Pub Date : 2023-09-14DOI: 10.3390/inventions8050115
Gyoergy (George) L. Ferenczi, Áron Perényi
Emergency services are under pressure worldwide. Ambulance services in Victoria in Australia are particularly overloaded and the quality of service is suffering in comparison to other health services in Australia. An abundance of articles addresses this issue both in academic and industry outlets, and the proposed solutions usually advise upgrades and better use of available resources. We believe that telemedicine could be part of the solution. Patients can be quickly assessed and monitored by advanced medical sensors, connected by straightforward means including a direct video link, to the hospital. Pre-assessment of conditions can be sent ahead to the emergency department, where specialists and physicians can select priorities and prepare for urgent interventions. An increasing number of patients with mental health, drug or alcohol-related issues can be transported elsewhere, thus reducing the load of emergency departments. We have methodically analysed Victorian ambulance statistics and we have identified appropriate telemedical technologies to be used in appropriate settings. We applied telemedical technology models in our work, to demonstrate the potential improvements in outcomes, including patient lives saved.
{"title":"Modelling the Application of Telemedicine in Emergency Care","authors":"Gyoergy (George) L. Ferenczi, Áron Perényi","doi":"10.3390/inventions8050115","DOIUrl":"https://doi.org/10.3390/inventions8050115","url":null,"abstract":"Emergency services are under pressure worldwide. Ambulance services in Victoria in Australia are particularly overloaded and the quality of service is suffering in comparison to other health services in Australia. An abundance of articles addresses this issue both in academic and industry outlets, and the proposed solutions usually advise upgrades and better use of available resources. We believe that telemedicine could be part of the solution. Patients can be quickly assessed and monitored by advanced medical sensors, connected by straightforward means including a direct video link, to the hospital. Pre-assessment of conditions can be sent ahead to the emergency department, where specialists and physicians can select priorities and prepare for urgent interventions. An increasing number of patients with mental health, drug or alcohol-related issues can be transported elsewhere, thus reducing the load of emergency departments. We have methodically analysed Victorian ambulance statistics and we have identified appropriate telemedical technologies to be used in appropriate settings. We applied telemedical technology models in our work, to demonstrate the potential improvements in outcomes, including patient lives saved.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134910965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-14DOI: 10.3390/inventions8050116
Soo-Hyun Park, Akeem Bayo Kareem, Woo Jeong Joo, Jang-Wook Hur
Ensuring the safety of electric vehicles is paramount, and one critical concern is the potential for hazardous hydrogen fuel leaks caused by the degradation of Proton-Exchange Membrane Fuel Cell (PEMFC) gasket materials. This study employs advanced techniques to address this issue. We leverage Finite Element Analysis (FEA) to rigorously assess the suitability of gasket materials for PEMFC applications, focusing on two crucial conditions: ageing and tensile stress. To achieve this, we introduce a comprehensive “dual degradation framework” that considers the effects of contact pressure and von Mises stress. These factors are instrumental in evaluating the performance and durability of Liquid Silicon Rubber (LSR) and Ethylene Propylene Diene Monomer (EPDM) materials. Our findings reveal the Yeoh model as the most accurate and efficient choice for ageing simulations, boasting a minimal Mean Absolute Percentage Error (MAPE) and computational time of just 0.27 s. In contrast, the Ogden model, while accurate, requires more computational resources. In assessing overall model performance using MAE, Root Mean Square Error (RMSE), and R-squared metrics, both LSR and EPDM materials proved promising, with LSR exhibiting superior performance in most areas. Furthermore, our study incorporates uniaxial tensile testing, which yields RMSE and MAE values of 0.30% and 0.40%, respectively. These results provide valuable insights into material behaviour under tensile stress. Our research underscores the pivotal role of FEA in identifying optimal gasket materials for PEMFC applications. Notably, LSR is a superior choice, demonstrating enhanced FEA modelling performance under ageing and tensile conditions. These findings promise to significantly contribute to developing safer and more reliable electric vehicles by advancing gasket material design.
{"title":"FEA Assessment of Contact Pressure and Von Mises Stress in Gasket Material Suitability for PEMFCs in Electric Vehicles","authors":"Soo-Hyun Park, Akeem Bayo Kareem, Woo Jeong Joo, Jang-Wook Hur","doi":"10.3390/inventions8050116","DOIUrl":"https://doi.org/10.3390/inventions8050116","url":null,"abstract":"Ensuring the safety of electric vehicles is paramount, and one critical concern is the potential for hazardous hydrogen fuel leaks caused by the degradation of Proton-Exchange Membrane Fuel Cell (PEMFC) gasket materials. This study employs advanced techniques to address this issue. We leverage Finite Element Analysis (FEA) to rigorously assess the suitability of gasket materials for PEMFC applications, focusing on two crucial conditions: ageing and tensile stress. To achieve this, we introduce a comprehensive “dual degradation framework” that considers the effects of contact pressure and von Mises stress. These factors are instrumental in evaluating the performance and durability of Liquid Silicon Rubber (LSR) and Ethylene Propylene Diene Monomer (EPDM) materials. Our findings reveal the Yeoh model as the most accurate and efficient choice for ageing simulations, boasting a minimal Mean Absolute Percentage Error (MAPE) and computational time of just 0.27 s. In contrast, the Ogden model, while accurate, requires more computational resources. In assessing overall model performance using MAE, Root Mean Square Error (RMSE), and R-squared metrics, both LSR and EPDM materials proved promising, with LSR exhibiting superior performance in most areas. Furthermore, our study incorporates uniaxial tensile testing, which yields RMSE and MAE values of 0.30% and 0.40%, respectively. These results provide valuable insights into material behaviour under tensile stress. Our research underscores the pivotal role of FEA in identifying optimal gasket materials for PEMFC applications. Notably, LSR is a superior choice, demonstrating enhanced FEA modelling performance under ageing and tensile conditions. These findings promise to significantly contribute to developing safer and more reliable electric vehicles by advancing gasket material design.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134913812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05DOI: 10.3390/inventions8050114
Tuvshin Osgonbaatar, P. Matrenin, M. Safaraliev, I. Zicmane, Anastasia Rusina, Sergey Kokin
Forecasting electricity consumption is currently one of the most important scientific and practical tasks in the field of electric power industry. The early retrieval of data on expected load profiles makes it possible to choose the optimal operating mode of the system. The resultant forecast accuracy significantly affects the performance of the entire electrical complex and the operating conditions of the electricity market. This can be achieved through using a model of total electricity consumption designed with an acceptable margin of error. This paper proposes a new method for predicting power consumption in all nodes of the power system through the determination of rank coefficients calculated directly for the corresponding voltage level, including node substations, power supply zones, and other parts of the power system. The forecast of the daily load schedule and the construction of a power consumption model was based on the example of nodes in the central power system in Mongolia. An ensemble of decision trees was applied to construct a daily load schedule and rank coefficients were used to simulate consumption in the nodes. Initial data were obtained from daily load schedules, meteorological factors, and calendar features of the central power system, which accounts for the majority of energy consumption and generation in Mongolia. The study period was 2019–2021. The daily load schedules of the power system were constructed using machine learning with a probability of 1.25%. The proposed rank analysis for power system zones increases the forecasting accuracy for each zone and can improve the quality of management and create more favorable conditions for the development of distributed generation.
{"title":"A Rank Analysis and Ensemble Machine Learning Model for Load Forecasting in the Nodes of the Central Mongolian Power System","authors":"Tuvshin Osgonbaatar, P. Matrenin, M. Safaraliev, I. Zicmane, Anastasia Rusina, Sergey Kokin","doi":"10.3390/inventions8050114","DOIUrl":"https://doi.org/10.3390/inventions8050114","url":null,"abstract":"Forecasting electricity consumption is currently one of the most important scientific and practical tasks in the field of electric power industry. The early retrieval of data on expected load profiles makes it possible to choose the optimal operating mode of the system. The resultant forecast accuracy significantly affects the performance of the entire electrical complex and the operating conditions of the electricity market. This can be achieved through using a model of total electricity consumption designed with an acceptable margin of error. This paper proposes a new method for predicting power consumption in all nodes of the power system through the determination of rank coefficients calculated directly for the corresponding voltage level, including node substations, power supply zones, and other parts of the power system. The forecast of the daily load schedule and the construction of a power consumption model was based on the example of nodes in the central power system in Mongolia. An ensemble of decision trees was applied to construct a daily load schedule and rank coefficients were used to simulate consumption in the nodes. Initial data were obtained from daily load schedules, meteorological factors, and calendar features of the central power system, which accounts for the majority of energy consumption and generation in Mongolia. The study period was 2019–2021. The daily load schedules of the power system were constructed using machine learning with a probability of 1.25%. The proposed rank analysis for power system zones increases the forecasting accuracy for each zone and can improve the quality of management and create more favorable conditions for the development of distributed generation.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42256721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-03DOI: 10.3390/inventions8050113
Nicolas Daniel Mbele Ndzana, Claude Bernard Lekini Nkodo, Aristide Tolok Nelem, Mathieu Jean Pierre Pesdjock, Yannick Antoine Abanda, Achille Melingui, O. Zeh, Pierre Ele
A smart ultrasound scanner plays an important role in the transition to point-of-care imaging. DC–DC bipolar converters are essential in the generation of the ultrasound burst signal as they power the piezoelectric transducer. The conventional bipolar converter has minimal output gain and high-voltage stress, and the longer duty cycle on the semiconductors produces high conduction losses and reduces the efficiency of the system. The transmitter supply voltage is minimal, necessitating the use of high-gain bipolar converters. This proposed study is concerned with the development of an improved high-output voltage gain symmetric bipolar DC–DC converter topology which may be suitable for applications such as powering a smart ultrasound scanner transmitter. The proposed converter combines the conventional single-ended primary inductor converter (SEPIC) with a voltage multiplier cell (VMC) to improve voltage gain, transistor duty cycle, efficiency, and reliability. The present study describes the working principle of the proposed converter. The analysis of the voltage gain is carried out in continuous current mode (CCM) and discontinuous current mode (DCM), taking into account the nonidealities of the device. The simulation of the proposed system is carried out in the numerical environment Matlab/Simulink in order to verify its characteristics. A prototype model is realized and the experimental study presented validates the theoretical arguments and simulations. Due to the advantages of continuous input current, self-balancing bipolar outputs, and small component size, the proposed converter is a suitable choice for smart ultrasound transmitters.
{"title":"Contribution to the Development of a Smart Ultrasound Scanner: Design and Analysis of the High-Voltage Power Supply of the Transmitter","authors":"Nicolas Daniel Mbele Ndzana, Claude Bernard Lekini Nkodo, Aristide Tolok Nelem, Mathieu Jean Pierre Pesdjock, Yannick Antoine Abanda, Achille Melingui, O. Zeh, Pierre Ele","doi":"10.3390/inventions8050113","DOIUrl":"https://doi.org/10.3390/inventions8050113","url":null,"abstract":"A smart ultrasound scanner plays an important role in the transition to point-of-care imaging. DC–DC bipolar converters are essential in the generation of the ultrasound burst signal as they power the piezoelectric transducer. The conventional bipolar converter has minimal output gain and high-voltage stress, and the longer duty cycle on the semiconductors produces high conduction losses and reduces the efficiency of the system. The transmitter supply voltage is minimal, necessitating the use of high-gain bipolar converters. This proposed study is concerned with the development of an improved high-output voltage gain symmetric bipolar DC–DC converter topology which may be suitable for applications such as powering a smart ultrasound scanner transmitter. The proposed converter combines the conventional single-ended primary inductor converter (SEPIC) with a voltage multiplier cell (VMC) to improve voltage gain, transistor duty cycle, efficiency, and reliability. The present study describes the working principle of the proposed converter. The analysis of the voltage gain is carried out in continuous current mode (CCM) and discontinuous current mode (DCM), taking into account the nonidealities of the device. The simulation of the proposed system is carried out in the numerical environment Matlab/Simulink in order to verify its characteristics. A prototype model is realized and the experimental study presented validates the theoretical arguments and simulations. Due to the advantages of continuous input current, self-balancing bipolar outputs, and small component size, the proposed converter is a suitable choice for smart ultrasound transmitters.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47082880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.3390/inventions8050112
Elena Shushkevich, Mikhail Alexandrov, J. Cardiff
Given the widespread accessibility of content creation and sharing, false information proliferation is a growing concern. Researchers typically tackle fake news detection (FND) in specific topics using binary classification. Our study addresses a more practical FND scenario, analyzing a corpus with unknown topics through multiclass classification, encompassing true, false, partially false, and other categories. Our contribution involves: (1) exploring three BERT-based models—SBERT, RoBERTa, and mBERT; (2) enhancing results via ChatGPT-generated artificial data for class balance; and (3) improving outcomes using a two-step binary classification procedure. Our focus is on the CheckThat! Lab dataset from CLEF-2022. Our experimental results demonstrate a superior performance compared to existing achievements but FND’s practical use needs improvement within the current state-of-the-art.
{"title":"Improving Multiclass Classification of Fake News Using BERT-Based Models and ChatGPT-Augmented Data","authors":"Elena Shushkevich, Mikhail Alexandrov, J. Cardiff","doi":"10.3390/inventions8050112","DOIUrl":"https://doi.org/10.3390/inventions8050112","url":null,"abstract":"Given the widespread accessibility of content creation and sharing, false information proliferation is a growing concern. Researchers typically tackle fake news detection (FND) in specific topics using binary classification. Our study addresses a more practical FND scenario, analyzing a corpus with unknown topics through multiclass classification, encompassing true, false, partially false, and other categories. Our contribution involves: (1) exploring three BERT-based models—SBERT, RoBERTa, and mBERT; (2) enhancing results via ChatGPT-generated artificial data for class balance; and (3) improving outcomes using a two-step binary classification procedure. Our focus is on the CheckThat! Lab dataset from CLEF-2022. Our experimental results demonstrate a superior performance compared to existing achievements but FND’s practical use needs improvement within the current state-of-the-art.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41682164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-30DOI: 10.3390/inventions8050110
William Prado Martínez, Juan Felipe Arroyave Londoño, Jefferson Vásquez Gómez
This work presents a low-cost device for evaluating Variable Orifice Flow Meters (VOFM) used in medical mechanical ventilation applications. Specifically, the equipment was used to assess the impact of length and thickness on pressure drop for different flows in a rectangular geometry VOFM. A total of six VOFMs, with three different lengths and two different thicknesses, were evaluated. All VOFMs were stimulated with an airflow ranging from 0 L.min−1 to 90 L.min−1, with increments of approximately 2 L.min−1. The experiments conducted with the device showed a strong relationship between pressure drop ∆P and flow rate Q in the evaluated VOFMs, with two different zones: one exhibiting non-linear behavior and another showing linear behavior. The results suggest that increased length and decreased thickness lead to higher sensitivity. However, it is essential to reduce the cross-sectional area to mitigate nonlinear effects of the sensor.
{"title":"Design and Construction of a Device to Evaluate the Performance of Variable Orifice Flow Meters (VOFM)","authors":"William Prado Martínez, Juan Felipe Arroyave Londoño, Jefferson Vásquez Gómez","doi":"10.3390/inventions8050110","DOIUrl":"https://doi.org/10.3390/inventions8050110","url":null,"abstract":"This work presents a low-cost device for evaluating Variable Orifice Flow Meters (VOFM) used in medical mechanical ventilation applications. Specifically, the equipment was used to assess the impact of length and thickness on pressure drop for different flows in a rectangular geometry VOFM. A total of six VOFMs, with three different lengths and two different thicknesses, were evaluated. All VOFMs were stimulated with an airflow ranging from 0 L.min−1 to 90 L.min−1, with increments of approximately 2 L.min−1. The experiments conducted with the device showed a strong relationship between pressure drop ∆P and flow rate Q in the evaluated VOFMs, with two different zones: one exhibiting non-linear behavior and another showing linear behavior. The results suggest that increased length and decreased thickness lead to higher sensitivity. However, it is essential to reduce the cross-sectional area to mitigate nonlinear effects of the sensor.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42576246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-30DOI: 10.3390/inventions8050111
R. Roșca, Alexandra Virginia Bounegru, C. Apetrei
This study describes the use of electrochemical sensors to detect and quantify several statins (rosuvastatin and simvastatin) in pharmaceutical products. Two types of commercially screen-printed sensors were used and compared: one based on carbon (SPCE) and the other modified with gold nanoparticles and multi-walled carbon nanotubes (SPE/GNP-MWCNT). Cyclic voltammetry was employed for determination. The AuNP-MWCNTs/SPCE sensor outperformed the SPCE sensor, displaying excellent electrochemical properties. It demonstrated high sensitivity with low limits of detection (LOD) and quantification (LOQ) values: 0.15 µM and 5.03 µM, respectively, for rosuvastatin and 0.30 µM and 1.01 µM, respectively, for simvastatin. The sensor had a wide linear range of 20–275 µM for rosuvastatin and 50–350 µM for simvastatin. Using the AuNP-MWCNTs/SPCE sensor, rosuvastatin and simvastatin were successfully quantified in pharmaceutical products. The results were validated towards producer-reported values (standardized drugs) and a conventional analysis method (FTIR). The sensor exhibited excellent stability, reproducibility, and analytical recovery ranging from 99.3% to 106.6% with a low relative standard deviation (RSD) of less than 1%. In conclusion, the AuNP-MWCNTs/SPCE sensor proved to be a reliable and sensitive tool for detecting and quantifying statins in pharmaceutical products. Its superior electrochemical properties, low LOD and LOQ values, wide linear range, and high analytical recovery make it a promising choice for pharmaceutical quality control.
{"title":"Quantification of Statins in Pharmaceutical Products Using Screen-Printed Sensors Based of Multi-Walled Carbon Nanotubes and Gold Nanoparticles","authors":"R. Roșca, Alexandra Virginia Bounegru, C. Apetrei","doi":"10.3390/inventions8050111","DOIUrl":"https://doi.org/10.3390/inventions8050111","url":null,"abstract":"This study describes the use of electrochemical sensors to detect and quantify several statins (rosuvastatin and simvastatin) in pharmaceutical products. Two types of commercially screen-printed sensors were used and compared: one based on carbon (SPCE) and the other modified with gold nanoparticles and multi-walled carbon nanotubes (SPE/GNP-MWCNT). Cyclic voltammetry was employed for determination. The AuNP-MWCNTs/SPCE sensor outperformed the SPCE sensor, displaying excellent electrochemical properties. It demonstrated high sensitivity with low limits of detection (LOD) and quantification (LOQ) values: 0.15 µM and 5.03 µM, respectively, for rosuvastatin and 0.30 µM and 1.01 µM, respectively, for simvastatin. The sensor had a wide linear range of 20–275 µM for rosuvastatin and 50–350 µM for simvastatin. Using the AuNP-MWCNTs/SPCE sensor, rosuvastatin and simvastatin were successfully quantified in pharmaceutical products. The results were validated towards producer-reported values (standardized drugs) and a conventional analysis method (FTIR). The sensor exhibited excellent stability, reproducibility, and analytical recovery ranging from 99.3% to 106.6% with a low relative standard deviation (RSD) of less than 1%. In conclusion, the AuNP-MWCNTs/SPCE sensor proved to be a reliable and sensitive tool for detecting and quantifying statins in pharmaceutical products. Its superior electrochemical properties, low LOD and LOQ values, wide linear range, and high analytical recovery make it a promising choice for pharmaceutical quality control.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45500839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.3390/inventions8050108
G. Kazakov
The paper explores the challenges of constructing self-organizing wireless mobile ad hoc networks (MANETs) utilizing Optimal Link State Routing (OLSR) with MPR (MultiPoint Relay) optimization and quality control through the RSVP (Resource Reservation Protocol). Analytical expressions are presented for calculating the achievable network characteristics, including route acquisition time, network efficiency (routing overhead), packet transmission delay (end-to-end delay), and signal propagation losses between nodes assuming no packet collisions within the network nodes. The possibility of network scalability is analyzed depending on the scenarios of operation and the number of network nodes. Recommendations for the construction and scalability of self-organizing wireless networks are formulated based on the conducted evaluations and calculations.
{"title":"Estimation of the Achievable Performance of Mobile Ad Hoc Networks with Optimal Link State Routing","authors":"G. Kazakov","doi":"10.3390/inventions8050108","DOIUrl":"https://doi.org/10.3390/inventions8050108","url":null,"abstract":"The paper explores the challenges of constructing self-organizing wireless mobile ad hoc networks (MANETs) utilizing Optimal Link State Routing (OLSR) with MPR (MultiPoint Relay) optimization and quality control through the RSVP (Resource Reservation Protocol). Analytical expressions are presented for calculating the achievable network characteristics, including route acquisition time, network efficiency (routing overhead), packet transmission delay (end-to-end delay), and signal propagation losses between nodes assuming no packet collisions within the network nodes. The possibility of network scalability is analyzed depending on the scenarios of operation and the number of network nodes. Recommendations for the construction and scalability of self-organizing wireless networks are formulated based on the conducted evaluations and calculations.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46382634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Titanium surfaces were anodized to create nanotube structures utilizing an aqueous electrolyte made of xanthan gum (XG) and sodium fluoride. The purpose of employing this type of anodizing solution was to investigate the impact of XG addition on the morphology and organization of nanotubes. As far as we know, this is the first time that TiO2 nanotubes, made using aqueous electrolytes with XG as an additive, have been reported. The organization of the nanotubes was measured using the regularity ratio (RR) from the fast Fourier transformation (FFT) pictures. Contrary to the nanotubes formed in aqueous solutions without XG, the addition of XG to the aqueous electrolyte improved the nanotube organization, with no effect on packability. Based on the findings of this experimental work, organized and homogeneous nanotubular structures might be produced utilizing an inexpensive and non-toxic aqueous electrolyte.
{"title":"The Effects of Anodization Conditions on TiO2 Nanotubes Features Obtained Using Aqueous Electrolytes with Xanthan Gum","authors":"Robinson Aguirre Ocampo, Félix Echeverría Echeverría","doi":"10.3390/inventions8050109","DOIUrl":"https://doi.org/10.3390/inventions8050109","url":null,"abstract":"Titanium surfaces were anodized to create nanotube structures utilizing an aqueous electrolyte made of xanthan gum (XG) and sodium fluoride. The purpose of employing this type of anodizing solution was to investigate the impact of XG addition on the morphology and organization of nanotubes. As far as we know, this is the first time that TiO2 nanotubes, made using aqueous electrolytes with XG as an additive, have been reported. The organization of the nanotubes was measured using the regularity ratio (RR) from the fast Fourier transformation (FFT) pictures. Contrary to the nanotubes formed in aqueous solutions without XG, the addition of XG to the aqueous electrolyte improved the nanotube organization, with no effect on packability. Based on the findings of this experimental work, organized and homogeneous nanotubular structures might be produced utilizing an inexpensive and non-toxic aqueous electrolyte.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43504908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-25DOI: 10.3390/inventions8050107
Lucas Lima Provensi, Renata Mariane de Souza, Gabriel Henrique Grala, R. Bergamasco, R. Krummenauer, C. M. Andrade
This research aims to employ and qualify the bio-inspired algorithms: Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Differential Evolution Algorithm (DE) in the extraction of the parameters of the circuit equivalent to a photovoltaic module in the models of a diode and five parameters (1D5P) and two diodes and seven parameters (2D7P) in order to simulate the I-V characteristics curves for any irradiation and temperature scenarios. The peculiarity of this study stands in the exclusive use of information present in the module’s datasheet to carry out the full extraction and simulation process without depending on external sources of data or experimental data. To validate the methods, a comparison was made between the data obtained by the simulations with data from the module manufacturer in different scenarios of irradiation and temperature. The algorithm bound to the model with the highest accuracy was DE 1D5P, with a maximum relative error of 0.4% in conditions close to the reference and 3.61% for scenarios far from the reference. On the other hand, the algorithm that obtained the worst result in extracting parameters was the GA in the 2D7P model, which presented a maximum relative error of 9.59% in conditions far from the reference.
{"title":"Modeling and Simulation of Photovoltaic Modules Using Bio-Inspired Algorithms","authors":"Lucas Lima Provensi, Renata Mariane de Souza, Gabriel Henrique Grala, R. Bergamasco, R. Krummenauer, C. M. Andrade","doi":"10.3390/inventions8050107","DOIUrl":"https://doi.org/10.3390/inventions8050107","url":null,"abstract":"This research aims to employ and qualify the bio-inspired algorithms: Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Differential Evolution Algorithm (DE) in the extraction of the parameters of the circuit equivalent to a photovoltaic module in the models of a diode and five parameters (1D5P) and two diodes and seven parameters (2D7P) in order to simulate the I-V characteristics curves for any irradiation and temperature scenarios. The peculiarity of this study stands in the exclusive use of information present in the module’s datasheet to carry out the full extraction and simulation process without depending on external sources of data or experimental data. To validate the methods, a comparison was made between the data obtained by the simulations with data from the module manufacturer in different scenarios of irradiation and temperature. The algorithm bound to the model with the highest accuracy was DE 1D5P, with a maximum relative error of 0.4% in conditions close to the reference and 3.61% for scenarios far from the reference. On the other hand, the algorithm that obtained the worst result in extracting parameters was the GA in the 2D7P model, which presented a maximum relative error of 9.59% in conditions far from the reference.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45691098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}