Kavya Pushadapu, Sarjinder Singh, Stephen A. Sedory
SummaryIn this paper, we begin by reviewing the optional randomised response technique estimator (ORRTE) developed by Chaudhuri and Mukerjee for estimating the proportion of a sensitive characteristic in a population. We show that their estimator is unbiased and has smaller variance than the Warner's estimator. Then we make an attempt at developing an optimised optional randomised response technique estimator (OORRTE). The proposed OORRTE is shown to be more efficient than the ORRTE. Findings from simulation studies are discussed and interpreted for various situations. Sample sizes for the Warner's estimator, the ORRTE and the OORRTE are computed based on power analysis introduced by Ulrich, Schroter, Striegel and Simon. Finally, we include an application to real data on COVID‐19 by considering it to be partially sensitive variable; that is, sensitive to some but not to others. The data used are included in the paper and the R‐codes used in the simulation study are documented in online material.
摘要在本文中,我们首先回顾了 Chaudhuri 和 Mukerjee 开发的可选随机响应技术估计器 (ORRTE),用于估计人口中敏感特征的比例。我们证明,他们的估计器是无偏的,方差小于华纳估计器。然后,我们尝试开发一种优化的可选随机响应技术估计器(OORRTE)。结果表明,建议的 OORRTE 比 ORRTE 更有效。我们讨论了模拟研究的结果,并对各种情况进行了解释。根据 Ulrich、Schroter、Striegel 和 Simon 引入的功率分析,计算了 Warner 估计器、ORRTE 和 OORRTE 的样本大小。最后,我们将 COVID-19 视为部分敏感变量(即对某些变量敏感,但对另一些变量不敏感),并将其应用于真实数据中。所用数据包含在论文中,模拟研究中使用的 R 代码记录在在线资料中。
{"title":"An Optimised Optional Randomised Response Technique","authors":"Kavya Pushadapu, Sarjinder Singh, Stephen A. Sedory","doi":"10.1111/insr.12581","DOIUrl":"https://doi.org/10.1111/insr.12581","url":null,"abstract":"SummaryIn this paper, we begin by reviewing the optional randomised response technique estimator (ORRTE) developed by Chaudhuri and Mukerjee for estimating the proportion of a sensitive characteristic in a population. We show that their estimator is unbiased and has smaller variance than the Warner's estimator. Then we make an attempt at developing an optimised optional randomised response technique estimator (OORRTE). The proposed OORRTE is shown to be more efficient than the ORRTE. Findings from simulation studies are discussed and interpreted for various situations. Sample sizes for the Warner's estimator, the ORRTE and the OORRTE are computed based on power analysis introduced by Ulrich, Schroter, Striegel and Simon. Finally, we include an application to real data on COVID‐19 by considering it to be partially sensitive variable; that is, sensitive to some but not to others. The data used are included in the paper and the R‐codes used in the simulation study are documented in online material.","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A valuable and robust extension of the traditional joint mean and the covariance models when data subject to outliers and/or heavy‐tailed outcomes can be achieved using the joint modelling of location and scatter matrix of the multivariate t‐distribution. This model encompasses three models in itself, and the number of unknown parameters in the covariance model increases quadratically with the matrix size. As a result, selecting the important variables becomes a crucial aspect to consider. In this context, the variable selection combined with the parameter estimation is considered under the normality assumption. However, because of the non‐robustness of the normal distribution, the resulting estimators will be sensitive to outliers and/or heavy taildness in the data. This paper has two objectives to overcome these problems. The first is to obtain the maximum likelihood estimates of the parameters and propose an expectation‐maximisation type algorithm as an alternative to the Fisher scoring algorithm in the literature. We also consider simultaneous parameter estimation and variable selection in the multivariate t‐joint location and scatter matrix models. The consistency and oracle properties of the regularised estimators are also established. Simulation studies and real data analysis are provided to assess the performance of the proposed methods.
当数据存在异常值和/或重尾结果时,可以利用多变量 t 分布的位置和散点矩阵联合建模来实现对传统的均值和协方差联合模型的有价值和稳健的扩展。该模型本身包含三个模型,而协方差模型中未知参数的数量与矩阵大小成二次方增加。因此,选择重要变量就成了一个需要考虑的关键问题。在这种情况下,变量选择与参数估计结合在一起,是在正态性假设下考虑的。然而,由于正态分布的非稳健性,所得到的估计值会对数据中的异常值和/或重尾敏感。本文有两个目标来克服这些问题。首先是获得参数的最大似然估计值,并提出一种期望最大化类型的算法,以替代文献中的费雪评分算法。我们还考虑了多变量 t 关节位置和散点矩阵模型中的同步参数估计和变量选择。我们还建立了正则化估计器的一致性和甲骨文特性。我们还提供了模拟研究和真实数据分析,以评估所提出方法的性能。
{"title":"Joint Robust Variable Selection of Mean and Covariance Model via Shrinkage Methods","authors":"Y. Güney, Fulya Gokalp Yavuz, Olcay Arslan","doi":"10.1111/insr.12577","DOIUrl":"https://doi.org/10.1111/insr.12577","url":null,"abstract":"A valuable and robust extension of the traditional joint mean and the covariance models when data subject to outliers and/or heavy‐tailed outcomes can be achieved using the joint modelling of location and scatter matrix of the multivariate t‐distribution. This model encompasses three models in itself, and the number of unknown parameters in the covariance model increases quadratically with the matrix size. As a result, selecting the important variables becomes a crucial aspect to consider. In this context, the variable selection combined with the parameter estimation is considered under the normality assumption. However, because of the non‐robustness of the normal distribution, the resulting estimators will be sensitive to outliers and/or heavy taildness in the data. This paper has two objectives to overcome these problems. The first is to obtain the maximum likelihood estimates of the parameters and propose an expectation‐maximisation type algorithm as an alternative to the Fisher scoring algorithm in the literature. We also consider simultaneous parameter estimation and variable selection in the multivariate t‐joint location and scatter matrix models. The consistency and oracle properties of the regularised estimators are also established. Simulation studies and real data analysis are provided to assess the performance of the proposed methods.","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141099030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fernando Llorente, Luca Martino, Jesse Read, David Delgado‐Gómez
SummaryThis survey gives an overview of Monte Carlo methodologies using surrogate models, for dealing with densities that are intractable, costly, and/or noisy. This type of problem can be found in numerous real‐world scenarios, including stochastic optimisation and reinforcement learning, where each evaluation of a density function may incur some computationally‐expensive or even physical (real‐world activity) cost, likely to give different results each time. The surrogate model does not incur this cost, but there are important trade‐offs and considerations involved in the choice and design of such methodologies. We classify the different methodologies into three main classes and describe specific instances of algorithms under a unified notation. A modular scheme that encompasses the considered methods is also presented. A range of application scenarios is discussed, with special attention to the likelihood‐free setting and reinforcement learning. Several numerical comparisons are also provided.
{"title":"A Survey of Monte Carlo Methods for Noisy and Costly Densities With Application to Reinforcement Learning and ABC","authors":"Fernando Llorente, Luca Martino, Jesse Read, David Delgado‐Gómez","doi":"10.1111/insr.12573","DOIUrl":"https://doi.org/10.1111/insr.12573","url":null,"abstract":"SummaryThis survey gives an overview of Monte Carlo methodologies using surrogate models, for dealing with densities that are intractable, costly, and/or noisy. This type of problem can be found in numerous real‐world scenarios, including stochastic optimisation and reinforcement learning, where each evaluation of a density function may incur some computationally‐expensive or even physical (real‐world activity) cost, likely to give different results each time. The surrogate model does not incur this cost, but there are important trade‐offs and considerations involved in the choice and design of such methodologies. We classify the different methodologies into three main classes and describe specific instances of algorithms under a unified notation. A modular scheme that encompasses the considered methods is also presented. A range of application scenarios is discussed, with special attention to the likelihood‐free setting and reinforcement learning. Several numerical comparisons are also provided.","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}