Background: As an environmental contaminant, Arsenic (As) poses many risks to human health. Increased Oxidative Stress (OS) and decreased antioxidant cell defense are the suggested mechanisms of carcinogenicity and toxicity of As. As a powerful antioxidant and water-soluble compound, vitamin C protects cells and tissues against oxidation and has a wide range of healing properties.
Objectives: The current study aimed to formulate a suitable ascorbic acid (vitamin C) niosome and compare it with vitamin C in preventing As-induced toxicity in HEK-293 cells.
Methods: Various formulas of vitamin C niosomes were prepared by C-SPAN mixed with cholesterol. The physicochemical characteristics of niosomal formulations, including load size, zeta-potential, and the drug release profile, were evaluated in HEK-293 cells. Then, OS biomarkers such as total reactive oxygen species (ROS), malondialdehyde (MDA), catalase (CAT), Antioxidant Capacity (TAC), and superoxide dismutase (SOD) activities determined the protective effects of vitamin C niosomes compared with vitamin C against As-induced toxicity.
Results: The particle size and zeta potential of the optimal vitamin C niosome were 163.2 ± 6.1 nm and 23.3 ± 3.5 mV, respectively. Arsenic increased ROS and MDA levels while decreasing CAT, TAC, and SOD activities in the HEK-293 cell line. Finally, the vitamin C niosome decreased OS and increased antioxidant properties more than vitamin C.
Significance: Vitamin C niosome was more effective than vitamin C in treating As-induced toxicity in vitro.