Multifunctional electrochromic systems with divergent functions are highly sought after but rare and challenging to develop. Here, we report the synthesis and multi-functional electrochromic behaviour (multi-colour modulation, visible-to-near IR absorption switching, and electrofluorochromism) of electron-deficient indenofluorene-based systems. The compounds (IF1-IF5) have been obtained via Knoevenagel condensation of indenofluorenone (IFK) with various nucleophiles (malononitrile, benzylcyanide, dimethyl malonate, methyl cyanoacetate, benzothiazole-2-acetonitrile). IF1-IF5 possess strong colours and absorb in the visible region (λmax=295-388 nm). These compounds are electroactive and exhibit two reversible reduction waves (-0.35--0.88 V and -0.65--1.30 V vs Ag/AgCl), generating radical anion and dianion systems. For the electrochromic studies, upon applying the one-electron reduction potential (-0.35 V vs Ag/AgCl), the absorption maximum of IF1 redshift from 382 nm to 1240 nm (IF1-⋅), which subsequently blueshifts to 466 & 745 nm (IF12-⋅) upon increasing to two-electron reduction potential (-0.65 V vs Ag/AgCl). The color of the solution was switched from green to dark blue and further to light orange. The electrochromic behaviour is highly reversible and cycling. In addition, unlike the non-fluorescent (IF1 and IF1-⋅), the two-electron reduced system (IF12-⋅) is red-emissive (λem=630 nm) due to the combination of radicals leading to the formation of antiaromatic quinoidal π-conjugated system (IF12-).
在此,我们报告了缺电子茚芴基系统的合成和多功能电致变色行为(多色调制、可见光到近红外吸收切换和电致氟变色)。这些化合物(IF1-IF5)是通过茚并芴酮(IFK)与各种亲核物(丙二腈、苄基氰化物、丙二酸二甲酯、氰乙酸甲酯、苯并噻唑-2-乙腈)进行克诺文纳格尔缩合而得到的。IF1-IF5 具有强烈的颜色,在可见光区域吸收(λmax = 295-388 纳米)。这些化合物具有电活性,表现出两种可逆的还原波(-0.35 ̶ -0.88 V 和 -0.65 ̶ -1.30V 对 Ag/AgCl),生成基阴离子和二阴离子系统。在电致变色研究中,当使用单电子还原电位(-0.35 V vs Ag/AgCl)时,IF1 的吸收最大值从 382 nm 红移到 1240 nm (IF1--),当增加到双电子还原电位(-0.65 V vs Ag/AgCl)时,吸收最大值蓝移到 466 和 745 nm (IF12--)。溶液的颜色从绿色变为深蓝色,再变为浅橙色。这种电致变色行为具有高度的可逆性和循环性。此外,与非荧光体系(IF1 和 IF1--)不同,双电子还原体系(IF12--)具有红色辐射(λem = 630 nm),这是由于自由基结合形成了反芳香族醌π共轭体系(IF12--)。
{"title":"Electron-Deficient Indenofluorene-Based Systems: Multicolor and Visible-To-Near-Infrared (NIR) Electrochromism and OFF-OFF-ON Electrofluorochromism.","authors":"Atul B Nipate, Abhijeet V Kamble, M Rajeswara Rao","doi":"10.1002/asia.202401095","DOIUrl":"10.1002/asia.202401095","url":null,"abstract":"<p><p>Multifunctional electrochromic systems with divergent functions are highly sought after but rare and challenging to develop. Here, we report the synthesis and multi-functional electrochromic behaviour (multi-colour modulation, visible-to-near IR absorption switching, and electrofluorochromism) of electron-deficient indenofluorene-based systems. The compounds (IF<sub>1</sub>-IF<sub>5</sub>) have been obtained via Knoevenagel condensation of indenofluorenone (IF<sub>K</sub>) with various nucleophiles (malononitrile, benzylcyanide, dimethyl malonate, methyl cyanoacetate, benzothiazole-2-acetonitrile). IF<sub>1</sub>-IF<sub>5</sub> possess strong colours and absorb in the visible region (λ<sub>max</sub>=295-388 nm). These compounds are electroactive and exhibit two reversible reduction waves (-0.35--0.88 V and -0.65--1.30 V vs Ag/AgCl), generating radical anion and dianion systems. For the electrochromic studies, upon applying the one-electron reduction potential (-0.35 V vs Ag/AgCl), the absorption maximum of IF<sub>1</sub> redshift from 382 nm to 1240 nm (IF<sub>1</sub> <sup>-</sup>⋅), which subsequently blueshifts to 466 & 745 nm (IF<sub>1</sub> <sup>2-</sup>⋅) upon increasing to two-electron reduction potential (-0.65 V vs Ag/AgCl). The color of the solution was switched from green to dark blue and further to light orange. The electrochromic behaviour is highly reversible and cycling. In addition, unlike the non-fluorescent (IF<sub>1</sub> and IF<sub>1</sub> <sup>-</sup>⋅), the two-electron reduced system (IF<sub>1</sub> <sup>2-</sup>⋅) is red-emissive (λ<sub>em</sub>=630 nm) due to the combination of radicals leading to the formation of antiaromatic quinoidal π-conjugated system (IF<sub>1</sub> <sup>2-</sup>).</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401095"},"PeriodicalIF":3.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Triple negative breast cancers (TNBCs) lacking estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) on their cell surfaces are highly aggressive, difficult-to-treat and often relapse. Herein, we report on the self-assembled lipid nanoparticles (LNPs) of two new pegylated lipopeptides for killing TNBCs (MDA-MB-231). The pegylated lipopeptides were synthesized by conjugating an n-hexadecyl hydrophobic tail to one end of a (PEG)27 unit the other distal end of which was covalently grafted with two previously reported tumor targeting RGDK- and CGKRK- peptides. The SEM images of the self-assembled LNPs formed upon dissolution of the pegylated lipopeptides in aqueous medium revealed formation of spherical aggregates. The degree of cellular uptake for the self-assembled LNPs formed by the pegylated CGKRK-lipopeptide were found to be significantly higher than that for the self-assembled LNPs formed by the pegylated RGDK-lipopeptide in MCF-7, MDA-MB-231, HEK-293 and HFF cells. Notably, about 60% TNBCs (MDA-MB-231 cells) were killed upon treatment with commercially available potent JAK2 inhibitor (WP 1066) loaded LNPs of the pegylated RGDK-lipopeptide. Contrastingly, the same treatment killed only about 20% non-cancerous HEK-293 cells. The self-assembled pegylated LNPs described herein open the door for undertaking preclinical studies in animal models for TNBCs.
{"title":"SELF-ASSEMBLED LIPID NANOPARTICLES FOR KILLING TRIPLE NEGATIVE BREAST CANCER CELLS.","authors":"Wahida Rahaman, Arabinda Chaudhuri","doi":"10.1002/asia.202401049","DOIUrl":"https://doi.org/10.1002/asia.202401049","url":null,"abstract":"<p><p>Triple negative breast cancers (TNBCs) lacking estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) on their cell surfaces are highly aggressive, difficult-to-treat and often relapse. Herein, we report on the self-assembled lipid nanoparticles (LNPs) of two new pegylated lipopeptides for killing TNBCs (MDA-MB-231). The pegylated lipopeptides were synthesized by conjugating an n-hexadecyl hydrophobic tail to one end of a (PEG)27 unit the other distal end of which was covalently grafted with two previously reported tumor targeting RGDK- and CGKRK- peptides. The SEM images of the self-assembled LNPs formed upon dissolution of the pegylated lipopeptides in aqueous medium revealed formation of spherical aggregates. The degree of cellular uptake for the self-assembled LNPs formed by the pegylated CGKRK-lipopeptide were found to be significantly higher than that for the self-assembled LNPs formed by the pegylated RGDK-lipopeptide in MCF-7, MDA-MB-231, HEK-293 and HFF cells. Notably, about 60% TNBCs (MDA-MB-231 cells) were killed upon treatment with commercially available potent JAK2 inhibitor (WP 1066) loaded LNPs of the pegylated RGDK-lipopeptide. Contrastingly, the same treatment killed only about 20% non-cancerous HEK-293 cells. The self-assembled pegylated LNPs described herein open the door for undertaking preclinical studies in animal models for TNBCs.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401049"},"PeriodicalIF":3.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human production and living processes emit excessive VOCs into the atmosphere, posing significant threats to both human health and the environment. The photothermal catalytic oxidation process is an organic combination of photocatalysis and thermocatalysis. Utilizing photothermal catalytic degradation of VOCs can achieve better catalytic activity at lower temperatures, resulting in more rapid and thorough degradation of these compounds. Photothermal catalysis has been increasingly applied in the treatment of atmospheric VOCs due to its many advantages. A brief introduction on the three modes of photothermal catalysis is presented. Depending on the main driving force of the reactions, they can be categorized into thermal-assisted photocatalysis (TAPC), photo-assisted thermal catalysis (PATC) and photo-driven thermal catalysis (PDTC). The commonly used catalyst design methods and reactor types for photothermal catalysis are also briefly introduced. This paper then focuses on recent developments in specific applications for photothermal catalytic oxidation of different types of VOCs and their corresponding principles. Finally, the problems and challenges facing VOC degradation through this method are summarized, along with prospects for future research.
{"title":"Photothermal Catalytic Degradation of VOCs: Mode,System and Application.","authors":"Xiang Bai, Xinyu Qi, Yunchao Liu, Jing Sun, Tingting Shen, Lijun Pan","doi":"10.1002/asia.202400993","DOIUrl":"https://doi.org/10.1002/asia.202400993","url":null,"abstract":"<p><p>Human production and living processes emit excessive VOCs into the atmosphere, posing significant threats to both human health and the environment. The photothermal catalytic oxidation process is an organic combination of photocatalysis and thermocatalysis. Utilizing photothermal catalytic degradation of VOCs can achieve better catalytic activity at lower temperatures, resulting in more rapid and thorough degradation of these compounds. Photothermal catalysis has been increasingly applied in the treatment of atmospheric VOCs due to its many advantages. A brief introduction on the three modes of photothermal catalysis is presented. Depending on the main driving force of the reactions, they can be categorized into thermal-assisted photocatalysis (TAPC), photo-assisted thermal catalysis (PATC) and photo-driven thermal catalysis (PDTC). The commonly used catalyst design methods and reactor types for photothermal catalysis are also briefly introduced. This paper then focuses on recent developments in specific applications for photothermal catalytic oxidation of different types of VOCs and their corresponding principles. Finally, the problems and challenges facing VOC degradation through this method are summarized, along with prospects for future research.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202400993"},"PeriodicalIF":3.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development of ammonium nitrate (AN)/ammonia borane (AB) as a green propellant is crucial for their applicability in different engines. This study investigates the release patterns of small products, particularly nitrogen-containing molecules, during the initial pyrolysis of AN/AB at low and high pressures using ReaxFF MD simulations. Compared with pure AN, the addition of AB gives the hybrid system enhanced reactivity, leading to faster decomposition and higher energy release. The results show that the consumption of AN in the S13 system (AB with a mass ratio of 12.6 %) is accelerated at 1.47 MPa. NO2 and NO are produced through HNO3 and NO3. At 6.89 MPa, AN exhibits the fastest decomposition rate in the S15 system. The high pressure enhances more reactions of NO with free radicals such as NH and accelerates the release of N2. As the percentage content of AB increases to 15.3 %, more H2O while more NO2 is generated. The effect of AB on the generation of radicals such as H2 and H, is analyzed. AB not only promotes the initial pyrolysis of AN but also accelerates the conversion of intermediates.
开发作为绿色推进剂的硝酸铵(AN)/硼烷氨(AB)对其在不同发动机中的应用至关重要。本研究利用 ReaxFF MD 模拟研究了 AN/AB 在低压和高压下初始热解过程中的小产物(尤其是含氮分子)释放模式。与纯 AN 相比,AB 的加入使混合系统的反应性得到增强,从而导致更快的分解和更高的能量释放。结果表明,在 1.47 兆帕的压力下,S13 体系(AB 的质量比为 12.6%)中 AN 的消耗速度加快。通过 HNO3 和 NO3 生成 NO2 和 NO。在 6.89 兆帕时,S15 体系中 AN 的分解速度最快。高压增强了 NO 与 NH 等自由基的反应,加快了 N2 的释放。当 AB 的百分比含量增加到 15.3%时,会产生更多的 H2O 和更多的 NO2。分析了 AB 对 H2 和 H 等自由基生成的影响。AB 不仅能促进 AN 的初始热解,还能加速中间产物的转化。
{"title":"Enhancing Burning Rate of Ammonium Nitrate by Ammonia Borane: Mechanism from Reactive Molecular Dynamics Simulation.","authors":"Yin Yu, Jun Jiang, Cai-Chao Ye, Xue-Hai Ju","doi":"10.1002/asia.202400763","DOIUrl":"10.1002/asia.202400763","url":null,"abstract":"<p><p>The development of ammonium nitrate (AN)/ammonia borane (AB) as a green propellant is crucial for their applicability in different engines. This study investigates the release patterns of small products, particularly nitrogen-containing molecules, during the initial pyrolysis of AN/AB at low and high pressures using ReaxFF MD simulations. Compared with pure AN, the addition of AB gives the hybrid system enhanced reactivity, leading to faster decomposition and higher energy release. The results show that the consumption of AN in the S<sub>13</sub> system (AB with a mass ratio of 12.6 %) is accelerated at 1.47 MPa. NO<sub>2</sub> and NO are produced through HNO<sub>3</sub> and NO<sub>3</sub>. At 6.89 MPa, AN exhibits the fastest decomposition rate in the S<sub>15</sub> system. The high pressure enhances more reactions of NO with free radicals such as NH and accelerates the release of N<sub>2</sub>. As the percentage content of AB increases to 15.3 %, more H<sub>2</sub>O while more NO<sub>2</sub> is generated. The effect of AB on the generation of radicals such as H<sub>2</sub> and H, is analyzed. AB not only promotes the initial pyrolysis of AN but also accelerates the conversion of intermediates.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202400763"},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Wang, ZiXian Li, Huijie Liu, Wenjing Dong, Yufei Zhao, Lihong Liu
Layered double hydroxides (LDHs) have been regarded as excellent catalysts for a variety of photocatalytic applications including the hydrogen production, carbon dioxide reduction, and nitrogen fixation, et al. The elucidation of the photocatalytic mechanism of LDH-based photocatalysts under light irradiation, especially at the ultraviolet (UV) and deep ultraviolet (DUV) region, at the molecular level has remained elusive. In this study, the photo-induced electronic structure of ZnAl-LDH materials was investigated, and a comprehensive understanding of its underlying mechanism, both in the UV and DUV region, was gained using density functional theory (DFT) calculations. The UV and DUV regions exhibit distinct excitation characteristics, revealing the complex interactions between electrons and holes within the system. The DUV region significantly promotes electron transfer, indicating the potential application of LDH materials as a DUV catalysis material. This study elucidates the electron transfer kinetics in LDHs upon UV and DUV irradiation, thereby offering new perspective for the development of photocatalytic materials under different light region.
{"title":"Elucidating the Photo-Induced Electronic Structure and Mechanisms of ZnAl-Layered Double Hydroxide: A DFT Study.","authors":"Yi Wang, ZiXian Li, Huijie Liu, Wenjing Dong, Yufei Zhao, Lihong Liu","doi":"10.1002/asia.202401154","DOIUrl":"10.1002/asia.202401154","url":null,"abstract":"<p><p>Layered double hydroxides (LDHs) have been regarded as excellent catalysts for a variety of photocatalytic applications including the hydrogen production, carbon dioxide reduction, and nitrogen fixation, et al. The elucidation of the photocatalytic mechanism of LDH-based photocatalysts under light irradiation, especially at the ultraviolet (UV) and deep ultraviolet (DUV) region, at the molecular level has remained elusive. In this study, the photo-induced electronic structure of ZnAl-LDH materials was investigated, and a comprehensive understanding of its underlying mechanism, both in the UV and DUV region, was gained using density functional theory (DFT) calculations. The UV and DUV regions exhibit distinct excitation characteristics, revealing the complex interactions between electrons and holes within the system. The DUV region significantly promotes electron transfer, indicating the potential application of LDH materials as a DUV catalysis material. This study elucidates the electron transfer kinetics in LDHs upon UV and DUV irradiation, thereby offering new perspective for the development of photocatalytic materials under different light region.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401154"},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We have explored NHSi-supported copper(I) complexes as active and highly efficient catalysts for A3 (aldehyde-alkyne-amine) and KA2 (ketone-alkyne-amine) three-component coupling reactions to synthesize propargyl amines in excellent yields with high TOF under solvent-and additive-free conditions.
{"title":"N-Heterocyclic Silylene-Cu(I) Complexes as Efficient Catalysts for Three-Component Coupling Reactions.","authors":"Kashish, Md Jabed Hossain, Shabana Khan","doi":"10.1002/asia.202401058","DOIUrl":"10.1002/asia.202401058","url":null,"abstract":"<p><p>We have explored NHSi-supported copper(I) complexes as active and highly efficient catalysts for A<sup>3</sup> (aldehyde-alkyne-amine) and KA<sup>2</sup> (ketone-alkyne-amine) three-component coupling reactions to synthesize propargyl amines in excellent yields with high TOF under solvent-and additive-free conditions.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401058"},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennyfer Castro, Gustavo Clauss, Josielle V Fontes, Laiane S Oliveira, Camilla Abbehausen
The antitumor activity of various gold compounds is a promising field of investigation, attracting researchers seeking potential clinical candidates. To advance this research, they explore the complex mechanisms of action of these compounds. Since the discovery of the strong inhibition of thioredoxin reductase by auranofin, the primary mechanism explored has been the inhibition of this enzyme. This inhibition disrupts the redox balance in cells, promoting oxidative stress and triggering cell death. In this review, we analyzed studies from the past decade that measured cellular ROS increase and examined the coordination structures of gold compounds. We also correlate ROS increase with the inhibition of redox-regulating enzymes, thioredoxin reductase, and glutathione reductase, to elucidate the relationship between these cellular effects and chemical structures. Our data compilation reveals that different structures exhibit varying efficacy: some significantly increase ROS production and inhibit thioredoxin reductase or glutathione reductase, while others elevate ROS levels without affecting these target enzymes, suggesting alternative mechanisms of action. This review consolidates critical evidence, enhancing our understanding of the mechanisms by which these gold complexes act and providing valuable insights for developing new therapeutic strategies against tumor cells.
{"title":"Oxidative Stress Mechanism by Gold Compounds: A Close Look at Total ROS Increase and the Inhibition of Antioxidant Enzymes.","authors":"Jennyfer Castro, Gustavo Clauss, Josielle V Fontes, Laiane S Oliveira, Camilla Abbehausen","doi":"10.1002/asia.202400792","DOIUrl":"10.1002/asia.202400792","url":null,"abstract":"<p><p>The antitumor activity of various gold compounds is a promising field of investigation, attracting researchers seeking potential clinical candidates. To advance this research, they explore the complex mechanisms of action of these compounds. Since the discovery of the strong inhibition of thioredoxin reductase by auranofin, the primary mechanism explored has been the inhibition of this enzyme. This inhibition disrupts the redox balance in cells, promoting oxidative stress and triggering cell death. In this review, we analyzed studies from the past decade that measured cellular ROS increase and examined the coordination structures of gold compounds. We also correlate ROS increase with the inhibition of redox-regulating enzymes, thioredoxin reductase, and glutathione reductase, to elucidate the relationship between these cellular effects and chemical structures. Our data compilation reveals that different structures exhibit varying efficacy: some significantly increase ROS production and inhibit thioredoxin reductase or glutathione reductase, while others elevate ROS levels without affecting these target enzymes, suggesting alternative mechanisms of action. This review consolidates critical evidence, enhancing our understanding of the mechanisms by which these gold complexes act and providing valuable insights for developing new therapeutic strategies against tumor cells.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202400792"},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rahul Kumar Yadav, Darakshan Parveen, Bijan Mondal, Dipak Kumar Roy
A series of N,O donor-based mono- and binuclear four-coordinated boron complexes were synthesized. Depending on the substitution and spacer, these complexes exhibit intense blue, green and yellow emission in solution states. Notably, the fluorescence quantum yields (ΦF) and fluorescence decay (lifetime, τ) of mononuclear boron complexes (2 a-2 e) were higher than the binuclear boron complexes (2 f-2 k). The lowest lifetime and quantum yield in binuclear boron complexes were due to intramolecular rotation induced non radiative processes. The disulphide spacer-based boron complexes 2 i-2 k showed aggregation-caused quenching in the THF/H2O mixture whereas no other complexes were ACQ responsive. These complexes show large Stokes shift, one of them i. e. 2 e has the highest Stokes shift of 130 nm. Further, the electrochemical study suggests the presence of two redox incidences. Theoretical studies show close corroboration between the TD-DFT computed and experimentally measured absorption maxima as well as DFT (GIAO) calculated and experimentally measured 11B NMR values. This complements the appropriate selection of the theoretical methods to shed light on the electronic transitions in the mono- and binuclear BF2 complexes.
{"title":"The Role of Spacers as a Probe in Variation of Photoluminescence Properties of Mono- and Bi-Nuclear Boron Compounds.","authors":"Rahul Kumar Yadav, Darakshan Parveen, Bijan Mondal, Dipak Kumar Roy","doi":"10.1002/asia.202401113","DOIUrl":"10.1002/asia.202401113","url":null,"abstract":"<p><p>A series of N,O donor-based mono- and binuclear four-coordinated boron complexes were synthesized. Depending on the substitution and spacer, these complexes exhibit intense blue, green and yellow emission in solution states. Notably, the fluorescence quantum yields (Φ<sub>F</sub>) and fluorescence decay (lifetime, τ) of mononuclear boron complexes (2 a-2 e) were higher than the binuclear boron complexes (2 f-2 k). The lowest lifetime and quantum yield in binuclear boron complexes were due to intramolecular rotation induced non radiative processes. The disulphide spacer-based boron complexes 2 i-2 k showed aggregation-caused quenching in the THF/H<sub>2</sub>O mixture whereas no other complexes were ACQ responsive. These complexes show large Stokes shift, one of them i. e. 2 e has the highest Stokes shift of 130 nm. Further, the electrochemical study suggests the presence of two redox incidences. Theoretical studies show close corroboration between the TD-DFT computed and experimentally measured absorption maxima as well as DFT (GIAO) calculated and experimentally measured <sup>11</sup>B NMR values. This complements the appropriate selection of the theoretical methods to shed light on the electronic transitions in the mono- and binuclear BF<sub>2</sub> complexes.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401113"},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saddam Hussain, Dr. Rungthip Kunthom, Prof. Dr. Hongzhi Liu
In article number e202400584, Hongzhi Liu and co-workers describe the creation of a new hybrid dendrimer network using octa(aminophenyl) silsesquioxane (OAPS) and glycidyl methacrylate (GMA) for environmental cleanup. The material shows high thermal stability and impressive adsorption abilities for iodine (3.4 g/g from vapors) and dyes such as Rhodamine B and Congo red. This indicates potential for use in pollution control.