Context: Fungal infections are very common, and several medications are used to treat them. Azoles are prescribed widely to treat fungal infections. In addition to therapeutic effects, any drug can be accompanied by side effects in patients. One of the most important complications in this regard is liver injury. Therefore, hepatotoxicity induced by azole antifungal drugs were reviewed in this study.
Evidence acquisition: English scientific papers were evaluated to review the effects of hepatotoxicity by azole antifungal agents, and the related studies' results were summarized using a table. The systematic search was implemented on electronic databases, including PubMed, Google Scholar, and Science Direct. Original articles and review articles that were published before April 1, 2022, were included in the study. Those articles without available full text or non-English articles were excluded. Also, articles that reported pediatric data were excluded.
Results: Most studies have reported the effects of hepatotoxicity by azole antifungal agents, and their mechanisms have been described.
Conclusions: Clinical evaluations regarding the hepatotoxicity of antifungal agents provided in the literature were reviewed. Therefore, it is recommended to prescribe these drugs with caution in high-risk patients suffering from liver diseases, and patients should be monitored for hepatotoxicity. However, more research is needed to evaluate the hepatotoxicity of azole antifungal agents and select appropriate drugs according to cost-effectiveness and the side effects' profiles, relying on lower incidence of this liver complication.
Topical products are not stable following application to the skin due to the evaporation of volatile components. Such changes have been demonstrated in liquid emulsions, but there is almost no study available for creams in this respect. The aim of the present investigation is to evaluate the changes in cream properties following topical application and their influence on product efficiency. A method has also been designed and validated to mimic cream application to the skin. To perform this investigation, five different creams were prepared and alterations of type of creams, size of droplets of the dispersed phase, occlusivity, water content and rate of water loss were studied after application. These changes were then attributed to the type of cream, water content, presence of humectant, and time post application. The results demonstrated that creams changed intensely after application, including the phase inversion of O/W formulations, changes in the occlusivity of creams, reduction of water content, rate of water evaporation and droplet size. Such changes could be controlled partly by humectants. The present results suggest that formulators should be aware of such possible changes and required precautions should be taken in advance.
Background: Efavirenz nanosuspensions (EZ-NSs) were developed by the wet milling method as the most promising top-down nanosizing technique. Different process and formulation parameters were studied and optimized to produce appropriate EZ-NS in suitable conditions to enhance drug dissolution.
Methods: In the preliminary studies, various polymeric stabilizers, including Pluronic F68, sodium carboxymethylcellulose (CMC), hydroxypropyl methylcellulose (HPMC), and polyvinyl alcohol (PVA), as well as different sizes and weight of milling beads were used to prepare NSs. The effect of sodium lauryl sulfate (SLS) concentration on the NS properties was also evaluated. The influence of other formulation and process parameters, including polymer concentration, milling speed, and milling time, on the particle size and distribution of NSs were investigated using Box-Behnken design. The optimized freeze-dried nanosuspension was characterized by redispersibility, physicochemical properties, and stability.
Results: A combination of PVA and SLS was selected as steric and electrostatic stabilizers. The optimum EZ-NS displayed a uniform size distribution with a mean particle size and zeta potential of 254.4 nm and 21.1 mV, respectively. The solidified nanosuspension was well redispersed to the original nanoparticles. Significantly enhanced aqueous solubility (about 11-fold) and accelerated dissolution rate were observed for the optimized formulation. This could be attributed to the reduced particle size and partial amorphization of EZ during the preparation process, studied by X-ray diffraction. Accelerated studies confirmed the stability of the optimum freeze-dried formulation over the examined period of three months.
Conclusions: Optimization of different variables led to the formation of EZ-NSs with desired properties through wet milling in a very short time compared to the previous study and therefore reduced production costs. This formulation seems to be a suitable approach for solubility and dissolution enhancement of EZ and may have a great potential to improve the drug's oral bioavailability.
Background: Rosa canina has been traditionally known as a medicinal plant. Different applications of fruits (Rose hip) comprise the food, perfume, and cosmetic industries.
Objectives: This study aimed to prepare an enriched polyphenolic fraction from Rosa canina in addition to its biological activities.
Methods: Poly phenolic enriched fraction was prepared using Amberlite XAD-7 for removing unwanted components. Phenols, flavonoids, and anthocyanins content analyses showed that they increased significantly compared to the extract. HPLC analysis showed that this fraction is a rich source of ascorbic acid.
Results: The results of the DPPH, ferric-reducing antioxidant power (FRAP), ABTS, and nitric oxide assay confirmed that the antioxidant activities of the fraction had been increased compared to the extract. The oxygen radical absorbance capacity (ORAC) assay and cellular antioxidant activity of the fraction also confirmed its potential antioxidant activity. This fraction showed xanthine oxidase inhibitory activity at 100 µg/mL concentration. Comet assay analysis revealed that this fraction at 25 - 100 µg/mL concentrations inhibited H2O2 genotoxicity in human lymphocytes.
Conclutions: This study suggests that the fruit of Rosa canina could be considered as a potential antioxidant, a xanthine oxidase inhibitor, and an antigenotoxic source, and the application of Amberlite XAD-7 improves extraction efficiencies through enrichment of phenolic compounds in this plant.
Background: The venom of Echis carinatus contains both procoagulant and anticoagulant components that can either promote or block the blood coagulation cascade, and some of these components affect platelet function in different ways.
Objectives: The present study focuses on setting up a procedure for the purification of crude venom and designing appropriate clotting tests in order to characterize the procoagulant and anticoagulant fractions of E. carinatus venom.
Methods: Chromatographic methods, including gel filtration, ion-exchange chromatography, and reverse-phase high-performance liquid chromatography (HPLC), were applied for purifying these fractions. Coagulant activity testing, prothrombin time (PT), and activated partial thromboplastin time (APTT) were used to determine procoagulant and anticoagulant properties. For measuring molecular weight, 15% SDS-PAGE electrophoresis with a molecular weight standard ranging from 6.5 to 200 kDa was used.
Results: We obtained five fractions named F1, F2, F3, F4, and F5. The F1 and F2 fractions showed procoagulant activity, and the F5 fraction had anticoagulant activity. The molecular weight of F2.4.2 from fraction F2 and F5.1 from fraction F5 were analyzed by SDS-PAGE electrophoresis under the reducing condition. These factors were identified as a single protein band at the end of purification. The molecular weights of these purified fractions were estimated to be 7.5 kDa and 38 kDa for F5.1(b) and F2.4.2(b), respectively.
Conclusions: Our findings suggest an efficient and suitable procedure for the identification and purification of the procoagulant and anticoagulant factors of the venom of Iranian E. carinatus using the PT and APTT assays.
Background: Chinese hamster ovary (CHO) cells are the widely used mammalian cell host for biopharmaceutical manufacturing. During cell cultures, CHO cells lose viability mainly from apoptosis. Inhibiting cell death is useful because prolonging cell lifespans can direct to more productive cell culture systems for biotechnology requests.
Objectives: This study exploited a CRISPR/Cas9 technology to generate site-specific gene disruptions in the caspase-3 gene in the apoptosis pathway, which acts as an apoptotic regulator to extend cell viability in the CHO cell line.
Methods: The STRING database was used to identify the key pro-apoptotic genes to be modified by CRISPR/Cas9 system. The guide RNAs targeting the caspase-3 gene were designed, and vectors containing sgRNA and Cas9 were transfected into CHO cells that expressed erythropoietin as a heterologous protein. Indel formation was investigated by DNA sequencing. Caspase-3 expression was quantified by real-time PCR and western blot. The effect of editing the caspase-3 gene on the inhibition of apoptosis was also investigated by induction of apoptosis in manipulated cell lines by oleuropein. Finally, the erythropoietin production in the edited cells was compared to the control cells.
Results: The caspase-3 manipulation significantly prolongation of the cell viability and decreased the caspase-3 expression level of protein in manipulated CHO cells (more than 6-fold, P-value < 0.0001). Manipulated cells displayed higher threshold tolerance to apoptosis compared to the control cells when they were induced by oleuropein. They show a higher IC50 than the control ones (7271 µM/mL Vs. 5741 µM/mL). They also show a higher proliferation rate than the control cells in the presence of an apoptosis inducer (P-value < 0.0001). Furthermore, manipulated cell lines significantly produce more recombinant protein in the presence of 2,000 µM oleuropein compared to the control ones (P-value = 0.0021).
Conclusions: We understood that CRISPR/Cas9 could be effectively applied to suppress the expression of the caspase-3 gene and rescue CHO cells from apoptosis induced by cell stress and metabolites. The CRISPR/Cas9 system-assisted caspase-3 gene ablation can potentially increase erythropoietin yield in CHO cells.