[This corrects the article e124228 in vol. 21.].
[This corrects the article e124228 in vol. 21.].
A novel series of thiadiazole compounds was synthesized through the reaction of thiosemicarbazone intermediates with 2, 3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The antiplatelet activity of the synthesized compounds was evaluated using an aggregation test with adenosine diphosphate (ADP) and arachidonic acid (AA) as platelet aggregation inducers. Among the synthesized analogs, compound 3b exhibited the most potent inhibition of platelet aggregation induced by ADP (half maximal inhibitory concentration [IC50] = 39 ± 11 µM). Molecular docking studies of 3b revealed hydrogen bonds between the nitrogen of the thiadiazole ring and Lys280. The tolyl ring exhibited hydrophobic interactions with Tyr105, similar to the antagonist co-crystallized with P2Y12 (PDB ID: 4NTJ). These compounds have the potential to serve as lead molecules for designing P2Y12 inhibitors.
Background: Neuroinflammation and oxidative stress are critical factors involved in the pathogenesis of Parkinson's disease (PD), the second most common progressive neurodegenerative disease. Additionally, lipid peroxidation end products contribute to inflammatory responses by activating pro-inflammatory genes. Lipid peroxidation occurs as a result of either the overproduction of intracellular reactive oxygen species (ROS) or the reaction of cyclooxygenases (COXs).
Objectives: In this study, we examined the role of 1,5-diaryl pyrrole derivatives against the neurotoxic effects of 6-hydroxydopamine (6-OHDA) in a cellular model of PD.
Methods: PC12 cells were pre-treated with compounds 2-(4-chlorophenyl)-5-methyl-1-(4-(trifluoromethoxy)phenyl)-1H-pyrrole (A), 2-(4-chlorophenyl)-1-(4-methoxyphenyl)-5-methyl-1H-pyrrole (B), and 1-(2-chlorophenyl)-2-(4-chlorophenyl)-5-methyl-1H-pyrrole (C), respectively, 24 h before exposure to 6-OHDA. We conducted various assays, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), ROS, and lipid peroxidation assays, Hoechst staining, Annexin V/PI, Western blotting analysis and ELISA method, to assess the neuroprotective effects of pyrrole derivatives on 6-OHDA-induced neurotoxicity.
Results: Our results demonstrated that apoptosis induction was inhibited by controlling the lipid peroxidation process in the in vitro model following pre-treatment with compounds A, B, and, somehow, C. Furthermore, compounds A and C likely act by suppressing the COX-2/PGE2 pathway, a mechanism not attributed to compound B.
Conclusions: These findings suggest that the novel synthetic pyrrolic derivatives may be considered promising neuroprotective agents that can potentially prevent the progression of PD.
Background: Infections caused by pathogenic microorganisms have increased the need for hospital care and have thus represented a public health problem and a significant financial burden. Classical treatments consisting of traditional antibiotics face several challenges today. Anti-microbial peptides (AMPs) are a conserved characteristic of the innate immune response among different animal species to defend against pathogenic microorganisms.
Objectives: In this study, a new peptide sequence (mCHTL131-140) was designed using the in silico approach.
Methods: Cathelicidin-2 (UniprotID: Q2IAL7) was used as a potential antimicrobial protein, and a novel 10 - 12 amino acids sequence AMP was designed using bioinformatics tools and the AMP databases. Then, the anti-bacterial, anti-biofilm, and anti-fungal properties of the peptide, as well as its hemolytic activity and cytotoxicity towards human fibroblast (HDF) cells, were investigated in vitro.
Results: Online bioinformatics tools indicated that the peptide sequence could have anti-bacterial, anti-viral, anti-fungal, and anti-biofilm properties with little hemolytic properties. The experimental tests confirmed that mCHTL131-140 exhibited the best anti-bacterial properties against Acinetobacter baumannii and had fair anti-fungal properties. Besides, it did not cause red blood cell lysis and showed no cytotoxicity towards HDF cells.
Conclusions: In general, the designed peptide can be considered a promising AMP to control hospital-acquired infections by A. baumannii.
Background: Polycystic ovary syndrome (PCOS) affects women of reproductive age globally with an incidence rate of 5% - 26%. Growing evidence reports important roles for microRNAs (miRNAs) in the pathophysiology of granulosa cells (GCs) in PCOS.
Objectives: The objectives of this study were to identify the top differentially expressed miRNAs (DE-miRNAs) and their corresponding targets in hub gene-miRNA networks, as well as identify novel DE-miRNAs by analyzing three distinct microarray datasets. Additionally, functional enrichment analysis was performed using bioinformatics approaches. Finally, interactions between the 5 top-ranked hub genes and drugs were investigated.
Methods: Using bioinformatics approaches, three GC profiles from the gene expression omnibus (GEO), namely gene expression omnibus series (GSE)-34526, GSE114419, and GSE137684, were analyzed. Targets of the top DE-miRNAs were predicted using the multiMiR R package, and only miRNAs with validated results were retrieved. Genes that were common between the "DE-miRNA prediction results" and the "existing tissue DE-mRNAs" were designated as differentially expressed genes (DEGs). Gene ontology (GO) and pathway enrichment analyses were implemented for DEGs. In order to identify hub genes and hub DE-miRNAs, the protein-protein interaction (PPI) network and miRNA-mRNA interaction network were constructed using Cytoscape software. The drug-gene interaction database (DGIdb) database was utilized to identify interactions between the top-ranked hub genes and drugs.
Results: Out of the top 20 DE-miRNAs that were retrieved from the GSE114419 and GSE34526 microarray datasets, only 13 of them had "validated results" through the multiMiR prediction method. Among the 13 DE-miRNAs investigated, only 5, namely hsa-miR-8085, hsa-miR-548w, hsa-miR-612, hsa-miR-1470, and hsa-miR-644a, demonstrated interactions with the 10 hub genes in the hub gene-miRNA networks in our study. Except for hsa-miR-612, the other 4 DE-miRNAs, including hsa-miR-8085, hsa-miR-548w, hsa-miR-1470, and hsa-miR-644a, are novel and had not been reported in PCOS pathogenesis before. Also, GO and pathway enrichment analyses identified "pathogenic E. coli infection" in the Kyoto encyclopedia of genes and genomes (KEGG) and "regulation of Rac1 activity" in FunRich as the top pathways. The drug-hub gene interaction network identified ACTB, JUN, PTEN, KRAS, and MAPK1 as potential targets to treat PCOS with therapeutic drugs.
Conclusions: The findings from this study might assist researchers in uncovering new biomarkers and potential therapeutic drug targets in PCOS treatment.