Background: The rise of antibiotic resistance has become a major concern, signaling the end of the golden age of antibiotics. Bacterial biofilms, which exhibit high resistance to antibiotics, significantly contribute to the emergence of antibiotic resistance. Therefore, there is an urgent need to discover new therapeutic agents with specific characteristics to effectively combat biofilm-related infections. Studies have shown the promising potential of peptides as antimicrobial agents. Objectives: This study aimed to establish a cost-effective and streamlined computational method for predicting the antibiofilm effects of peptides. This method can assist in addressing the intricate challenge of designing peptides with strong antibiofilm properties, a task that can be both challenging and costly. Methods: A positive library, consisting of peptide sequences with antibiofilm activity exceeding 50%, was assembled, along with a negative library containing quorum-sensing peptides. For each peptide sequence, feature vectors were calculated, while considering the primary structure, the order of amino acids, their physicochemical properties, and their distributions. Multiple supervised learning algorithms were used to classify peptides with significant antibiofilm effects for subsequent experimental evaluations. Results: The computational approach exhibited high accuracy in predicting the antibiofilm effects of peptides, with accuracy, precision, Matthew's correlation coefficient (MCC), and F1 score of 99%, 99%, 0.97, and 0.99, respectively. The performance level of this computational approach was comparable to that of previous methods. This study introduced a novel approach by combining the feature space with high antibiofilm activity. Conclusions: In this study, a reliable and cost-effective method was developed for predicting the antibiofilm effects of peptides using a computational approach. This approach allows for the identification of peptide sequences with substantial antibiofilm activities for further experimental investigations. Accessible source codes and raw data of this study can be found online (hiABF), providing easy access and enabling future updates.
{"title":"Integration of Machine Learning and Structural Analysis for Predicting Peptide Antibiofilm Effects: Advancements in Drug Discovery for Biofilm-Related Infections","authors":"Fatemeh Ebrahimi Tarki, Mahboobeh Zarrabi, Ahya Abdiali, Mahkame Sharbatdar","doi":"10.5812/ijpr-138704","DOIUrl":"https://doi.org/10.5812/ijpr-138704","url":null,"abstract":"Background: The rise of antibiotic resistance has become a major concern, signaling the end of the golden age of antibiotics. Bacterial biofilms, which exhibit high resistance to antibiotics, significantly contribute to the emergence of antibiotic resistance. Therefore, there is an urgent need to discover new therapeutic agents with specific characteristics to effectively combat biofilm-related infections. Studies have shown the promising potential of peptides as antimicrobial agents. Objectives: This study aimed to establish a cost-effective and streamlined computational method for predicting the antibiofilm effects of peptides. This method can assist in addressing the intricate challenge of designing peptides with strong antibiofilm properties, a task that can be both challenging and costly. Methods: A positive library, consisting of peptide sequences with antibiofilm activity exceeding 50%, was assembled, along with a negative library containing quorum-sensing peptides. For each peptide sequence, feature vectors were calculated, while considering the primary structure, the order of amino acids, their physicochemical properties, and their distributions. Multiple supervised learning algorithms were used to classify peptides with significant antibiofilm effects for subsequent experimental evaluations. Results: The computational approach exhibited high accuracy in predicting the antibiofilm effects of peptides, with accuracy, precision, Matthew's correlation coefficient (MCC), and F1 score of 99%, 99%, 0.97, and 0.99, respectively. The performance level of this computational approach was comparable to that of previous methods. This study introduced a novel approach by combining the feature space with high antibiofilm activity. Conclusions: In this study, a reliable and cost-effective method was developed for predicting the antibiofilm effects of peptides using a computational approach. This approach allows for the identification of peptide sequences with substantial antibiofilm activities for further experimental investigations. Accessible source codes and raw data of this study can be found online (hiABF), providing easy access and enabling future updates.","PeriodicalId":14595,"journal":{"name":"Iranian Journal of Pharmaceutical Research","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136278729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
: Since December 2019, the world has been grappling with an ongoing global COVID-19 pandemic. Various virus variants have emerged over the past two years, each posing a greater threat than its predecessors. The recent appearance of the omicron variant (B.1.1.529) has raised significant alarm within the field of epidemiology due to its highly contagious nature and rapid transmission rate. The omicron variant possessed mutations in the key receptor-binding domain (RBD) region, the S region, and these modifications have shown a notable impact on the strain's susceptibility to neutralizing antibodies. Developing safe and efficient vaccines to prevent a future severe acute respiratory outbreak of coronavirus syndrome 2 (SARS-CoV-2) is significant. Viral surface spike proteins are ideal targets for vaccines. This study aimed to find a multi-subunit chimeric vaccine. After conducting bioinformatics analysis, the recombinant spike (RS) protein of SARS-CoV-2 was deliberately designed and subsequently produced using E. coli expression systems. The immunogenicity of RS and neutralizing antibody responses were evaluated on immunized BALB/c mice. There was a significant difference in antibody titers between RS-immunized mice and control groups. The endpoint of the serum antibody titer of mice immunized with our chimeric protein was 2.5 times higher than that of the negative control. The chimeric construct could present multiple antigens simultaneously, influentially affecting immunization. Sera from mice vaccinated by RS could recognize the SARS-CoV-2 virus and neutralize antibodies. Our chimeric peptide could bind to antibodies in the serum of patients infected with different serotypes of the SARS-CoV-2 virus, such as alpha, delta, and omicron variants. The results indicated that the RS protein would be a potential novel antigenic candidate for subunit vaccine development and could be used as a useful alternative to generate diagnostic serological tests for SARS-CoV-2 infection.
{"title":"Designing and Expression of Recombinant Chimeric Spike Protein from SARS-CoV-2 in Escherichia coli and Its Immunogenicity Assessment","authors":"Sahar Karimi, Shahram Nazarian, Fattah Sotoodehnejadnematalahi, Roohollah Dorostkar, Jafar Amani","doi":"10.5812/ijpr-137751","DOIUrl":"https://doi.org/10.5812/ijpr-137751","url":null,"abstract":": Since December 2019, the world has been grappling with an ongoing global COVID-19 pandemic. Various virus variants have emerged over the past two years, each posing a greater threat than its predecessors. The recent appearance of the omicron variant (B.1.1.529) has raised significant alarm within the field of epidemiology due to its highly contagious nature and rapid transmission rate. The omicron variant possessed mutations in the key receptor-binding domain (RBD) region, the S region, and these modifications have shown a notable impact on the strain's susceptibility to neutralizing antibodies. Developing safe and efficient vaccines to prevent a future severe acute respiratory outbreak of coronavirus syndrome 2 (SARS-CoV-2) is significant. Viral surface spike proteins are ideal targets for vaccines. This study aimed to find a multi-subunit chimeric vaccine. After conducting bioinformatics analysis, the recombinant spike (RS) protein of SARS-CoV-2 was deliberately designed and subsequently produced using E. coli expression systems. The immunogenicity of RS and neutralizing antibody responses were evaluated on immunized BALB/c mice. There was a significant difference in antibody titers between RS-immunized mice and control groups. The endpoint of the serum antibody titer of mice immunized with our chimeric protein was 2.5 times higher than that of the negative control. The chimeric construct could present multiple antigens simultaneously, influentially affecting immunization. Sera from mice vaccinated by RS could recognize the SARS-CoV-2 virus and neutralize antibodies. Our chimeric peptide could bind to antibodies in the serum of patients infected with different serotypes of the SARS-CoV-2 virus, such as alpha, delta, and omicron variants. The results indicated that the RS protein would be a potential novel antigenic candidate for subunit vaccine development and could be used as a useful alternative to generate diagnostic serological tests for SARS-CoV-2 infection.","PeriodicalId":14595,"journal":{"name":"Iranian Journal of Pharmaceutical Research","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136072046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Cerasomes, due to their external siloxane network, demonstrate markedly higher physicochemical stability and, therefore, easier handling and storage than liposomes. Objectives: The main objective of this study was to compare the pharmacokinetics (PK) of cerasome and liposome following intravenous administration. The PK of PEGylated and non-PEGylated cerasomes was also compared to see whether the presence of a hydrophilic siloxane network on the surface of cerasomes can play the role of polyethylene glycol (PEG) in increasing the blood circulation of these vesicles. Methods: Silver sulfide (Ag2S) quantum dots (Qds)-loaded PEGylated and non-PEGylated cerasomes and PEGylated liposomes were fabricated and thoroughly characterized in terms of particle size, polydispersity index, zeta potential, entrapment efficiency, and in vitro stability. For pharmacokinetic evaluation, the free Qds and the selected formulations were intravenously injected into rats, and blood samples were collected for up to 72 hours. Pharmacokinetic parameters were calculated by the non-compartmental method. Results: Both cerasomal and liposomal carriers significantly improved the PK of Qds. For example, the elimination half-life (t1/2) and the area under the plasma concentration-time curve from time 0 to time infinity (AUC0-∞) for the free Qds were 4.39 h and 8.01 µg/mL*h and for cerasomal and liposomal formulations were 28.82 versus 26.95 h and 73.25 versus 62.02 µg/mL*h, respectively. However, compared to each other, the plasma concentration-time profiles of PEGylated cerasomes and liposomes displayed similar patterns, and the statistical comparison of their pharmacokinetic parameters did not show any significant difference between the two types of carriers. For PEGylated cerasomes, t1/2 and AUC0-∞ values were respectively 1.6 and 3.3 times greater than the classic cerasome, indicating that despite the presence of a hydrophilic siloxane network, the incorporation of PEG is necessary to reduce the clearance of cerasomes. Conclusions: The comparable PK of PEGylated cerasomes and liposomes, along with the higher physicochemical stability of cerasomes, can be considered an important advantage for the clinical application of cerasomes. Additionally, the easy surface functionalizing ability of cerasomes confers a dual advantage over liposomes. The study findings also showed that the presence of a hydrophilic siloxane network on the surface of cerasomes alone is not enough to make them circulate long.
{"title":"Cerasome Versus Liposome: A Comparative Pharmacokinetic Analysis Following Intravenous Administration into Rats","authors":"Shima Bahri, Erfan Abdollahizad, Iman Mahlooji, Elham Rezaee, Zahra Abbasian, Simin Dadashzadeh","doi":"10.5812/ijpr-138362","DOIUrl":"https://doi.org/10.5812/ijpr-138362","url":null,"abstract":"Background: Cerasomes, due to their external siloxane network, demonstrate markedly higher physicochemical stability and, therefore, easier handling and storage than liposomes. Objectives: The main objective of this study was to compare the pharmacokinetics (PK) of cerasome and liposome following intravenous administration. The PK of PEGylated and non-PEGylated cerasomes was also compared to see whether the presence of a hydrophilic siloxane network on the surface of cerasomes can play the role of polyethylene glycol (PEG) in increasing the blood circulation of these vesicles. Methods: Silver sulfide (Ag2S) quantum dots (Qds)-loaded PEGylated and non-PEGylated cerasomes and PEGylated liposomes were fabricated and thoroughly characterized in terms of particle size, polydispersity index, zeta potential, entrapment efficiency, and in vitro stability. For pharmacokinetic evaluation, the free Qds and the selected formulations were intravenously injected into rats, and blood samples were collected for up to 72 hours. Pharmacokinetic parameters were calculated by the non-compartmental method. Results: Both cerasomal and liposomal carriers significantly improved the PK of Qds. For example, the elimination half-life (t1/2) and the area under the plasma concentration-time curve from time 0 to time infinity (AUC0-∞) for the free Qds were 4.39 h and 8.01 µg/mL*h and for cerasomal and liposomal formulations were 28.82 versus 26.95 h and 73.25 versus 62.02 µg/mL*h, respectively. However, compared to each other, the plasma concentration-time profiles of PEGylated cerasomes and liposomes displayed similar patterns, and the statistical comparison of their pharmacokinetic parameters did not show any significant difference between the two types of carriers. For PEGylated cerasomes, t1/2 and AUC0-∞ values were respectively 1.6 and 3.3 times greater than the classic cerasome, indicating that despite the presence of a hydrophilic siloxane network, the incorporation of PEG is necessary to reduce the clearance of cerasomes. Conclusions: The comparable PK of PEGylated cerasomes and liposomes, along with the higher physicochemical stability of cerasomes, can be considered an important advantage for the clinical application of cerasomes. Additionally, the easy surface functionalizing ability of cerasomes confers a dual advantage over liposomes. The study findings also showed that the presence of a hydrophilic siloxane network on the surface of cerasomes alone is not enough to make them circulate long.","PeriodicalId":14595,"journal":{"name":"Iranian Journal of Pharmaceutical Research","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136107799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The stratum corneum (SC) serves as the primary barrier for permeation in human skin. Penetration enhancers, such as 1,8-cineole, are utilized to enhance the permeation of drugs. Cineole increases the permeation of chemicals through different mechanisms. However, its mechanism, particularly at high concentrations, has not been well-studied and is the subject of the present investigation. Objectives: In continuation of our previous studies, the present investigation aims to elucidate the mechanism of action and concentration dependency of the effects of 1,8-cineole on the structure, diffusional properties, and partitioning behavior of the SC at high concentrations. This will be achieved through lamellar liquid crystalline models and ex-vivo skin studies. Methods: A lamellar liquid crystalline lipid matrix model in the presence (25 - 90%, w/w) and absence of cineole was prepared from SC lipids and characterized by X-ray diffraction, differential scanning calorimetry (DSC), Thermogravimetric Analysis (TGA), and Polarized Light Microscopy (PLM) studies. The release of the model lipophilic drug (diazepam) from cineole and cineole-treated matrices and the permeation of the drug from cineole and cineole-containing matrices (as a vehicle similar to the stratum corneum lipids) through excised rat skin were studied. A drug assay was performed by HPLC. Results: The PLM, DSC, and X-ray studies showed that the model matrix had a lamellar gel-liquid crystalline structure, and cineole fluidized the structure concentration dependently and created other mesomorphic textures, such as myelinic figures. Release experiments showed that diffusion coefficients remained almost constant at high cineole concentrations of 40-90%, suggesting similar fluidization states. Skin permeation studies indicated that the diffusion coefficient (estimated from lag-time) increased concentration-dependently and played a role in permeability coefficient (Kp) increments alongside the increased partitioning of the model drug into the skin. Data suggest that high concentrations of cineole at the skin surface might not provide enough cineole in the skin for full fluidization, despite the similarity of the vehicle to SC lipids and even at high concentrations. Conclusions: The enhancement effect of cineole is concentration-dependent and might reach maximum fluidization at certain concentrations, but this maximum might not be easily achievable when cineole is used in formulations as pure or in a vehicle.
{"title":"A Mechanistic Study on the Fluidization and Enhancement Effects of Cineole Toward Stratum Corneum Intercellular Lamellar Lipids: A Liquid Crystalline Model Approach","authors":"L. Karami, H. Moghimi","doi":"10.5812/ijpharm-134731","DOIUrl":"https://doi.org/10.5812/ijpharm-134731","url":null,"abstract":"Background: The stratum corneum (SC) serves as the primary barrier for permeation in human skin. Penetration enhancers, such as 1,8-cineole, are utilized to enhance the permeation of drugs. Cineole increases the permeation of chemicals through different mechanisms. However, its mechanism, particularly at high concentrations, has not been well-studied and is the subject of the present investigation. Objectives: In continuation of our previous studies, the present investigation aims to elucidate the mechanism of action and concentration dependency of the effects of 1,8-cineole on the structure, diffusional properties, and partitioning behavior of the SC at high concentrations. This will be achieved through lamellar liquid crystalline models and ex-vivo skin studies. Methods: A lamellar liquid crystalline lipid matrix model in the presence (25 - 90%, w/w) and absence of cineole was prepared from SC lipids and characterized by X-ray diffraction, differential scanning calorimetry (DSC), Thermogravimetric Analysis (TGA), and Polarized Light Microscopy (PLM) studies. The release of the model lipophilic drug (diazepam) from cineole and cineole-treated matrices and the permeation of the drug from cineole and cineole-containing matrices (as a vehicle similar to the stratum corneum lipids) through excised rat skin were studied. A drug assay was performed by HPLC. Results: The PLM, DSC, and X-ray studies showed that the model matrix had a lamellar gel-liquid crystalline structure, and cineole fluidized the structure concentration dependently and created other mesomorphic textures, such as myelinic figures. Release experiments showed that diffusion coefficients remained almost constant at high cineole concentrations of 40-90%, suggesting similar fluidization states. Skin permeation studies indicated that the diffusion coefficient (estimated from lag-time) increased concentration-dependently and played a role in permeability coefficient (Kp) increments alongside the increased partitioning of the model drug into the skin. Data suggest that high concentrations of cineole at the skin surface might not provide enough cineole in the skin for full fluidization, despite the similarity of the vehicle to SC lipids and even at high concentrations. Conclusions: The enhancement effect of cineole is concentration-dependent and might reach maximum fluidization at certain concentrations, but this maximum might not be easily achievable when cineole is used in formulations as pure or in a vehicle.","PeriodicalId":14595,"journal":{"name":"Iranian Journal of Pharmaceutical Research","volume":"1 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89788613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The stratum corneum (SC) serves as the primary barrier for permeation in human skin. Penetration enhancers, such as 1,8-cineole, are utilized to enhance the permeation of drugs. Cineole increases the permeation of chemicals through different mechanisms. However, its mechanism, particularly at high concentrations, has not been well-studied and is the subject of the present investigation. Objectives: In continuation of our previous studies, the present investigation aims to elucidate the mechanism of action and concentration dependency of the effects of 1,8-cineole on the structure, diffusional properties, and partitioning behavior of the SC at high concentrations. This will be achieved through lamellar liquid crystalline models and ex-vivo skin studies. Methods: A lamellar liquid crystalline lipid matrix model in the presence (25 - 90%, w/w) and absence of cineole was prepared from SC lipids and characterized by X-ray diffraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and polarized light microscopy (PLM) studies. Release of the model lipophilic drug (diazepam) from cineole and cineole-treated matrices and the permeation of the drug from cineole and cineole-containing matrices (as a vehicle similar to the stratum corneum lipids) through excised rat skin were studied. Drug assay was performed by HPLC. Results: The PLM, DSC, and X-ray studies showed that the model matrix had a lamellar gel-liquid crystalline structure, and cineole fluidized the structure concentration-dependently and created other mesomorphic textures, such as myelinic figures. Release experiments showed that diffusion coefficients remained almost constant at high cineole concentrations of 40-90%, suggesting similar fluidization states. Skin permeation studies indicated that the diffusion coefficient (estimated from lag-time) increased concentration-dependently and played a role in permeability coefficient (Kp) increments alongside the increased partitioning of the model drug into the skin. Data suggest that high concentrations of cineole at the skin surface might not provide enough cineole in the skin for full fluidization, despite the similarity of the vehicle to SC lipids and even at high concentrations. Conclusions: The enhancement effect of cineole is concentration-dependent and might reach maximum fluidization at certain concentrations, but this maximum might not be easily achievable when cineole is used in formulations as pure or in a vehicle.
{"title":"A Mechanistic Study on the Fluidization and Enhancement Effects of Cineole Toward Stratum Corneum Intercellular Lamellar Lipids: A Liquid Crystalline Model Approach","authors":"Leila Karami, Hamid Reza Moghimi","doi":"10.5812/ijpr-134731","DOIUrl":"https://doi.org/10.5812/ijpr-134731","url":null,"abstract":"Background: The stratum corneum (SC) serves as the primary barrier for permeation in human skin. Penetration enhancers, such as 1,8-cineole, are utilized to enhance the permeation of drugs. Cineole increases the permeation of chemicals through different mechanisms. However, its mechanism, particularly at high concentrations, has not been well-studied and is the subject of the present investigation. Objectives: In continuation of our previous studies, the present investigation aims to elucidate the mechanism of action and concentration dependency of the effects of 1,8-cineole on the structure, diffusional properties, and partitioning behavior of the SC at high concentrations. This will be achieved through lamellar liquid crystalline models and ex-vivo skin studies. Methods: A lamellar liquid crystalline lipid matrix model in the presence (25 - 90%, w/w) and absence of cineole was prepared from SC lipids and characterized by X-ray diffraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and polarized light microscopy (PLM) studies. Release of the model lipophilic drug (diazepam) from cineole and cineole-treated matrices and the permeation of the drug from cineole and cineole-containing matrices (as a vehicle similar to the stratum corneum lipids) through excised rat skin were studied. Drug assay was performed by HPLC. Results: The PLM, DSC, and X-ray studies showed that the model matrix had a lamellar gel-liquid crystalline structure, and cineole fluidized the structure concentration-dependently and created other mesomorphic textures, such as myelinic figures. Release experiments showed that diffusion coefficients remained almost constant at high cineole concentrations of 40-90%, suggesting similar fluidization states. Skin permeation studies indicated that the diffusion coefficient (estimated from lag-time) increased concentration-dependently and played a role in permeability coefficient (Kp) increments alongside the increased partitioning of the model drug into the skin. Data suggest that high concentrations of cineole at the skin surface might not provide enough cineole in the skin for full fluidization, despite the similarity of the vehicle to SC lipids and even at high concentrations. Conclusions: The enhancement effect of cineole is concentration-dependent and might reach maximum fluidization at certain concentrations, but this maximum might not be easily achievable when cineole is used in formulations as pure or in a vehicle.","PeriodicalId":14595,"journal":{"name":"Iranian Journal of Pharmaceutical Research","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136286497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The prevalence of obesity has almost tripled since 1975, and obesity places a heavy economic burden on healthcare systems. There is a high tendency to use a variety of complementary medicine modalities for weight management among obese patients. Persian Medicine is an ancient medical school practiced for thousands of years in Iran. Found in reliable Iranian traditional resources, Komouni formulation (KF) is a compound medicine that can be effective in the treatment of obesity. It comprises black caraway (Bunium persicum Boiss.), anise (Pimpinella anisum L.), fennel (Foeniculum vulgare Miller), and ajwain (Trachyspemum ammi L.) Objectives: This study aimed to determine the effects of KF on anthropometric indices and metabolic parameters in overweight and obese women. Methods: This triple-blinded randomized controlled clinical trial was performed on 70 overweight or obese women aged 20 - 40 years, with a body mass index (BMI) of 25 - 34.9 kg/m2. The subjects were randomly divided into two groups (each group n = 35) to receive a calorie-restricted diet with 2 g/day (500 mg 30 minutes before breakfast, 1000 mg 30 minutes before lunch, and 500 mg 30 minutes before dinner) KF or placebo for 8 weeks. Anthropometric indices, food intake, and biochemical parameters were measured at baseline and after the intervention. Results: A total of 60 women (intervention = 30; placebo = 30) completed the trial. After the intervention, the KF group experienced a significant reduction in weight (-4.8 vs. -3.2 kg; P = 0.0001), BMI (-1.8 vs. -0.79 kg/m2; P = 0.0001), waist circumference (-5.28 vs. -3.20 cm; P = 0.004), hip circumference (-0.018 vs. -0.008 cm; P = 0.047), fasting blood sugar (-5.6 vs. 0.33; P = 0.025), and low-density lipoprotein (-11.7 vs. 6.7; P = 0.0001), compared to the placebo group. None of the patients in the intervention and placebo groups reported any side effects. Conclusions: Using KF, along with a calorie-restricted diet, can reduce cardiometabolic risk factors in overweight and obese women. However, further studies are needed to elucidate the efficacy of KF as a complementary therapy in obesity.
背景:自1975年以来,肥胖的患病率几乎增加了两倍,肥胖给医疗保健系统带来了沉重的经济负担。在肥胖患者中,使用各种补充医学模式进行体重管理的趋势很高。波斯医学是一种古老的医学流派,在伊朗已有数千年的历史。在可靠的伊朗传统资源中发现,Komouni配方(KF)是一种可以有效治疗肥胖的复合药物。它包括黑香菜(Bunium persicum Boiss.)、茴香(Pimpinella anisum L.)、茴香(Foeniculum vulgare Miller)和茴香(Trachyspemum ammi L.)。目的:本研究旨在确定KF对超重和肥胖女性人体测量指标和代谢参数的影响。方法:对70名体重指数(BMI)在25 ~ 34.9 kg/m2之间、年龄在20 ~ 40岁的超重或肥胖女性进行三盲随机对照临床试验。受试者被随机分为两组(每组n = 35),接受热量限制饮食,每天2克(早餐前30分钟500毫克,午餐前30分钟1000毫克,晚餐前30分钟500毫克)KF或安慰剂,为期8周。在基线和干预后测量人体测量指数、食物摄入量和生化参数。结果:共60名妇女(干预= 30;安慰剂= 30)完成试验。干预后,KF组体重显著减轻(-4.8 vs -3.2 kg;P = 0.0001), BMI (-1.8 vs. -0.79 kg/m2;P = 0.0001),腰围(-5.28 vs -3.20 cm;P = 0.004)、臀围(-0.018 vs. -0.008 cm;P = 0.047),空腹血糖(-5.6 vs. 0.33;P = 0.025),低密度脂蛋白(-11.7 vs. 6.7;P = 0.0001),与安慰剂组相比。在干预组和安慰剂组中,没有患者报告有任何副作用。结论:使用KF和限制卡路里的饮食可以减少超重和肥胖妇女的心脏代谢危险因素。然而,需要进一步的研究来阐明KF作为肥胖补充疗法的功效。
{"title":"Effects of Komouni Formulation (Herbal Product of Persian Medicine) With a Low-Calorie Diet on Cardiometabolic Risk Factors in Overweight and Obese Women: A Triple-Blinded Randomized Clinical Trial","authors":"Zahra Aghabeiglooei, Nazli Namazi, Mehrdad Karimi, Samaneh Soleymani, Mohammad Hossein Ayati, Hossein Rezaeizadeh","doi":"10.5812/ijpr-136114","DOIUrl":"https://doi.org/10.5812/ijpr-136114","url":null,"abstract":"Background: The prevalence of obesity has almost tripled since 1975, and obesity places a heavy economic burden on healthcare systems. There is a high tendency to use a variety of complementary medicine modalities for weight management among obese patients. Persian Medicine is an ancient medical school practiced for thousands of years in Iran. Found in reliable Iranian traditional resources, Komouni formulation (KF) is a compound medicine that can be effective in the treatment of obesity. It comprises black caraway (Bunium persicum Boiss.), anise (Pimpinella anisum L.), fennel (Foeniculum vulgare Miller), and ajwain (Trachyspemum ammi L.) Objectives: This study aimed to determine the effects of KF on anthropometric indices and metabolic parameters in overweight and obese women. Methods: This triple-blinded randomized controlled clinical trial was performed on 70 overweight or obese women aged 20 - 40 years, with a body mass index (BMI) of 25 - 34.9 kg/m2. The subjects were randomly divided into two groups (each group n = 35) to receive a calorie-restricted diet with 2 g/day (500 mg 30 minutes before breakfast, 1000 mg 30 minutes before lunch, and 500 mg 30 minutes before dinner) KF or placebo for 8 weeks. Anthropometric indices, food intake, and biochemical parameters were measured at baseline and after the intervention. Results: A total of 60 women (intervention = 30; placebo = 30) completed the trial. After the intervention, the KF group experienced a significant reduction in weight (-4.8 vs. -3.2 kg; P = 0.0001), BMI (-1.8 vs. -0.79 kg/m2; P = 0.0001), waist circumference (-5.28 vs. -3.20 cm; P = 0.004), hip circumference (-0.018 vs. -0.008 cm; P = 0.047), fasting blood sugar (-5.6 vs. 0.33; P = 0.025), and low-density lipoprotein (-11.7 vs. 6.7; P = 0.0001), compared to the placebo group. None of the patients in the intervention and placebo groups reported any side effects. Conclusions: Using KF, along with a calorie-restricted diet, can reduce cardiometabolic risk factors in overweight and obese women. However, further studies are needed to elucidate the efficacy of KF as a complementary therapy in obesity.","PeriodicalId":14595,"journal":{"name":"Iranian Journal of Pharmaceutical Research","volume":"104 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135089505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zahra Aghabeiglooei, N. Namazi, M. Karimi, S. Soleymani, M. Ayati, H. Rezaeizadeh
Background: The prevalence of obesity has almost tripled since 1975, and obesity places a heavy economic burden on healthcare systems. There is a high tendency to use a variety of complementary medicine modalities for weight management among obese patients. Persian Medicine is an ancient medical school practiced for thousands of years in Iran. Found in reliable Iranian traditional resources, Komouni formulation (KF) is a compound medicine that can be effective in the treatment of obesity. It comprises black caraway (Bunium persicum Boiss.), anise (Pimpinella anisum L.), fennel (Foeniculum vulgare Miller), and ajwain (Trachyspemum ammi L.) Objectives: This study aimed to determine the effects of KF on anthropometric indices and metabolic parameters in overweight and obese women. Methods: This triple-blinded randomized controlled clinical trial was performed on 70 overweight or obese women aged 20 - 40 years, with a body mass index (BMI) of 25 - 34.9 kg/m2. The subjects were randomly divided into two groups (each group n = 35) to receive a calorie-restricted diet with 2 g/day (500 mg 30 minutes before breakfast, 1000 mg 30 minutes before lunch, and 500 mg 30 minutes before dinner) KF or placebo for 8 weeks. Anthropometric indices, food intake, and biochemical parameters were measured at baseline and after the intervention. Results: A total of 60 women (intervention = 30; placebo = 30) completed the trial. After the intervention, the KF group experienced a significant reduction in weight (-4.8 vs. -3.2 kg; P = 0.0001), BMI (-1.8 vs. -0.79 kg/m2; P = 0.0001), waist circumference (-5.28 vs. -3.20 cm; P = 0.004), hip circumference (-0.018 vs. -0.008 cm; P = 0.047), fasting blood sugar (-5.6 vs. 0.33; P = 0.025), and low-density lipoprotein (-11.7 vs. 6.7; P = 0.0001), compared to the placebo group. None of the patients in the intervention and placebo groups reported any side effects. Conclusions: Using KF, along with a calorie-restricted diet, can reduce cardiometabolic risk factors in overweight and obese women. However, further studies are needed to elucidate the efficacy of KF as a complementary therapy in obesity.
背景:自1975年以来,肥胖的患病率几乎增加了两倍,肥胖给医疗保健系统带来了沉重的经济负担。在肥胖患者中,使用各种补充医学模式进行体重管理的趋势很高。波斯医学是一种古老的医学流派,在伊朗已有数千年的历史。在可靠的伊朗传统资源中发现,Komouni配方(KF)是一种可以有效治疗肥胖的复合药物。它包括黑香菜(Bunium persicum Boiss.)、茴香(Pimpinella anisum L.)、茴香(Foeniculum vulgare Miller)和茴香(Trachyspemum ammi L.)。目的:本研究旨在确定KF对超重和肥胖女性人体测量指标和代谢参数的影响。方法:对70名体重指数(BMI)在25 ~ 34.9 kg/m2之间、年龄在20 ~ 40岁的超重或肥胖女性进行三盲随机对照临床试验。受试者被随机分为两组(每组n = 35),接受热量限制饮食,每天2克(早餐前30分钟500毫克,午餐前30分钟1000毫克,晚餐前30分钟500毫克)KF或安慰剂,为期8周。在基线和干预后测量人体测量指数、食物摄入量和生化参数。结果:共60名妇女(干预= 30;安慰剂= 30)完成试验。干预后,KF组体重显著减轻(-4.8 vs -3.2 kg;P = 0.0001), BMI (-1.8 vs. -0.79 kg/m2;P = 0.0001),腰围(-5.28 vs -3.20 cm;P = 0.004)、臀围(-0.018 vs. -0.008 cm;P = 0.047),空腹血糖(-5.6 vs. 0.33;P = 0.025),低密度脂蛋白(-11.7 vs. 6.7;P = 0.0001),与安慰剂组相比。在干预组和安慰剂组中,没有患者报告有任何副作用。结论:使用KF和限制卡路里的饮食可以减少超重和肥胖妇女的心脏代谢危险因素。然而,需要进一步的研究来阐明KF作为肥胖补充疗法的功效。
{"title":"Effects of Komouni Formulation (Herbal Product of Persian Medicine) With a Low-Calorie Diet on Cardiometabolic Risk Factors in Overweight and Obese Women: A Triple-Blinded Randomized Clinical Trial","authors":"Zahra Aghabeiglooei, N. Namazi, M. Karimi, S. Soleymani, M. Ayati, H. Rezaeizadeh","doi":"10.5812/ijpharm-136114","DOIUrl":"https://doi.org/10.5812/ijpharm-136114","url":null,"abstract":"Background: The prevalence of obesity has almost tripled since 1975, and obesity places a heavy economic burden on healthcare systems. There is a high tendency to use a variety of complementary medicine modalities for weight management among obese patients. Persian Medicine is an ancient medical school practiced for thousands of years in Iran. Found in reliable Iranian traditional resources, Komouni formulation (KF) is a compound medicine that can be effective in the treatment of obesity. It comprises black caraway (Bunium persicum Boiss.), anise (Pimpinella anisum L.), fennel (Foeniculum vulgare Miller), and ajwain (Trachyspemum ammi L.) Objectives: This study aimed to determine the effects of KF on anthropometric indices and metabolic parameters in overweight and obese women. Methods: This triple-blinded randomized controlled clinical trial was performed on 70 overweight or obese women aged 20 - 40 years, with a body mass index (BMI) of 25 - 34.9 kg/m2. The subjects were randomly divided into two groups (each group n = 35) to receive a calorie-restricted diet with 2 g/day (500 mg 30 minutes before breakfast, 1000 mg 30 minutes before lunch, and 500 mg 30 minutes before dinner) KF or placebo for 8 weeks. Anthropometric indices, food intake, and biochemical parameters were measured at baseline and after the intervention. Results: A total of 60 women (intervention = 30; placebo = 30) completed the trial. After the intervention, the KF group experienced a significant reduction in weight (-4.8 vs. -3.2 kg; P = 0.0001), BMI (-1.8 vs. -0.79 kg/m2; P = 0.0001), waist circumference (-5.28 vs. -3.20 cm; P = 0.004), hip circumference (-0.018 vs. -0.008 cm; P = 0.047), fasting blood sugar (-5.6 vs. 0.33; P = 0.025), and low-density lipoprotein (-11.7 vs. 6.7; P = 0.0001), compared to the placebo group. None of the patients in the intervention and placebo groups reported any side effects. Conclusions: Using KF, along with a calorie-restricted diet, can reduce cardiometabolic risk factors in overweight and obese women. However, further studies are needed to elucidate the efficacy of KF as a complementary therapy in obesity.","PeriodicalId":14595,"journal":{"name":"Iranian Journal of Pharmaceutical Research","volume":"8 11","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72427245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Shirmohammadi, S. Azizi, H. Rasekh, F. Peiravian, Mahyar Polroudi Moghaddam
Background: Given the intensifying competition, adapting to the market environment and meeting customer demands are crucial aspects of the evolving marketing process. Market orientation (MO) represents an organizational culture encompassing shared beliefs and values that prioritize the customer's role in business planning. Objectives: This study seeks to explore the impact of MO on innovative performance (IP) and the potential mediating role of dynamic capabilities (DC) and corporate social responsibility (CSR) in this relationship. Methods: For this study, a structured quantitative questionnaire was distributed to 100 local pharmaceutical companies, resulting in 300 completed questionnaires. Each questionnaire consisted of four main components, which were filled out by three managers from each company: Chief executive officer (CEO), marketing manager, and research and development manager. The collected data were analyzed using SPSS software and structural equation methods to examine the research questions and hypotheses. Results: According to the study findings, there was a positive correlation between employee age, organizational structure, sales volume, and the presence of private companies with IP. MO, DC, and CSR showed a direct and significant relationship with IP. Moreover, the CSR of the company influenced IP through the mediating role of DC. Market orientation was found to enhance explorative IP, leading to improvements in existing processes and services. Conclusions: Based on the study results, it was found that MO has a direct positive impact on IP, leading to improvements in the company's existing processes through its influence on exploratory performance.
{"title":"Investigating the Relationship Between the Market Orientation Approach of Pharmaceutical Companies and Their Innovative Performance: The Mediating Role of Dynamic Capabilities and Corporate Social Responsibility","authors":"J. Shirmohammadi, S. Azizi, H. Rasekh, F. Peiravian, Mahyar Polroudi Moghaddam","doi":"10.5812/ijpr-135094","DOIUrl":"https://doi.org/10.5812/ijpr-135094","url":null,"abstract":"Background: Given the intensifying competition, adapting to the market environment and meeting customer demands are crucial aspects of the evolving marketing process. Market orientation (MO) represents an organizational culture encompassing shared beliefs and values that prioritize the customer's role in business planning. Objectives: This study seeks to explore the impact of MO on innovative performance (IP) and the potential mediating role of dynamic capabilities (DC) and corporate social responsibility (CSR) in this relationship. Methods: For this study, a structured quantitative questionnaire was distributed to 100 local pharmaceutical companies, resulting in 300 completed questionnaires. Each questionnaire consisted of four main components, which were filled out by three managers from each company: Chief executive officer (CEO), marketing manager, and research and development manager. The collected data were analyzed using SPSS software and structural equation methods to examine the research questions and hypotheses. Results: According to the study findings, there was a positive correlation between employee age, organizational structure, sales volume, and the presence of private companies with IP. MO, DC, and CSR showed a direct and significant relationship with IP. Moreover, the CSR of the company influenced IP through the mediating role of DC. Market orientation was found to enhance explorative IP, leading to improvements in existing processes and services. Conclusions: Based on the study results, it was found that MO has a direct positive impact on IP, leading to improvements in the company's existing processes through its influence on exploratory performance.","PeriodicalId":14595,"journal":{"name":"Iranian Journal of Pharmaceutical Research","volume":"80 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79258614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasamin Davatgaran-Taghipour, Yousof Saeedi-Honar, Roya Salehi, Amir Zarebkohan, Vladimir P.Torchilin
Background: Breast cancer is a multifaceted disease characterized by genetic and epigenetic changes that lead to uncontrolled cell growth and metastasis. Early detection and treatment are crucial for managing diseases. Objectives: The objective of this study is to investigate the potential of chimeric peptides for drug delivery and to identify biomarkers associated with breast cancer. Recent studies have shown that the low-density lipoprotein receptor-related protein 1 (LRP-1) receptor has a significant impact on the development of breast cancer. In order to facilitate the identification of biomarkers, we have created a chimeric peptide that has been proven to bind successfully to the LRP-1 receptor. Methods: To identify biomarkers, we utilized advanced computational methods to conduct a meta-analysis of microarray data. Specifically, the g:Profiler and eXpression2Kinases (X2K) databases were utilized to identify gene ontologies and transcription factors. We then used the Human Protein Atlas to identify and assess crucial gene expressions. Results: Our results demonstrated that nucleolar and spindle-associated protein 1 (NUSAP1), melatonin receptor 1A (MELT), and cyclin-dependent kinase 1 (CDK1) are three hub genes that play pivotal roles in the pathogenesis of breast cancer. Conclusions: The research findings provide a deeper understanding of the molecular mechanisms involved in developing breast cancer. These findings have significant implications for developing novel therapies and diagnostics for this disease.
{"title":"The Interaction of SRL-2 Peptide with LRP-1 Receptor and Identification of Breast Cancer Related Biomarkers: An In-silico Approach","authors":"Yasamin Davatgaran-Taghipour, Yousof Saeedi-Honar, Roya Salehi, Amir Zarebkohan, Vladimir P.Torchilin","doi":"10.5812/ijpr-136624","DOIUrl":"https://doi.org/10.5812/ijpr-136624","url":null,"abstract":"Background: Breast cancer is a multifaceted disease characterized by genetic and epigenetic changes that lead to uncontrolled cell growth and metastasis. Early detection and treatment are crucial for managing diseases. Objectives: The objective of this study is to investigate the potential of chimeric peptides for drug delivery and to identify biomarkers associated with breast cancer. Recent studies have shown that the low-density lipoprotein receptor-related protein 1 (LRP-1) receptor has a significant impact on the development of breast cancer. In order to facilitate the identification of biomarkers, we have created a chimeric peptide that has been proven to bind successfully to the LRP-1 receptor. Methods: To identify biomarkers, we utilized advanced computational methods to conduct a meta-analysis of microarray data. Specifically, the g:Profiler and eXpression2Kinases (X2K) databases were utilized to identify gene ontologies and transcription factors. We then used the Human Protein Atlas to identify and assess crucial gene expressions. Results: Our results demonstrated that nucleolar and spindle-associated protein 1 (NUSAP1), melatonin receptor 1A (MELT), and cyclin-dependent kinase 1 (CDK1) are three hub genes that play pivotal roles in the pathogenesis of breast cancer. Conclusions: The research findings provide a deeper understanding of the molecular mechanisms involved in developing breast cancer. These findings have significant implications for developing novel therapies and diagnostics for this disease.","PeriodicalId":14595,"journal":{"name":"Iranian Journal of Pharmaceutical Research","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135004717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasamin Davatgaran-Taghipour, Yousef Saeedi-Honar, R. Salehi, A. Zarebkohan, Vladimir P.Torchilin
Background: Breast cancer is a multifaceted disease characterized by genetic and epigenetic changes that lead to uncontrolled cell growth and metastasis. Early detection and treatment are crucial for managing diseases. Objectives: The objective of this study is to investigate the potential of chimeric peptides for drug delivery and to identify biomarkers associated with breast cancer. Recent studies have shown that the low-density lipoprotein receptor-related protein 1 (LRP-1) receptor has a significant impact on the development of breast cancer. In order to facilitate the identification of biomarkers, we have created a chimeric peptide that has been proven to bind successfully to the LRP-1 receptor. Methods: To identify biomarkers, we utilized advanced computational methods to conduct a meta-analysis of microarray data. Specifically, the g:Profiler and eXpression2Kinases (X2K) databases were utilized to identify gene ontologies and transcription factors. We then used the Human Protein Atlas to identify and assess crucial gene expressions. Results: Our results demonstrated that nucleolar and spindle-associated protein 1 (NUSAP1), melatonin receptor 1A (MELT), and cyclin-dependent kinase 1 (CDK1) are three hub genes that play pivotal roles in the pathogenesis of breast cancer. Conclusions: The research findings provide a deeper understanding of the molecular mechanisms involved in developing breast cancer. These findings have significant implications for developing novel therapies and diagnostics for this disease.
{"title":"The Interaction of SRL-2 Peptide with LRP-1 Receptor and Identification of Breast Cancer Related Biomarkers: An In-silico Approach","authors":"Yasamin Davatgaran-Taghipour, Yousef Saeedi-Honar, R. Salehi, A. Zarebkohan, Vladimir P.Torchilin","doi":"10.5812/ijpharm-136624","DOIUrl":"https://doi.org/10.5812/ijpharm-136624","url":null,"abstract":"Background: Breast cancer is a multifaceted disease characterized by genetic and epigenetic changes that lead to uncontrolled cell growth and metastasis. Early detection and treatment are crucial for managing diseases. Objectives: The objective of this study is to investigate the potential of chimeric peptides for drug delivery and to identify biomarkers associated with breast cancer. Recent studies have shown that the low-density lipoprotein receptor-related protein 1 (LRP-1) receptor has a significant impact on the development of breast cancer. In order to facilitate the identification of biomarkers, we have created a chimeric peptide that has been proven to bind successfully to the LRP-1 receptor. Methods: To identify biomarkers, we utilized advanced computational methods to conduct a meta-analysis of microarray data. Specifically, the g:Profiler and eXpression2Kinases (X2K) databases were utilized to identify gene ontologies and transcription factors. We then used the Human Protein Atlas to identify and assess crucial gene expressions. Results: Our results demonstrated that nucleolar and spindle-associated protein 1 (NUSAP1), melatonin receptor 1A (MELT), and cyclin-dependent kinase 1 (CDK1) are three hub genes that play pivotal roles in the pathogenesis of breast cancer. Conclusions: The research findings provide a deeper understanding of the molecular mechanisms involved in developing breast cancer. These findings have significant implications for developing novel therapies and diagnostics for this disease.","PeriodicalId":14595,"journal":{"name":"Iranian Journal of Pharmaceutical Research","volume":"46 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82580362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}