying inlet fogging in a heavy duty industrial gas turbine. To achieve the aim of the study, a heavy duty industrial gas turbine engine was modelled using a gas turbine performance software, GasTurb. The modelled engine was derived from the Frame 9E class of gas turbines. Consequent upon completing the engine modelling, ambient temperature profile data obtained from a location in Niger Delta region of Nigeria were used as input into the engine model to simulate its effect on the engine performance. Inlet fogging was simulated on the industrial gas turbine by inputting a water-to-air ratio of 0.4%, to cool and reduce the air inlet temperature by 10 degree Celsius. The simulation plots show that the gas turbine performance which dropped as a result of increased ambient temperature was enhanced by the application of inlet fogging. Economic analysis shows that approximately $2.4 million profit was recorded in one year when inlet fogging system was employed.
研究了重型工业燃气轮机进口雾化的性能和经济效益。为了达到研究的目的,使用燃气轮机性能软件GasTurb对重型工业燃气涡轮发动机进行了建模。模型发动机源自Frame 9E级燃气轮机。在完成发动机建模之后,从尼日利亚尼日尔三角洲地区某地获得的环境温度剖面数据被用作发动机模型的输入,以模拟其对发动机性能的影响。在工业燃气轮机上,通过输入0.4%的水气比来模拟进气起雾,使进气温度降低10摄氏度。仿真结果表明,进气雾化改善了由于环境温度升高而导致的燃气轮机性能下降的问题。经济分析显示,采用进口雾化系统后,一年的利润约为240万美元。
{"title":"Performance and Techno-Economic Analysis of Inlet Fogging System Implementation in Heavy Duty Industrial Gas Turbines","authors":"R. Agbadede, B. Kainga","doi":"10.5541/IJOT.782485","DOIUrl":"https://doi.org/10.5541/IJOT.782485","url":null,"abstract":"This study investigates the performance and economic benefits of applying inlet fogging in a heavy duty industrial gas turbine. To achieve the aim of the study, a heavy duty industrial gas turbine engine was modelled using a gas turbine performance software, GasTurb. The modelled engine was derived from the Frame 9E class of gas turbines. Consequent upon completing the engine modelling, ambient temperature profile data obtained from a location in Niger Delta region of Nigeria were used as input into the engine model to simulate its effect on the engine performance. Inlet fogging was simulated on the industrial gas turbine by inputting a water-to-air ratio of 0.4%, to cool and reduce the air inlet temperature by 10 degree Celsius. The simulation plots show that the gas turbine performance which dropped as a result of increased ambient temperature was enhanced by the application of inlet fogging. Economic analysis shows that approximately $2.4 million profit was recorded in one year when inlet fogging system was employed.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44865286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Irreversibility Analysis of R407C, R404A, and R134A as an Alternatives of R22 in Vapor Compression Chiller under Cycling Conditions R407C、R404A和R134A作为R22替代品在循环条件下的不可逆性分析
IF 0.8 Q3 Engineering Pub Date : 2021-02-28 DOI: 10.5541/IJOT.797614
Ayad Khudhair Al-Nadawi
This paper presents irreversibility analysis using experimental data from vapor compression chiller system using R22, R407C, R404A and R-134A as working fluids. The system operated under cycling condition, which allowing the water to circulate in the evaporator and recording data every ten minutes. Further, the experimental study was conducted at different water and ambient temperature to identify the parameter that cause the energy deterioration. The findings show that the total irreversibility increases at high water mass flow rate. Additionally, high ambient temperature increase the irreversibility of the system. R134A and R407C are a good replacement for R22 in terms of irreversibility analysis during cycling condition.
本文利用R22、R407C、R404A和R-134A作为工质的蒸汽压缩制冷机系统的实验数据进行了不可逆性分析。系统在循环工况下运行,使水在蒸发器中循环,每十分钟记录一次数据。在不同的水温和环境温度下进行了实验研究,找出了导致能量劣化的参数。研究结果表明,在高水流量条件下,总不可逆性增大。此外,高环境温度增加了系统的不可逆性。R134A和R407C在循环条件下的不可逆性分析方面是R22的良好替代品。
{"title":"Irreversibility Analysis of R407C, R404A, and R134A as an Alternatives of R22 in Vapor Compression Chiller under Cycling Conditions","authors":"Ayad Khudhair Al-Nadawi","doi":"10.5541/IJOT.797614","DOIUrl":"https://doi.org/10.5541/IJOT.797614","url":null,"abstract":"This paper presents irreversibility analysis using experimental data from vapor compression chiller system using R22, R407C, R404A and R-134A as working fluids. The system operated under cycling condition, which allowing the water to circulate in the evaporator and recording data every ten minutes. Further, the experimental study was conducted at different water and ambient temperature to identify the parameter that cause the energy deterioration. The findings show that the total irreversibility increases at high water mass flow rate. Additionally, high ambient temperature increase the irreversibility of the system. R134A and R407C are a good replacement for R22 in terms of irreversibility analysis during cycling condition.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42298085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
SOLVING THE PROBLEM OF THERMODYNAMIC INEQUALITIES 热力学不等式问题的求解
IF 0.8 Q3 Engineering Pub Date : 2021-02-28 DOI: 10.5541/IJOT.874737
V. Etkin
It is shown that the combined equation of the 1st and 2nd principles of classical thermodynamics does not transform into inequality in the case of irreversible processes, if the external energy exchange of the system is expressed in terms of energy carrier flows. This means that thermodynamic inequalities are generated by attempts to take into account the irreversibility of real (non-static) processes, without taking into account explicitly its reasons - the inhomogeneity of the system and the presence of internal sources not only for entropy, but also for other parameters. On this basis, exact expressions of heat and work in open nonequilibrium systems, as well as their dissipative function, are obtained. The physical meaning of entropy as a thermal impulse and the unprovability of the principle of its increase in the framework of equilibrium systems are revealed. Non-entropy criteria for evolution are proposed and the latter is shown to be incompatible not only with the second law of thermodynamics, but also with the laws of conservation of energy carriers. The elimination of thermodynamic inequalities opens up the possibility of applying the equations of thermodynamics, taking into account energy dissipation, to other fundamental disciplines.
结果表明,如果系统的外部能量交换用能量载体流表示,在不可逆过程的情况下,经典热力学第一原理和第二原理的组合方程不会转化为不等式。这意味着热力学不等式是通过试图考虑真实(非静态)过程的不可逆性而产生的,而没有明确考虑其原因——系统的不均匀性和内部来源的存在——不仅是熵,还有其他参数。在此基础上,得到了开放非平衡系统中热和功的精确表达式及其耗散函数。揭示了熵作为热脉冲的物理意义,以及在平衡系统框架下熵增加原理的不可证明性。提出了演化的非熵准则,证明后者不仅与热力学第二定律不相容,而且与能量载流子守恒定律不相容。热力学不等式的消除为将考虑能量耗散的热力学方程应用于其他基础学科开辟了可能性。
{"title":"SOLVING THE PROBLEM OF THERMODYNAMIC INEQUALITIES","authors":"V. Etkin","doi":"10.5541/IJOT.874737","DOIUrl":"https://doi.org/10.5541/IJOT.874737","url":null,"abstract":"It is shown that the combined equation of the 1st and 2nd principles of classical thermodynamics does not transform into inequality in the case of irreversible processes, if the external energy exchange of the system is expressed in terms of energy carrier flows. This means that thermodynamic inequalities are generated by attempts to take into account the irreversibility of real (non-static) processes, without taking into account explicitly its reasons - the inhomogeneity of the system and the presence of internal sources not only for entropy, but also for other parameters. On this basis, exact expressions of heat and work in open nonequilibrium systems, as well as their dissipative function, are obtained. The physical meaning of entropy as a thermal impulse and the unprovability of the principle of its increase in the framework of equilibrium systems are revealed. Non-entropy criteria for evolution are proposed and the latter is shown to be incompatible not only with the second law of thermodynamics, but also with the laws of conservation of energy carriers. The elimination of thermodynamic inequalities opens up the possibility of applying the equations of thermodynamics, taking into account energy dissipation, to other fundamental disciplines.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43710930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fractional order heat conduction and thermoelastic response of a thermally sensitive rectangular parallelopiped 热敏矩形平行六面体的分数阶热传导和热弹性响应
IF 0.8 Q3 Engineering Pub Date : 2021-02-28 DOI: 10.5541/IJOT.849663
V. Srinivas, V. R. Manthena, J. Bikram, G. D. Kedar
In the present paper, the problem of finite dimensional rectangular parallelepiped in isotropic thermoelastic medium with convective type heating is considered. The heat conduction equation (HCE) of the region is described by time HC of fractional order with Caputo derivative form. The non-linear form of heat conduction equation is converted to linear form with Kirchhoff’s transformation. Integral transform technique is used to deal with the spatial variables and Laplace transform technique is used to deal with Caputo type time fractional derivative. Inverse Laplace transform and inverse finite Fourier transform are employed to expose the solution in the transformed domain. Numerical results are obtained for temperature distribution, deflection, stress resultants and thermal stress distribution for different values of time fractional order parameter. These results are presented graphically and discussed for various values of time fractional parameters. The obtained results show significant influence of the time fractional order derivative on the temperature as well as stress distribution. Thermosensitivity plays a vital role in the analysis of any real thermoelastic problems and one should consider their effect while dealing with materials in high temperature environment.
本文研究了各向同性热弹性介质中有限维长方体的对流加热问题。用Caputo导数形式的分数阶时间HC描述该区域的热传导方程,用Kirchhoff变换将热传导方程的非线性形式转化为线性形式。积分变换用于处理空间变量,拉普拉斯变换用于处理Caputo型时间分数导数。采用拉普拉斯逆变换和有限傅立叶逆变换来揭示变换域中的解。得到了不同时间分数阶参数值下的温度分布、挠度、应力结果和热应力分布的数值结果。这些结果用图形表示,并针对不同的时间分数参数值进行了讨论。结果表明,时间分数阶导数对温度和应力分布有显著影响。热敏性在分析任何真实的热弹性问题中都起着至关重要的作用,在处理高温环境中的材料时,应该考虑它们的影响。
{"title":"Fractional order heat conduction and thermoelastic response of a thermally sensitive rectangular parallelopiped","authors":"V. Srinivas, V. R. Manthena, J. Bikram, G. D. Kedar","doi":"10.5541/IJOT.849663","DOIUrl":"https://doi.org/10.5541/IJOT.849663","url":null,"abstract":"In the present paper, the problem of finite dimensional rectangular parallelepiped in isotropic thermoelastic medium with convective type heating is considered. The heat conduction equation (HCE) of the region is described by time HC of fractional order with Caputo derivative form. The non-linear form of heat conduction equation is converted to linear form with Kirchhoff’s transformation. Integral transform technique is used to deal with the spatial variables and Laplace transform technique is used to deal with Caputo type time fractional derivative. Inverse Laplace transform and inverse finite Fourier transform are employed to expose the solution in the transformed domain. Numerical results are obtained for temperature distribution, deflection, stress resultants and thermal stress distribution for different values of time fractional order parameter. These results are presented graphically and discussed for various values of time fractional parameters. The obtained results show significant influence of the time fractional order derivative on the temperature as well as stress distribution. Thermosensitivity plays a vital role in the analysis of any real thermoelastic problems and one should consider their effect while dealing with materials in high temperature environment.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48828339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-physics evaluation of the steady-state operation of an Aqueous Homogeneous Reactor for producing Mo-99 for the Brazilian demand 为满足巴西需求而生产Mo-99的含水均质反应器稳态运行的多物理场评价
IF 0.8 Q3 Engineering Pub Date : 2021-02-28 DOI: 10.5541/IJOT.790728
D. M. Pérez, D. Pérez, Liván Hernández Pardo, D. Lorenzo, C. D. O. Lira
The studies summarized in this paper aims to predict the steady state operation of a low-enriched uranium fuel ARGUS type aqueous homogeneous reactor for producing 99Mo to meet the domestic demand of Brazil through a coupled multi-physics (Neutronics + Thermal-hydraulics) evaluation. The coupled multi-physics evaluation included aspects related to the neutronic behavior such as fission induced energy deposition profile, medical isotopes production; and the thermal-hydraulic behavior such as temperature, velocities and gas volume fraction profiles. The methodology followed for the multi-physics and multi-scale coupling of the neutronic and thermal-hydraulic codes (MCNP + ANSYS-CFX), discussed in detail in this paper, represent one of the main outcomes of the current study. The methodology was tested for two different operating configurations of the ARGUS reactor, the original high-enriched uranium configuration used since 1981, and the new low-enriched uranium configuration after the conversion process during 2012-2014. The calculations carried out showed that the reactor, in the studied configuration, is able to produce 246.5 six days Curie of 99Mo in operation cycles of five days. Which is equivalent to more than a third of the estimated Brazilian demand for 2025.
本文总结的研究旨在通过耦合多物理(Neutronics+Thermal hydroulics)评估来预测低浓缩铀燃料ARGUS型水性均质反应堆的稳态运行,以生产99Mo,以满足巴西国内的需求。耦合多物理评估包括与中子行为相关的方面,如裂变诱导的能量沉积剖面、医用同位素生产;以及诸如温度、速度和气体体积分数分布的热工水力学行为。本文详细讨论了中子和热工水力学代码(MCNP+ANSYS-CFX)的多物理和多尺度耦合所遵循的方法,代表了当前研究的主要成果之一。该方法针对ARGUS反应堆的两种不同运行配置进行了测试,即1981年以来使用的原始高浓缩铀配置和2012-2014年转换过程后的新低浓缩铀配置。计算表明,在所研究的配置中,该反应器能够在五天的运行周期内产生246.5个六天的99Mo居里。这相当于巴西2025年预计需求的三分之一以上。
{"title":"Multi-physics evaluation of the steady-state operation of an Aqueous Homogeneous Reactor for producing Mo-99 for the Brazilian demand","authors":"D. M. Pérez, D. Pérez, Liván Hernández Pardo, D. Lorenzo, C. D. O. Lira","doi":"10.5541/IJOT.790728","DOIUrl":"https://doi.org/10.5541/IJOT.790728","url":null,"abstract":"The studies summarized in this paper aims to predict the steady state operation of a low-enriched uranium fuel ARGUS type aqueous homogeneous reactor for producing 99Mo to meet the domestic demand of Brazil through a coupled multi-physics (Neutronics + Thermal-hydraulics) evaluation. The coupled multi-physics evaluation included aspects related to the neutronic behavior such as fission induced energy deposition profile, medical isotopes production; and the thermal-hydraulic behavior such as temperature, velocities and gas volume fraction profiles. The methodology followed for the multi-physics and multi-scale coupling of the neutronic and thermal-hydraulic codes (MCNP + ANSYS-CFX), discussed in detail in this paper, represent one of the main outcomes of the current study. The methodology was tested for two different operating configurations of the ARGUS reactor, the original high-enriched uranium configuration used since 1981, and the new low-enriched uranium configuration after the conversion process during 2012-2014. The calculations carried out showed that the reactor, in the studied configuration, is able to produce 246.5 six days Curie of 99Mo in operation cycles of five days. Which is equivalent to more than a third of the estimated Brazilian demand for 2025.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45967103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
International Journal of Thermodynamics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1