MicroRNAs are involved in post-transcriptional regulation of gene expression. Due to their regulatory role, microRNAs are differently expressed during specific conditions in healthy and diseased individuals, so microRNAs circulating in the blood could be used as diagnostic and prognostic biomarkers for various diseases and conditions. We want to investigate the variability of circulating microRNAs and bone turnover markers in weekly time intervals in older women. In a single-site longitudinal study, a panel of 19 bone-related miRNAs was measured using the osteomiR RT-qPCR assay in serum samples of 35 postmenopausal women divided into 3 groups: healthy controls (n = 12), low BMD (n = 14), and vertebral fractures (n = 9). Blood samples for measurement of CTX, PINP, OC, and bone ALP were collected once per week for 8 weeks at 9:00 AM after overnight fasting. Serum samples from all participants were analyzed for 19 microRNA bone biomarkers and 4 bone turnover markers over 8 weeks. We analyzed the data using a mixed model analysis of variance and found no significant changes between week-by-week time points in any of the groups. To estimate intraindividual variability between weekly time points, we have calculated the median coefficient of variation (CV). This was between 28.4% and 80.2% for microRNA, with an assay CV of 21.3%. It was between 8.5% and 15.6% for bone turnover markers, with an assay CV of 3.5% to 6.5%. The intraindividual variability was similar between groups. Circulating microRNAs measured in serum had a higher weekly intraindividual variability than bone turnover markers due in part to a higher assay CV.
Osteoporosis and associated fractures are an increasingly prevalent concern with an ageing population. This study reports testing of IBEX Bone Health (IBEX BH) software, applied following acquisition of forearm radiographs. IBEX Bone Health analyses the radiograph to measure areal bone mineral density (aBMD) at the examination site. A non-randomized cross-sectional study design was performed involving 261 (254 after exclusions) participants (112/142 m/f; mean age 70.8 years (SD+/-9.0); 53 with osteoporosis). They underwent posterior-anterior distal forearm radiographs; dual X-ray absorptiometry (DXA) of the wrists, hips, and lumbar spine; and questionnaires exploring clinical risk factors. IBEX Bone Health automatically identifies regions of interest (ROI) at the ultra-distal (UD) and distal third (TD) regions of the radius. Analysis investigated area under the receiver operating characteristics curve performance of IBEX BH for prediction of (i) osteoporosis (based on clinical reporting of the hip and spine DXA) and (ii) treatment recommendations by Fracture Risk Assessment Tool (FRAX) inclusive of neck of femur (NoF) areal bone mineral density (aBMD) results following National Osteoporosis Guideline Group (NOGG) guidelines. Area under the receiver operating characteristics curve for osteoporosis prediction at the UD and TD ROIs were 0.86 (99% confidence interval (CI) [0.80, 0.91]) and 0.81 (99% CI [0.75, 0.88]), respectively. Area under the receiver operating characteristics curve for treatment recommendation using FRAX inclusive of NoF aBMD at the UD and TD ROIs were 0.95 (99% CI [0.91, 1.00]) and 0.97 (99% CI [0.93,1.00]), respectively. With a matched sensitivity to FRAX (without NoF aBMD) 0.93 (99% CI [0.78, 0.99]), IBEX BH predicted at the UD and TD ROIs recommended treatment outcomes by NOGG guidelines using FRAX (with NoF aBMD) with specificity 0.89 (99% CI 0.83, 0.94]) and 0.93 (99% CI [0.87, 0.97]), respectively. This is compared with 0.60 (99% CI [0.51, 0.69]) for FRAX (without NoF aBMD). Results demonstrate the potential clinical utility of IBEX BH as an opportunistic screening tool.
Nonunion resulting from early bone resorption is common after bone transplantation surgery. In these patients, instability or osteoporosis causes hyperactive catabolism relative to anabolism, leading to graft resorption instead of fusion. Systemic zoledronate administration inhibits osteoclastogenesis and is widely used to prevent osteoporosis; however, evidence on local zoledronate application is controversial due to osteoblast cytotoxicity, uncontrolled dosing regimens, and local release methods. We investigated the effects of zolendronate on osteoclastogenesis and osteogenesis and explored the corresponding signaling pathways. In vitro cytotoxicity and differentiation of MC3T3E1 cells, rat bone marrow stromal cells (BMSCs) and preosteoclasts (RAW264.7 cells) were evaluated with different zolendronate concentrations. In vivo bone regeneration ability was tested by transplanting different concentrations of zolendronate with β-tricalcium phosphate (TCP) bone substitute into rat femoral critical-sized bone defects. In vitro, zolendronate concentrations below 2.5 × 10-7 M did not compromise viability in the three cell lines and did not promote osteogenic differentiation in MC3T3E1 cells and BMSCs. In RAW264.7 cells, zoledronate inhibited extracellular regulated protein kinases and c-Jun n-terminal kinase signaling, downregulating c-Fos and NFATc1 expression, with reduced expression of fusion-related dendritic cell‑specific transmembrane protein and osteoclast-specific Ctsk and tartrate-resistant acid phosphatase (. In vivo, histological staining revealed increased osteoid formation and neovascularization and reduced fibrotic tissue with 500 μM and 2000 μM zolendronate. More osteoclasts were found in the normal saline group after 6 weeks, and sequential osteoclast formation occurred after zoledronate treatment, indicating inhibition of bone resorption during early callus formation without inhibition of late-stage bone remodeling. In vivo, soaking β-TCP artificial bone with 500 μM or 2000 μM zoledronate is a promising approach for bone regeneration, with potential applications in bone transplantation.
Osteitis of the sternocostoclavicular (SCC) region, referred to as sternocostoclavicular hyperostosis (SCCH), is the clinical expression of chronic non-bacterial osteitis (CNO) in adults with this rare chronic auto-inflammatory disorder of the axial skeleton. The diagnosis is based on distinctive computerized tomography (CT) features of sclerosis and hyperostosis of the SCC region, and local increases in osteoid formation visualized by high radiopharmacon uptake on skeletal scintigraphy but clear radiologic diagnostic criteria are lacking. In a cross-sectional study, CT scans and whole-body skeletal scintigraphy images obtained in 169 patients seen at the Center for Bone Quality of the Leiden University Medical Center between 2008 and 2018 with a suspected diagnosis of CNO of the SCC region were re-evaluated by 2 skeletal radiologists and 2 nuclear physicians. The diagnosis was confirmed in 118 (70%) predominantly female patients (n = 103, 89.2%); median age at first symptoms 45 years (range 20-73). The diagnosis was excluded in the remaining 51 "non-CNO" patients. Increased radiopharmacon uptake at the SCC region was observed in 82% CNO patients, with the manubrium sterni having the highest predictive ability to discriminate on both imaging modalities. The prevalence of sclerosis of the clavicles, manubrium and first ribs was significantly higher in CNO patients (P < 0.001). Hyperostosis was not observed in non-CNO patients. 46 CNO versus only 2 non-CNO patients had costoclavicular ligament calcification. Our findings identify CT scan features of sclerosis and hyperostosis of manubrium sterni, medial end of clavicles and first ribs, and calcification of costoclavicular ligaments, associated with increased tracer uptake on skeletal scintigraphy at the SCC region, specifically manubrium sterni, as well-defined imaging diagnostic criteria for adult CNO. Pitfalls encountered in the diagnosis of CNO are highlighted. These defined imaging diagnostic criteria for adult CNO should facilitate the diagnosis of this rare auto-inflammatory bone disease across the spectrum of its early to late stages.