Pub Date : 2024-07-12DOI: 10.3390/inventions9040075
Lanxin Fan, Heng Chen, Shuyuan Zhao, Yinan Wang
Transmission lines serve as pivotal equipment within the power system. Conductors, the primary medium for power transmission and distribution, directly influence the construction cost, operational performance, and long-term benefits of transmission line projects. This study first provides a detailed introduction to the life cycle cost of transmission lines. It utilizes linear regression analysis, the grey model, and the autoregressive integrated moving average model to forecast the electricity sales benefit and quantify the carbon reduction benefits of energy-saving conductors through a methodology. Through the life cycle cost model, we found that operating costs, particularly energy loss costs, dominate the total expenses, accounting for 65% to 66.2%. The JLHA3-425 scheme offers the lowest life cycle cost of 22,891.66 k$. Comparing economic indicators like ENPV, EIRR, and DPP confirmed that the JLHA3-425 medium-strength aluminum alloy stranded wire emerged as the most economically viable option among the evaluated schemes, holding substantial promise for fostering economic and environmental sustainability in electrical power transmission.
{"title":"Comparative Economic Analysis of Transmission Lines Adopted for Energy-Saving Conductors Considering Life Cycle Cost","authors":"Lanxin Fan, Heng Chen, Shuyuan Zhao, Yinan Wang","doi":"10.3390/inventions9040075","DOIUrl":"https://doi.org/10.3390/inventions9040075","url":null,"abstract":"Transmission lines serve as pivotal equipment within the power system. Conductors, the primary medium for power transmission and distribution, directly influence the construction cost, operational performance, and long-term benefits of transmission line projects. This study first provides a detailed introduction to the life cycle cost of transmission lines. It utilizes linear regression analysis, the grey model, and the autoregressive integrated moving average model to forecast the electricity sales benefit and quantify the carbon reduction benefits of energy-saving conductors through a methodology. Through the life cycle cost model, we found that operating costs, particularly energy loss costs, dominate the total expenses, accounting for 65% to 66.2%. The JLHA3-425 scheme offers the lowest life cycle cost of 22,891.66 k$. Comparing economic indicators like ENPV, EIRR, and DPP confirmed that the JLHA3-425 medium-strength aluminum alloy stranded wire emerged as the most economically viable option among the evaluated schemes, holding substantial promise for fostering economic and environmental sustainability in electrical power transmission.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141655647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-11DOI: 10.3390/inventions9040074
F. Florean, A. Mangra, Marius Enache, R. Carlanescu, Alexandra Taranu, Madalina Botu
A considerable number of Combined Heat and Power (CHP) systems continue to depend on fossil fuels like oil and natural gas, contributing to significant environmental pollution and the release of greenhouse gases. Two V-gutter flame holder prototypes (P1 and P2) with the same expansion angle, fueled with pure hydrogen (100% H2) or hydrogen–methane mixtures (60% H2 + 40% CH4, 80% H2 + 20% CH4), intended for use in cogeneration applications, have been designed, manufactured, and tested. Throughout the tests, the concentrations of CO2, CO, and NO in the flue gas were monitored, and particle image velocimetry (PIV) measurements were performed. The CO, CO2, respectively, and NO emissions gradually decreased as the percentage of H2 in the fuel mixture increased. The NO emissions were significantly lower in the case of prototype P2 in comparison with prototype P1 in all measurement points for all used fuel mixtures. The shortest recirculation zone was observed for P1, where the axial velocity reaches a negative peak of approximately 12 m/s at roughly 50 mm downstream of the edge of the flame holder, and the recirculation region spans about 90 mm. In comparison, the P2 prototype has a length of the recirculation region span of about 100 mm with a negative peak of approximately 14 m/s. The data reveal high gradients in flow velocity near the flow separation point, which gradually smooth out with increasing downstream distance. Despite their similar design, P2 consistently performs better across all measured velocity components. This improvement can be attributed to the larger fuel injection holes, which enhance fuel–air mixing and combustion stability. Additionally, the presence of side walls directing the flow around the flame stabilizer further aids in maintaining a stable combustion process.
{"title":"Analysis of a Newly Developed Afterburner System Employing Hydrogen–Methane Blends","authors":"F. Florean, A. Mangra, Marius Enache, R. Carlanescu, Alexandra Taranu, Madalina Botu","doi":"10.3390/inventions9040074","DOIUrl":"https://doi.org/10.3390/inventions9040074","url":null,"abstract":"A considerable number of Combined Heat and Power (CHP) systems continue to depend on fossil fuels like oil and natural gas, contributing to significant environmental pollution and the release of greenhouse gases. Two V-gutter flame holder prototypes (P1 and P2) with the same expansion angle, fueled with pure hydrogen (100% H2) or hydrogen–methane mixtures (60% H2 + 40% CH4, 80% H2 + 20% CH4), intended for use in cogeneration applications, have been designed, manufactured, and tested. Throughout the tests, the concentrations of CO2, CO, and NO in the flue gas were monitored, and particle image velocimetry (PIV) measurements were performed. The CO, CO2, respectively, and NO emissions gradually decreased as the percentage of H2 in the fuel mixture increased. The NO emissions were significantly lower in the case of prototype P2 in comparison with prototype P1 in all measurement points for all used fuel mixtures. The shortest recirculation zone was observed for P1, where the axial velocity reaches a negative peak of approximately 12 m/s at roughly 50 mm downstream of the edge of the flame holder, and the recirculation region spans about 90 mm. In comparison, the P2 prototype has a length of the recirculation region span of about 100 mm with a negative peak of approximately 14 m/s. The data reveal high gradients in flow velocity near the flow separation point, which gradually smooth out with increasing downstream distance. Despite their similar design, P2 consistently performs better across all measured velocity components. This improvement can be attributed to the larger fuel injection holes, which enhance fuel–air mixing and combustion stability. Additionally, the presence of side walls directing the flow around the flame stabilizer further aids in maintaining a stable combustion process.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141658831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.3390/inventions9040073
Dario Friso
Sprinkler irrigation is widely used in agriculture because it allows for rational use of water. However, it can induce negative effects of soil erosion and of surface waterproofing. The scholars of these phenomena use the numerical integration of the equation of motion, but if there was an analytical solution, the study would be facilitated, and this solution could be used as software for regulating sprinklers. Therefore, in this study, the solution of the differential equation of the flight of droplets produced by sprinklers in the absence of wind was developed. The impossibility of an exact analytical solution to the ballistic problem due to the variability of the drag coefficient of the droplets is known; therefore, to find the integrals in closed form, the following were adopted: a new formula for the drag coefficient; a projection of the dynamic’s equation onto two local axes, one tangent and one normal to the trajectory and some linearization. To reduce the errors caused by the latter, the linearization coefficients and their calculation formulas were introduced through multiple non-linear regressions with respect to the jet angle and the initial droplet speed. The analytical modeling obtained, valid for jet angles from 10° to 40°, was compared to the exact numerical solution, showing, for the total travel distance, a high accuracy with a mean relative error MRE of 1.8% ± 1.4%. Even the comparison with the experimental data showed high accuracy with an MRE of 2.5% ±1.1%. These results make the analytical modeling capable of reliably calculating the travel distance, the flight time, the maximum trajectory height, the final fall angle and the ground impact speed. Since the proposed analytical modeling uses only elementary functions, it can be implemented in PLC programmable logic controllers, which could be useful for controlling water waste and erosive effects on the soil during sprinkler irrigation.
{"title":"Approximate Closed-Form Solution of the Differential Equation Describing Droplet Flight during Sprinkler Irrigation","authors":"Dario Friso","doi":"10.3390/inventions9040073","DOIUrl":"https://doi.org/10.3390/inventions9040073","url":null,"abstract":"Sprinkler irrigation is widely used in agriculture because it allows for rational use of water. However, it can induce negative effects of soil erosion and of surface waterproofing. The scholars of these phenomena use the numerical integration of the equation of motion, but if there was an analytical solution, the study would be facilitated, and this solution could be used as software for regulating sprinklers. Therefore, in this study, the solution of the differential equation of the flight of droplets produced by sprinklers in the absence of wind was developed. The impossibility of an exact analytical solution to the ballistic problem due to the variability of the drag coefficient of the droplets is known; therefore, to find the integrals in closed form, the following were adopted: a new formula for the drag coefficient; a projection of the dynamic’s equation onto two local axes, one tangent and one normal to the trajectory and some linearization. To reduce the errors caused by the latter, the linearization coefficients and their calculation formulas were introduced through multiple non-linear regressions with respect to the jet angle and the initial droplet speed. The analytical modeling obtained, valid for jet angles from 10° to 40°, was compared to the exact numerical solution, showing, for the total travel distance, a high accuracy with a mean relative error MRE of 1.8% ± 1.4%. Even the comparison with the experimental data showed high accuracy with an MRE of 2.5% ±1.1%. These results make the analytical modeling capable of reliably calculating the travel distance, the flight time, the maximum trajectory height, the final fall angle and the ground impact speed. Since the proposed analytical modeling uses only elementary functions, it can be implemented in PLC programmable logic controllers, which could be useful for controlling water waste and erosive effects on the soil during sprinkler irrigation.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141661533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.3390/inventions9040072
Vartika Pandey, V. Marsic, P. Igic, S. Faramehr
In this paper, a gallium nitride (GaN) magnetic Hall effect current sensor is simulated in 2D and 3D using the TCAD Sentaurus simulation toolbox. The model takes into account the piezoelectric polarization effect and the Shockley–Read–Hall (SRH) and Fermi–Dirac statistics for all simulations. The galvanic transport model of TCAD Sentaurus is used to model the Lorentz force and magnetic behaviour of the sensor. The current difference, total current, and sensitivity simulations are systematically calibrated against experimental data. The sensor is optimised using varying geometrical and biasing parameters for various ambient temperatures. This unintentionally doped ungated current sensor has enhanced sensitivity to 16.5 %T−1 when reducing the spacing between the drains to 1 μm and increasing the source to drain spacing to 76 μm. It is demonstrated that the sensitivity degrades at 448 K (S = 12 %T−1), 373 K (S = 14.1 %T−1) compared to 300 K (S = 16.5 %T−1). The simulation results demonstrate a high sensitivity of GaN sensors at elevated temperatures, outperforming silicon counterparts.
本文使用 TCAD Sentaurus 仿真工具箱对氮化镓(GaN)磁霍尔效应电流传感器进行了二维和三维仿真。该模型在所有模拟中都考虑了压电极化效应以及肖克利-雷德-霍尔(SRH)和费米-狄拉克统计量。TCAD Sentaurus 的电流传输模型用于模拟传感器的洛伦兹力和磁性。根据实验数据对电流差、总电流和灵敏度模拟进行了系统校准。在不同的环境温度下,使用不同的几何和偏置参数对传感器进行了优化。当漏极间距减小到 1 μm 并将源极到漏极间距增大到 76 μm 时,这种无意掺杂的非门控电流传感器的灵敏度提高到 16.5 %T-1。结果表明,与 300 K (S = 16.5 %T-1) 相比,灵敏度在 448 K (S = 12 %T-1) 和 373 K (S = 14.1 %T-1) 时有所降低。模拟结果表明,氮化镓传感器在高温下的灵敏度很高,优于硅传感器。
{"title":"TCAD Modelling of Magnetic Hall Effect Sensors","authors":"Vartika Pandey, V. Marsic, P. Igic, S. Faramehr","doi":"10.3390/inventions9040072","DOIUrl":"https://doi.org/10.3390/inventions9040072","url":null,"abstract":"In this paper, a gallium nitride (GaN) magnetic Hall effect current sensor is simulated in 2D and 3D using the TCAD Sentaurus simulation toolbox. The model takes into account the piezoelectric polarization effect and the Shockley–Read–Hall (SRH) and Fermi–Dirac statistics for all simulations. The galvanic transport model of TCAD Sentaurus is used to model the Lorentz force and magnetic behaviour of the sensor. The current difference, total current, and sensitivity simulations are systematically calibrated against experimental data. The sensor is optimised using varying geometrical and biasing parameters for various ambient temperatures. This unintentionally doped ungated current sensor has enhanced sensitivity to 16.5 %T−1 when reducing the spacing between the drains to 1 μm and increasing the source to drain spacing to 76 μm. It is demonstrated that the sensitivity degrades at 448 K (S = 12 %T−1), 373 K (S = 14.1 %T−1) compared to 300 K (S = 16.5 %T−1). The simulation results demonstrate a high sensitivity of GaN sensors at elevated temperatures, outperforming silicon counterparts.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141660433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.3390/inventions9040071
Victoria E. Abarca, Dante A. Elias
To assist an individual with an amputation in regaining daily quality of life, a 2SPU-RU type parallel mechanism was developed based on ankle biomechanics. The inverse kinematic analysis of this mechanism was performed using the vector method. Subsequently, the Jacobian matrices were analyzed. The dynamic model of the mechanism was then created based on the principle of virtual work, and its theoretical solution was compared with numerical results obtained in a simulation environment. Additionally, the validity of the dynamic model and the inverse kinematics was verified by comparing theoretical and simulation results for the movements of plantarflexion–dorsiflexion, eversion–inversion, and abduction–adduction during the gait cycle.
{"title":"Modeling and Simulation of a 2SPU-RU Parallel Mechanism for a Prosthetic Ankle with Three Degrees of Freedom","authors":"Victoria E. Abarca, Dante A. Elias","doi":"10.3390/inventions9040071","DOIUrl":"https://doi.org/10.3390/inventions9040071","url":null,"abstract":"To assist an individual with an amputation in regaining daily quality of life, a 2SPU-RU type parallel mechanism was developed based on ankle biomechanics. The inverse kinematic analysis of this mechanism was performed using the vector method. Subsequently, the Jacobian matrices were analyzed. The dynamic model of the mechanism was then created based on the principle of virtual work, and its theoretical solution was compared with numerical results obtained in a simulation environment. Additionally, the validity of the dynamic model and the inverse kinematics was verified by comparing theoretical and simulation results for the movements of plantarflexion–dorsiflexion, eversion–inversion, and abduction–adduction during the gait cycle.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141666400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.3390/inventions9040070
Abraham Vadillo Morillas, Jesús Meneses Alonso, Alejandro Bustos Caballero, Cristina Castejón Sisamón, A. Ceruti
CAD-CAE software companies have introduced numerous tools aimed at facilitating topology optimization through Finite Element Simulation, thereby enhancing accessibility for designers via user-friendly interfaces. However, the imposition of intricate constraint conditions or additional restrictions during calculations may introduce instability into the resultant outcomes. In this paper, an algorithm for updating the design variables called Adaptive Variable Design is proposed to keep the final design space volume of the optimized part consistently under the target value while giving the main algorithm multiple chances to update the optimization parameters and search for a valid design. This algorithm aims to produce results that are more conducive to manufacturability and potentially more straightforward in interpretation. A comparison between several commercial software packages and the proposed algorithm, implemented in MATLAB R2023a, is carried out to prove the robustness of the latter. By simulating identical parts under similar conditions, we seek to generate comparable results and underscore the advantages stemming from the adoption and comprehension of the proposed topology optimization methodology. Our findings reveal that the integrated enhancements within MATLAB pertaining to the topology optimization process yield favourable outcomes with respect to discretization and the manufacturability of the resultant geometries. Furthermore, we assert that the methodology evaluated within MATLAB holds promise for potential integration into commercial packages, thereby enhancing the efficiency of topology optimization processes.
{"title":"Adaptive Variable Design Algorithm for Improving Topology Optimization in Additive Manufacturing Guided Design","authors":"Abraham Vadillo Morillas, Jesús Meneses Alonso, Alejandro Bustos Caballero, Cristina Castejón Sisamón, A. Ceruti","doi":"10.3390/inventions9040070","DOIUrl":"https://doi.org/10.3390/inventions9040070","url":null,"abstract":"CAD-CAE software companies have introduced numerous tools aimed at facilitating topology optimization through Finite Element Simulation, thereby enhancing accessibility for designers via user-friendly interfaces. However, the imposition of intricate constraint conditions or additional restrictions during calculations may introduce instability into the resultant outcomes. In this paper, an algorithm for updating the design variables called Adaptive Variable Design is proposed to keep the final design space volume of the optimized part consistently under the target value while giving the main algorithm multiple chances to update the optimization parameters and search for a valid design. This algorithm aims to produce results that are more conducive to manufacturability and potentially more straightforward in interpretation. A comparison between several commercial software packages and the proposed algorithm, implemented in MATLAB R2023a, is carried out to prove the robustness of the latter. By simulating identical parts under similar conditions, we seek to generate comparable results and underscore the advantages stemming from the adoption and comprehension of the proposed topology optimization methodology. Our findings reveal that the integrated enhancements within MATLAB pertaining to the topology optimization process yield favourable outcomes with respect to discretization and the manufacturability of the resultant geometries. Furthermore, we assert that the methodology evaluated within MATLAB holds promise for potential integration into commercial packages, thereby enhancing the efficiency of topology optimization processes.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141702924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, the field of microrobots has exploded, yielding many exciting new functions and applications, from object grasping and release to in vivo drug transport. Smart responsive materials have had a profound impact on the field of microrobots and have given them unique functions and structures. We analyze three aspects of microrobots, in which the future development of microrobots requires more efforts to be invested, and in which smart materials play a significant role in the development of microrobots. These three aspects are smart materials for building microrobots, manufacturing methods, and the functions and applications they achieve. In this review, we discuss the deformation mechanism of materials in response to external stimuli, starting from smart materials, and discuss fabrication methods to realize microrobots, laying the theoretical foundation for future smart material-based microrobots to realize their intelligence and programmability.
{"title":"Microrobots Based on Smart Materials with Their Manufacturing Methods and Applications","authors":"Jiawei Sun, Shuxiang Cai, Wenguang Yang, Huiwen Leng, Zhixing Ge, Tangying Liu","doi":"10.3390/inventions9030067","DOIUrl":"https://doi.org/10.3390/inventions9030067","url":null,"abstract":"In recent years, the field of microrobots has exploded, yielding many exciting new functions and applications, from object grasping and release to in vivo drug transport. Smart responsive materials have had a profound impact on the field of microrobots and have given them unique functions and structures. We analyze three aspects of microrobots, in which the future development of microrobots requires more efforts to be invested, and in which smart materials play a significant role in the development of microrobots. These three aspects are smart materials for building microrobots, manufacturing methods, and the functions and applications they achieve. In this review, we discuss the deformation mechanism of materials in response to external stimuli, starting from smart materials, and discuss fabrication methods to realize microrobots, laying the theoretical foundation for future smart material-based microrobots to realize their intelligence and programmability.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141337873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.3390/inventions9030066
Eliska Palkovicova, Jiri Cendelin, Petr Kudrna
Due to the increasing demands of today’s society on visual quality and patient comfort, and due to the growing interest in the implantation of new and more complex intraocular lens (IOL) designs, determining the IOL position occupies an important position in current ophthalmological practice. The dynamic Purkinje meter combines the construction of static Purkinje meters, presented in recent years, with dynamic examination of the IOL position according to the optical axis of the IOL.
{"title":"Dynamic Purkinje Meter as a Tool for Intraocular Lens Position Measurement","authors":"Eliska Palkovicova, Jiri Cendelin, Petr Kudrna","doi":"10.3390/inventions9030066","DOIUrl":"https://doi.org/10.3390/inventions9030066","url":null,"abstract":"Due to the increasing demands of today’s society on visual quality and patient comfort, and due to the growing interest in the implantation of new and more complex intraocular lens (IOL) designs, determining the IOL position occupies an important position in current ophthalmological practice. The dynamic Purkinje meter combines the construction of static Purkinje meters, presented in recent years, with dynamic examination of the IOL position according to the optical axis of the IOL.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141365108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flow separation can lead to increased resistance and vibration generation, which is a difficult problem that cannot be ignored in engineering. In this paper, we propose a method of controlling flow separation by adsorbing ferrofluid onto the surface of a magnetized cylinder, taking the common flow around a cylinder as an example. Parametric effects of the ferrofluid film, including its viscosity and thickness, on the flow behavior were investigated in terms of the vortex shedding process, velocity distribution, dominant frequency, pressure distribution, and the flow motion inside the ferrofluid film. The results indicate that the ferrofluid film can suppress the generation of flow separation and achieve effective control, which is mainly caused by wall slip and the internal movement of the ferrofluid film. Furthermore, the flow separation control effect of ferrofluid thin films with different parameters varies, with low-viscosity ferrofluid exhibiting a superior control effect.
{"title":"Control on Flow Separation over a Cylinder by a Ferrofluid Film Adsorbed by a Magnet","authors":"Chunyun Wei, Hongjia Xie, Zixuan Liu, Xinfeng Zhai, Hongna Zhang, Xiaobin Li","doi":"10.3390/inventions9030065","DOIUrl":"https://doi.org/10.3390/inventions9030065","url":null,"abstract":"Flow separation can lead to increased resistance and vibration generation, which is a difficult problem that cannot be ignored in engineering. In this paper, we propose a method of controlling flow separation by adsorbing ferrofluid onto the surface of a magnetized cylinder, taking the common flow around a cylinder as an example. Parametric effects of the ferrofluid film, including its viscosity and thickness, on the flow behavior were investigated in terms of the vortex shedding process, velocity distribution, dominant frequency, pressure distribution, and the flow motion inside the ferrofluid film. The results indicate that the ferrofluid film can suppress the generation of flow separation and achieve effective control, which is mainly caused by wall slip and the internal movement of the ferrofluid film. Furthermore, the flow separation control effect of ferrofluid thin films with different parameters varies, with low-viscosity ferrofluid exhibiting a superior control effect.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141267859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.3390/inventions9030059
Julia Sidorova, Juan Jose Lozano
The 2017–2024 period has been prolific in the area of the algorithms for deep-based survival analysis. We have searched the answers to the following three questions. (1) Is there a new “gold standard” already in clinical data analysis? (2) Does the DL component lead to a notably improved performance? (3) Are there tangible benefits of deep-based survival that are not directly attainable with non-deep methods? We have analyzed and compared the selected influential algorithms devised for two types of input: clinicopathological (a small set of numeric, binary and categorical) and omics data (numeric and extremely high dimensional with a pronounced p >> n complication).
2017-2024年,基于深度生存分析的算法领域成果丰硕。我们寻找了以下三个问题的答案。(1) 临床数据分析是否已经有了新的 "黄金标准"?(2)DL 组件是否能显著提高性能?(3) 基于深度的生存是否存在非深度方法无法直接实现的实际优势?我们分析并比较了针对两种输入类型设计的具有影响力的选定算法:临床病理学数据(一小部分数字、二元和分类数据)和 omics 数据(数字和极高维数据,具有明显的 p >> n 复杂性)。
{"title":"Review: Deep Learning-Based Survival Analysis of Omics and Clinicopathological Data","authors":"Julia Sidorova, Juan Jose Lozano","doi":"10.3390/inventions9030059","DOIUrl":"https://doi.org/10.3390/inventions9030059","url":null,"abstract":"The 2017–2024 period has been prolific in the area of the algorithms for deep-based survival analysis. We have searched the answers to the following three questions. (1) Is there a new “gold standard” already in clinical data analysis? (2) Does the DL component lead to a notably improved performance? (3) Are there tangible benefits of deep-based survival that are not directly attainable with non-deep methods? We have analyzed and compared the selected influential algorithms devised for two types of input: clinicopathological (a small set of numeric, binary and categorical) and omics data (numeric and extremely high dimensional with a pronounced p >> n complication).","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140969451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}