A. Asavamongkolkul, N. Adulkasem, P. Chotiyarnwong, Ekasame Vanitcharoenkul, Chandhanarat Chandhanayingyong, Panai Laohaprasitiporn, Krabkaew Soparat, A. Unnanuntana
Thailand has transitioned from an aging society to an aged society, which implies that the prevalence of age-related disorders will increase; however, epidemiological data specific to the prevalence of age-related degenerative musculoskeletal disorders among Thai older adults remain limited. Accordingly, the aim of this study was to investigate the prevalence of age-related musculoskeletal diseases, including osteoporosis, sarcopenia, and high falls risk among healthy community-dwelling Thai older adults. This cross-sectional nationwide study enrolled Thai adults aged ≥60 years from 2 randomly selected provinces from each of the 6 regions of Thailand via stratified multistage sampling during March 2021 to August 2022. All enrolled participants were evaluated for bone mineral density, skeletal muscle mass, grip strength, and gait speed. Osteoporosis was diagnosed according to the World Health Organization definition, and sarcopenia was diagnosed according to the Asian Working Group for Sarcopenia 2019 criteria. Falls risk was determined using the self-rated Fall Risk Questionnaire (FRQ). A total of 2991 eligible participants were recruited. The mean age of participants was 69.2 ± 6.5 years (range: 60–107), and 63.1% were female. The prevalence of osteoporosis, sarcopenia, and high falls risk was 29.7%, 18.1%, and 38.5%, respectively. Approximately one-fifth of subjects (19.1%) had at least 2 of 3 risk factors (i.e., osteoporosis, sarcopenia, and high falls risk) for sustaining a fragility fracture, and 3.4% had all three risk factors. In conclusion, the results of this study revealed a high and increasing prevalence of osteoporosis, sarcopenia, and high falls risk in healthy community-dwelling Thai older adults. Since these conditions are all major risk factors for fragility fracture, modification of Thailand’s national healthcare policy is urgently needed to address the increasing prevalence of these conditions among healthy community-dwelling older adults living in Thailand.
{"title":"Prevalence of osteoporosis, sarcopenia, and high falls risk in healthy community-dwelling Thai older adults: a nationwide cross-sectional study","authors":"A. Asavamongkolkul, N. Adulkasem, P. Chotiyarnwong, Ekasame Vanitcharoenkul, Chandhanarat Chandhanayingyong, Panai Laohaprasitiporn, Krabkaew Soparat, A. Unnanuntana","doi":"10.1093/jbmrpl/ziad020","DOIUrl":"https://doi.org/10.1093/jbmrpl/ziad020","url":null,"abstract":"\u0000 Thailand has transitioned from an aging society to an aged society, which implies that the prevalence of age-related disorders will increase; however, epidemiological data specific to the prevalence of age-related degenerative musculoskeletal disorders among Thai older adults remain limited. Accordingly, the aim of this study was to investigate the prevalence of age-related musculoskeletal diseases, including osteoporosis, sarcopenia, and high falls risk among healthy community-dwelling Thai older adults. This cross-sectional nationwide study enrolled Thai adults aged ≥60 years from 2 randomly selected provinces from each of the 6 regions of Thailand via stratified multistage sampling during March 2021 to August 2022. All enrolled participants were evaluated for bone mineral density, skeletal muscle mass, grip strength, and gait speed. Osteoporosis was diagnosed according to the World Health Organization definition, and sarcopenia was diagnosed according to the Asian Working Group for Sarcopenia 2019 criteria. Falls risk was determined using the self-rated Fall Risk Questionnaire (FRQ). A total of 2991 eligible participants were recruited. The mean age of participants was 69.2 ± 6.5 years (range: 60–107), and 63.1% were female. The prevalence of osteoporosis, sarcopenia, and high falls risk was 29.7%, 18.1%, and 38.5%, respectively. Approximately one-fifth of subjects (19.1%) had at least 2 of 3 risk factors (i.e., osteoporosis, sarcopenia, and high falls risk) for sustaining a fragility fracture, and 3.4% had all three risk factors. In conclusion, the results of this study revealed a high and increasing prevalence of osteoporosis, sarcopenia, and high falls risk in healthy community-dwelling Thai older adults. Since these conditions are all major risk factors for fragility fracture, modification of Thailand’s national healthcare policy is urgently needed to address the increasing prevalence of these conditions among healthy community-dwelling older adults living in Thailand.","PeriodicalId":14611,"journal":{"name":"JBMR Plus","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139386472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leanne M. Ward, Wolfgang Högler, Francis H. Glorieux, A. Portale, Michael P. Whyte, C. Munns, Ola Nilsson, Jill H Simmons, Raja Padidela, Noriyuki Namba, H. Cheong, Etienne Sochett, Koji Muroya, Hiroyuki Tanaka, P. Pitukcheewanont, G. Gottesman, Andrew Biggin, Farzana Perwad, Angel Chen, J. Lawrence Merritt, Erik A. Imel
In a randomized, open-label phase 3 study of 61 children 1–12 years old with X-linked hypophosphatemia (XLH) previously treated with conventional therapy, changing to bi-weekly (Q2W) burosumab for 64 weeks improved phosphate metabolism, radiographic rickets, and growth compared with conventional therapy. In this open-label extension period (weeks 64–88), 21 children continued burosumab Q2W at the previous dose or crossed over from conventional therapy to burosumab starting at 0.8 mg/kg Q2W and had continued clinical radiographic assessments through week 88. Efficacy endpoints and safety observations were summarized descriptively for the treatment groups (burosumab continuation, n = 6; crossover, n = 15). At week 88 compared with baseline, improvements in the following outcomes were observed in the burosumab continuation and crossover groups, respectively: mean (SD) RGI-C rickets total score (primary outcome), +2.11 (0.27) and + 1.89 (0.35); mean (SD) RGI-C lower limb deformity score, +1.61 (0.91) and + 0.73 (0.82), and mean (SD) height Z-score + 0.41 (0.50) and + 0.08 (0.34). Phosphate metabolism normalized rapidly in the crossover group and persisted in the continuation group. Mean (SD) serum ALP decreased from 169% (43%) of the upper limit of normal (ULN) at baseline to 126% (51%) at week 88 in the continuation group, and from 157% (33%) of the ULN at baseline to 111% (23%) at week 88 in the crossover group. During the extension period, treatment-emergent adverse events (AEs) were reported in all six children in the burosumab continuation group and in 14/15 children in the cross-over group. AE profiles in the randomized and extension periods were similar, with no new safety signals identified. Thus, improvements from baseline in radiographic rickets continued in the extension period among children with XLH who remained on burosumab. Children who crossed over from conventional therapy to burosumab demonstrated rapid improvement in phosphate metabolism and improved rickets healing over the ensuing 22 weeks.
{"title":"Burosumab versus conventional therapy in children with X-linked hypophosphatemia: results of the open-label, phase 3 extension period","authors":"Leanne M. Ward, Wolfgang Högler, Francis H. Glorieux, A. Portale, Michael P. Whyte, C. Munns, Ola Nilsson, Jill H Simmons, Raja Padidela, Noriyuki Namba, H. Cheong, Etienne Sochett, Koji Muroya, Hiroyuki Tanaka, P. Pitukcheewanont, G. Gottesman, Andrew Biggin, Farzana Perwad, Angel Chen, J. Lawrence Merritt, Erik A. Imel","doi":"10.1093/jbmrpl/ziad001","DOIUrl":"https://doi.org/10.1093/jbmrpl/ziad001","url":null,"abstract":"\u0000 In a randomized, open-label phase 3 study of 61 children 1–12 years old with X-linked hypophosphatemia (XLH) previously treated with conventional therapy, changing to bi-weekly (Q2W) burosumab for 64 weeks improved phosphate metabolism, radiographic rickets, and growth compared with conventional therapy. In this open-label extension period (weeks 64–88), 21 children continued burosumab Q2W at the previous dose or crossed over from conventional therapy to burosumab starting at 0.8 mg/kg Q2W and had continued clinical radiographic assessments through week 88. Efficacy endpoints and safety observations were summarized descriptively for the treatment groups (burosumab continuation, n = 6; crossover, n = 15). At week 88 compared with baseline, improvements in the following outcomes were observed in the burosumab continuation and crossover groups, respectively: mean (SD) RGI-C rickets total score (primary outcome), +2.11 (0.27) and + 1.89 (0.35); mean (SD) RGI-C lower limb deformity score, +1.61 (0.91) and + 0.73 (0.82), and mean (SD) height Z-score + 0.41 (0.50) and + 0.08 (0.34). Phosphate metabolism normalized rapidly in the crossover group and persisted in the continuation group. Mean (SD) serum ALP decreased from 169% (43%) of the upper limit of normal (ULN) at baseline to 126% (51%) at week 88 in the continuation group, and from 157% (33%) of the ULN at baseline to 111% (23%) at week 88 in the crossover group. During the extension period, treatment-emergent adverse events (AEs) were reported in all six children in the burosumab continuation group and in 14/15 children in the cross-over group. AE profiles in the randomized and extension periods were similar, with no new safety signals identified. Thus, improvements from baseline in radiographic rickets continued in the extension period among children with XLH who remained on burosumab. Children who crossed over from conventional therapy to burosumab demonstrated rapid improvement in phosphate metabolism and improved rickets healing over the ensuing 22 weeks.","PeriodicalId":14611,"journal":{"name":"JBMR Plus","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139387189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hsiao H Sung, Wyatt Spresser, Joseph P Hoffmann, Zongrui Dai, Peter M Van der Kraan, M. Caird, Esmeralda Blaney Davidson, K. Kozloff
Craniofacial and dentoalveolar abnormalities are present in all types of Osteogenesis Imperfecta (OI). Mouse models of the disorder are critical to understanding these abnormalities and underlying OI pathogenesis. Previous studies on severely affected OI mice report a broad spectrum of craniofacial phenotypes, exhibiting some similarities to the human disorder. Brtl/+ and G610c/+ are moderately severe and mild type IV OI, respectively. Little is known about the aging effects on the craniofacial bones of these models and their homology to human OI. This study aimed to analyze the Brtl/+ and G610c/+ craniofacial morphometries during aging to establish suitability for further OI craniofacial bone intervention studies. We performed morphological measurements on the micro-CT scanned heads of 3-week-old, 3-month-old, and 6-month-old female Brtl/+ and G610c/+ mice. We observed that Brtl/+ skulls are shorter in length than WT (p < 0.05), whereas G610c/+ skulls are similar in length to their WT counterparts. Brtl/+ mice exhibit alveolar bone with a porotic-like appearance that is not observed in G610c/+. As they age, Brtl/+ mice show severe bone resorption in both the maxilla and mandible (p < 0.05). In contrast, G610c/+ mice experience mandibular resorption consistently across all ages, but maxillary resorption is only evident at 6 months (p < 0.05). Western blot shows high osteoclastic activities in the Brtl/+ maxilla. Both models exhibit delayed pre-functional eruptions of the third molars (p < 0.05), similar to those observed in some bisphosphonate-treated OI subjects. Our study shows that the Brtl/+ and G610c/+ mice display clear features found in type IV OI patients; both show age-related changes in craniofacial growth phenotype. Therefore, understanding the craniofacial features of these models and how they age will allow us to select the most accurate mouse model, mouse age, and bone structure for the specific craniofacial bone treatment of differing OI groups.
所有类型的成骨不全症(OI)都存在颅面和牙槽骨异常。该疾病的小鼠模型对于了解这些异常和潜在的 OI 发病机制至关重要。以前对严重受影响的 OI 小鼠进行的研究报告了广泛的颅面表型,与人类疾病有一些相似之处。Brtl/+ 和 G610c/+ 分别属于中度严重和轻度 IV 型 OI。人们对这些模型对颅面部骨骼的老化影响及其与人类 OI 的同源性知之甚少。本研究旨在分析Brtl/+和G610c/+在衰老过程中的颅面形态,以确定是否适合进一步的OI颅面骨骼干预研究。我们对 3 周大、3 个月大和 6 个月大的雌性 Brtl/+ 和 G610c/+ 小鼠的头部进行了微计算机断层扫描形态测量。我们观察到 Brtl/+ 头骨的长度比 WT 小鼠短(p < 0.05),而 G610c/+ 头骨的长度与 WT 小鼠相似。Brtl/+ 小鼠的牙槽骨呈现出多孔状外观,而 G610c/+ 则没有这种现象。随着年龄的增长,Brtl/+小鼠的上颌骨和下颌骨都出现了严重的骨吸收现象(p < 0.05)。相比之下,G610c/+ 小鼠在所有年龄段都会出现下颌骨吸收,但上颌骨吸收只在 6 个月时才明显(p < 0.05)。Western 印迹显示 Brtl/+ 上颌骨的破骨活性很高。两种模型都表现出第三磨牙功能前萌出延迟(p < 0.05),这与在一些接受过双磷酸盐治疗的 OI 受试者身上观察到的情况类似。我们的研究表明,Brtl/+ 和 G610c/+ 小鼠表现出 IV 型 OI 患者的明显特征;两者的颅面生长表型都出现了与年龄相关的变化。因此,了解这些模型的颅面特征及其如何衰老将使我们能够选择最准确的小鼠模型、小鼠年龄和骨结构,以针对不同的 OI 群体进行特定的颅面骨治疗。
{"title":"Collagen mutation and age contribute to differential craniofacial phenotypes in mouse models of osteogenesis imperfecta","authors":"Hsiao H Sung, Wyatt Spresser, Joseph P Hoffmann, Zongrui Dai, Peter M Van der Kraan, M. Caird, Esmeralda Blaney Davidson, K. Kozloff","doi":"10.1093/jbmrpl/ziad004","DOIUrl":"https://doi.org/10.1093/jbmrpl/ziad004","url":null,"abstract":"\u0000 Craniofacial and dentoalveolar abnormalities are present in all types of Osteogenesis Imperfecta (OI). Mouse models of the disorder are critical to understanding these abnormalities and underlying OI pathogenesis. Previous studies on severely affected OI mice report a broad spectrum of craniofacial phenotypes, exhibiting some similarities to the human disorder. Brtl/+ and G610c/+ are moderately severe and mild type IV OI, respectively. Little is known about the aging effects on the craniofacial bones of these models and their homology to human OI. This study aimed to analyze the Brtl/+ and G610c/+ craniofacial morphometries during aging to establish suitability for further OI craniofacial bone intervention studies. We performed morphological measurements on the micro-CT scanned heads of 3-week-old, 3-month-old, and 6-month-old female Brtl/+ and G610c/+ mice. We observed that Brtl/+ skulls are shorter in length than WT (p < 0.05), whereas G610c/+ skulls are similar in length to their WT counterparts. Brtl/+ mice exhibit alveolar bone with a porotic-like appearance that is not observed in G610c/+. As they age, Brtl/+ mice show severe bone resorption in both the maxilla and mandible (p < 0.05). In contrast, G610c/+ mice experience mandibular resorption consistently across all ages, but maxillary resorption is only evident at 6 months (p < 0.05). Western blot shows high osteoclastic activities in the Brtl/+ maxilla. Both models exhibit delayed pre-functional eruptions of the third molars (p < 0.05), similar to those observed in some bisphosphonate-treated OI subjects. Our study shows that the Brtl/+ and G610c/+ mice display clear features found in type IV OI patients; both show age-related changes in craniofacial growth phenotype. Therefore, understanding the craniofacial features of these models and how they age will allow us to select the most accurate mouse model, mouse age, and bone structure for the specific craniofacial bone treatment of differing OI groups.","PeriodicalId":14611,"journal":{"name":"JBMR Plus","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Leerling, F. Smit, Zita Spӓth, Ana Navas Cañete, L. de Geus-Oei, A. van de Burgt, Olaf M Dekkers, W. van der Bruggen, Natasha M Appelman-Dijkstra, D. Vriens, Elizabeth M Winter
Chronic nonbacterial osteitis (CNO) is a rare disease spectrum, which lacks biomarkers for disease activity. Sodium fluoride positron emission tomography ([18F]NaF-PET/CT) is a sensitive imaging tool for bone diseases and yields quantitative data on bone turnover. We evaluate the capacities of [18F]NaF-PET/CT to provide structural and functional assessment in adult CNO. Cross-sectional study among 43 adult CNO patients and 16 controls (patients referred for suspected, but not diagnosed as CNO) undergoing [18F]NaF-PET/CT at our expert clinic. Structural features were compared between patients and controls, and maximal standardized uptake values (SUVmax (g/ml)) were calculated for bone lesions, soft tissue/joint lesions, and reference bone. SUVmax was correlated with clinical disease activity in patients. Manubrial and costal sclerosis/hyperostosis, and calcification of the costoclavicular ligament emerged core structural features associated with CNO as visualized by [18F]NaF-PET/CT. SUVmax of CNO lesions was higher compared to in-patient reference bone (mean paired difference 11.4, 95%CI9.4–13.5, p < 0.001) and controls (mean difference 12.4, 95%CI9.1–15.8, p < 0.001). Highest SUVmax values were found in soft tissue and joint areas like the costoclavicular ligament and manubriosternal joint, and these correlated with erythrocyte sedimentation rate in patients (correlation coefficient 0.546, p < 0.002). [18F]NaF-PET/CT is a promising imaging tool for adult CNO, allowing for detailed structural evaluation of its typical bone, soft-tissue and joint features. At the same time, [18F]NaF-PET/CT yields quantitative bone remodeling data that represent the pathologically increased bone turnover and the process of new bone formation. Further studies should investigate the application of quantified [18F]NaF-uptake as a novel biomarker for disease activity in CNO, and its utility to steer clinical decision-making.
{"title":"18F-sodium fluoride PET-CT visualizes disease activity in adult chronic nonbacterial osteitis (CNO)","authors":"A. Leerling, F. Smit, Zita Spӓth, Ana Navas Cañete, L. de Geus-Oei, A. van de Burgt, Olaf M Dekkers, W. van der Bruggen, Natasha M Appelman-Dijkstra, D. Vriens, Elizabeth M Winter","doi":"10.1093/jbmrpl/ziad007","DOIUrl":"https://doi.org/10.1093/jbmrpl/ziad007","url":null,"abstract":"\u0000 \u0000 \u0000 Chronic nonbacterial osteitis (CNO) is a rare disease spectrum, which lacks biomarkers for disease activity. Sodium fluoride positron emission tomography ([18F]NaF-PET/CT) is a sensitive imaging tool for bone diseases and yields quantitative data on bone turnover. We evaluate the capacities of [18F]NaF-PET/CT to provide structural and functional assessment in adult CNO.\u0000 \u0000 \u0000 \u0000 Cross-sectional study among 43 adult CNO patients and 16 controls (patients referred for suspected, but not diagnosed as CNO) undergoing [18F]NaF-PET/CT at our expert clinic. Structural features were compared between patients and controls, and maximal standardized uptake values (SUVmax (g/ml)) were calculated for bone lesions, soft tissue/joint lesions, and reference bone. SUVmax was correlated with clinical disease activity in patients.\u0000 \u0000 \u0000 \u0000 Manubrial and costal sclerosis/hyperostosis, and calcification of the costoclavicular ligament emerged core structural features associated with CNO as visualized by [18F]NaF-PET/CT. SUVmax of CNO lesions was higher compared to in-patient reference bone (mean paired difference 11.4, 95%CI9.4–13.5, p < 0.001) and controls (mean difference 12.4, 95%CI9.1–15.8, p < 0.001). Highest SUVmax values were found in soft tissue and joint areas like the costoclavicular ligament and manubriosternal joint, and these correlated with erythrocyte sedimentation rate in patients (correlation coefficient 0.546, p < 0.002).\u0000 \u0000 \u0000 \u0000 [18F]NaF-PET/CT is a promising imaging tool for adult CNO, allowing for detailed structural evaluation of its typical bone, soft-tissue and joint features. At the same time, [18F]NaF-PET/CT yields quantitative bone remodeling data that represent the pathologically increased bone turnover and the process of new bone formation. Further studies should investigate the application of quantified [18F]NaF-uptake as a novel biomarker for disease activity in CNO, and its utility to steer clinical decision-making.\u0000","PeriodicalId":14611,"journal":{"name":"JBMR Plus","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139450722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04eCollection Date: 2024-02-01DOI: 10.1093/jbmrpl/ziae007
Andreea Teodora Dinescu, Bin Zhou, Yizhong Jenny Hu, Sanchita Agarwal, Elizabeth Shane, Xiang-Dong Edward Guo
High-resolution peripheral quantitative computed tomography (HR-pQCT) has been used for in vivo 3D visualization of trabecular microstructure. Second-generation HR-pQCT (HR-pQCT II) has been shown to have good agreement with first generation HR-pQCT (HR-pQCT I). Advanced Individual Trabecula Segmentation (ITS) decomposes the trabecula network into individual plates and rods. ITS based on HR-pQCT I showed a strong correlation to ITS based on micro-computed tomography (μCT) and identified trabecular changes in metabolic bone diseases. ITS based on HR-pQCT II has new potential because of the enhanced resolution but has yet to be validated. The objective of this study was to assess the agreement between ITS based on HR-pQCT I, HR-pQCT II, and μCT to assess the capability of ITS on HR-pQCT images as a tool for studying bone structure. Freshly frozen tibia and radius bones were scanned in the distal region using HR-pQCT I at 82 μm, HR-pQCT II at 60.7 μm, and μCT at 37 μm. Images were registered, binarized, and ITS analysis was performed. Bone volume fraction (pBV/TV, rBV/TV), number density (pTb.N, rTb.N), thickness (pTb.Th, rTb.Th), and plate-to-rod (PR) ratio (pBV/rBV) of trabecular plates and rods were obtained. Paired Student's t-tests with post hoc Bonferroni analysis were used to examine the differences. Linear regression was used to determine the correlation coefficient. The HR-pQCT I parameters were different from the μCT measurements. The HR-pQCT II parameters were different from the μCT measurements except for rTb.N, and the HR-pQCT I parameters were different from the HR-pQCT II measurements except for pTb.Th. The strong correlation between HR-pQCT II and μCT microstructural analysis (R2 = 0.55-0.94) suggests that HR-pQCT II can be used to assess changes in plate and rod microstructure and that values from HR-pQCT I can be corrected.
高分辨率外周定量计算机断层扫描(HR-pQCT)已被用于体内小梁微结构的三维可视化。第二代高分辨外周定量计算机断层扫描(HR-pQCT II)与第一代高分辨外周定量计算机断层扫描(HR-pQCT I)具有良好的一致性。先进的单个小梁分割(ITS)将小梁网络分解为单个板和棒。基于 HR-pQCT I 的 ITS 与基于显微计算机断层扫描(μCT)的 ITS 有很强的相关性,并能识别代谢性骨病的骨小梁变化。基于 HR-pQCT II 的 ITS 由于分辨率的提高而具有新的潜力,但尚未得到验证。本研究的目的是评估基于 HR-pQCT I、HR-pQCT II 和 μCT 的 ITS 之间的一致性,以评估 HR-pQCT 图像上的 ITS 作为骨结构研究工具的能力。使用 82 μm 的 HR-pQCT I、60.7 μm 的 HR-pQCT II 和 37 μm 的 μCT 扫描新鲜冷冻的胫骨和桡骨远端区域。对图像进行注册、二值化和 ITS 分析。获得骨小梁板和骨小梁棒的骨体积分数(pBV/TV、rBV/TV)、数量密度(pTb.N、rTb.N)、厚度(pTb.Th、rTb.Th)和板棒比(PR)(pBV/rBV)。采用配对学生 t 检验和事后 Bonferroni 分析来检验差异。线性回归用于确定相关系数。HR-pQCT I参数与μCT测量结果不同。除rTb.N外,HR-pQCT II参数与μCT测量值不同;除pTb.Th外,HR-pQCT I参数与HR-pQCT II测量值不同。HR-pQCT II 与 μCT 显微结构分析之间的强相关性(R2 = 0.55-0.94)表明,HR-pQCT II 可用于评估板材和棒材显微结构的变化,HR-pQCT I 的值可进行校正。
{"title":"Individual trabecula segmentation validation in first- and second-generation high-resolution peripheral computed tomography compared to micro-computed tomography in the distal radius and tibia.","authors":"Andreea Teodora Dinescu, Bin Zhou, Yizhong Jenny Hu, Sanchita Agarwal, Elizabeth Shane, Xiang-Dong Edward Guo","doi":"10.1093/jbmrpl/ziae007","DOIUrl":"10.1093/jbmrpl/ziae007","url":null,"abstract":"<p><p>High-resolution peripheral quantitative computed tomography (HR-pQCT) has been used for in vivo 3D visualization of trabecular microstructure. Second-generation HR-pQCT (HR-pQCT II) has been shown to have good agreement with first generation HR-pQCT (HR-pQCT I). Advanced Individual Trabecula Segmentation (ITS) decomposes the trabecula network into individual plates and rods. ITS based on HR-pQCT I showed a strong correlation to ITS based on micro-computed tomography (μCT) and identified trabecular changes in metabolic bone diseases. ITS based on HR-pQCT II has new potential because of the enhanced resolution but has yet to be validated. The objective of this study was to assess the agreement between ITS based on HR-pQCT I, HR-pQCT II, and μCT to assess the capability of ITS on HR-pQCT images as a tool for studying bone structure. Freshly frozen tibia and radius bones were scanned in the distal region using HR-pQCT I at 82 μm, HR-pQCT II at 60.7 μm, and μCT at 37 μm. Images were registered, binarized, and ITS analysis was performed. Bone volume fraction (pBV/TV, rBV/TV), number density (pTb.N, rTb.N), thickness (pTb.Th, rTb.Th), and plate-to-rod (PR) ratio (pBV/rBV) of trabecular plates and rods were obtained. Paired Student's <i>t</i>-tests with post hoc Bonferroni analysis were used to examine the differences. Linear regression was used to determine the correlation coefficient. The HR-pQCT I parameters were different from the μCT measurements. The HR-pQCT II parameters were different from the μCT measurements except for rTb.N, and the HR-pQCT I parameters were different from the HR-pQCT II measurements except for pTb.Th. The strong correlation between HR-pQCT II and μCT microstructural analysis (R<sup>2</sup> = 0.55-0.94) suggests that HR-pQCT II can be used to assess changes in plate and rod microstructure and that values from HR-pQCT I can be corrected.</p>","PeriodicalId":14611,"journal":{"name":"JBMR Plus","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ka-Young Ryu, N. K. Pokhrel, Hye-Jin Jung, Hyo Jeong Kim, Jiwon Seok, Tae-Young Kim, Hyung Joon Kim, Ji Hye Lee, Jae-Young Kim, Yong-Gun Kim, Youngkyun Lee
Bone homeostasis is maintained by tightly coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. In the present report, the role of Mer tyrosine kinase (MerTK) in bone metabolism was investigated. The expression of MerTK decreased upon BMP2 stimulation of osteoblast precursors. The femurs of Mertk-deficient mice showed significantly increased bone volume with concomitant increase of bone formation and reduction in bone resorption. These bone phenotypes were attributed to the increased osteoblast differentiation and mineralization accounted by the enhanced β-Catenin and Smad signaling in the absence of MerTK in osteoblast precursors. Although the Mertk-deficient bone marrow macrophages were predisposed to enhanced osteoclast differentiation via augmented Ca2+-NFATc1 signaling, the dramatic increase of Tnfsf11b/Tnfsf11 (Opg/Rankl) ratio in Mertk knockout bones and osteoblast precursors corroborated the reduction of osteoclastogenesis in Mertk deficiency. In ligature-induced periodontitis and ovariectomy models, the bone resorption was significantly attenuated in Mertk-deficient mice compared with wild type control. Taken together, these data indicate novel role of MerTK in bone metabolism and suggest a potential strategy targeting MerTK in treating bone-lytic diseases including periodontitis and osteoporosis.
{"title":"Mer tyrosine kinase regulates bone metabolism, and its deficiency partially ameliorates periodontitis- and ovariectomy-induced bone loss in mice","authors":"Ka-Young Ryu, N. K. Pokhrel, Hye-Jin Jung, Hyo Jeong Kim, Jiwon Seok, Tae-Young Kim, Hyung Joon Kim, Ji Hye Lee, Jae-Young Kim, Yong-Gun Kim, Youngkyun Lee","doi":"10.1093/jbmrpl/ziad014","DOIUrl":"https://doi.org/10.1093/jbmrpl/ziad014","url":null,"abstract":"\u0000 Bone homeostasis is maintained by tightly coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. In the present report, the role of Mer tyrosine kinase (MerTK) in bone metabolism was investigated. The expression of MerTK decreased upon BMP2 stimulation of osteoblast precursors. The femurs of Mertk-deficient mice showed significantly increased bone volume with concomitant increase of bone formation and reduction in bone resorption. These bone phenotypes were attributed to the increased osteoblast differentiation and mineralization accounted by the enhanced β-Catenin and Smad signaling in the absence of MerTK in osteoblast precursors. Although the Mertk-deficient bone marrow macrophages were predisposed to enhanced osteoclast differentiation via augmented Ca2+-NFATc1 signaling, the dramatic increase of Tnfsf11b/Tnfsf11 (Opg/Rankl) ratio in Mertk knockout bones and osteoblast precursors corroborated the reduction of osteoclastogenesis in Mertk deficiency. In ligature-induced periodontitis and ovariectomy models, the bone resorption was significantly attenuated in Mertk-deficient mice compared with wild type control. Taken together, these data indicate novel role of MerTK in bone metabolism and suggest a potential strategy targeting MerTK in treating bone-lytic diseases including periodontitis and osteoporosis.","PeriodicalId":14611,"journal":{"name":"JBMR Plus","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aline Martin, R. Kawaguchi, Qing Wang, I. Salusky, Renata C Pereira, K. Wesseling-Perry
Maturation defects are intrinsic features of osteoblast lineage cells in CKD patients. These defects persist ex vivo, suggesting that CKD induces epigenetic changes in bone cells. To gain insights into which signaling pathways contribute to CKD-mediated, epigenetically-driven, impairments in osteoblast maturation, we characterized RNA expression and DNA methylation patterns by RNA-Seq and Methylation Epic in primary osteoblasts from 9 adolescent and young adult dialysis patients with end-stage kidney disease and 3 healthy references. ATAC-Seq was also performed on a subset of osteoblasts. Bone matrix protein expression was extracted from iliac crest and evaluated by proteomics. GSEA analysis was used to establish signaling pathways consistently altered in chromatin accessibility, DNA methylation, and RNA expression patterns. Single genes were suppressed in primary osteoblasts using shRNA and mineralization characterized in vitro. The effect of NFAT signaling suppression was also assessed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) incorporation. We found that signaling pathways critical for osteoblast differentiation were strongly downregulated in CKD osteoblasts. GSEA identified highly significant methylation changes, differential chromatin accessibility, and altered RNA expression in NFAT signaling targets. NFAT inhibition reduced osteoblast proliferation. Combined analysis of osteoblast RNA expression and whole bone matrix composition identified thirteen potential ligand-receptor pairs were identified. In summary, epigenetic changes in CKD osteoblasts associate with altered expression of multiple osteoblast genes and signaling pathways. An increase in NFAT signaling may play a role in impaired CKD osteoblast maturation. Epigenetic changes also associate with an altered bone matrix which may contribute to bone fragility. Further studies are necessary to elucidate the pathways affected by these genetic alterations since elucidating these pathways will be vital to correcting the underlying biology of bone disease in the CKD population.
{"title":"Chromatin accessibility and epigenetic DNA modifications in CKD osteoblasts: a study of bone and osteoblasts from pediatric patients with chronic kidney disease","authors":"Aline Martin, R. Kawaguchi, Qing Wang, I. Salusky, Renata C Pereira, K. Wesseling-Perry","doi":"10.1093/jbmrpl/ziad015","DOIUrl":"https://doi.org/10.1093/jbmrpl/ziad015","url":null,"abstract":"\u0000 Maturation defects are intrinsic features of osteoblast lineage cells in CKD patients. These defects persist ex vivo, suggesting that CKD induces epigenetic changes in bone cells. To gain insights into which signaling pathways contribute to CKD-mediated, epigenetically-driven, impairments in osteoblast maturation, we characterized RNA expression and DNA methylation patterns by RNA-Seq and Methylation Epic in primary osteoblasts from 9 adolescent and young adult dialysis patients with end-stage kidney disease and 3 healthy references. ATAC-Seq was also performed on a subset of osteoblasts. Bone matrix protein expression was extracted from iliac crest and evaluated by proteomics. GSEA analysis was used to establish signaling pathways consistently altered in chromatin accessibility, DNA methylation, and RNA expression patterns. Single genes were suppressed in primary osteoblasts using shRNA and mineralization characterized in vitro. The effect of NFAT signaling suppression was also assessed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) incorporation. We found that signaling pathways critical for osteoblast differentiation were strongly downregulated in CKD osteoblasts. GSEA identified highly significant methylation changes, differential chromatin accessibility, and altered RNA expression in NFAT signaling targets. NFAT inhibition reduced osteoblast proliferation. Combined analysis of osteoblast RNA expression and whole bone matrix composition identified thirteen potential ligand-receptor pairs were identified. In summary, epigenetic changes in CKD osteoblasts associate with altered expression of multiple osteoblast genes and signaling pathways. An increase in NFAT signaling may play a role in impaired CKD osteoblast maturation. Epigenetic changes also associate with an altered bone matrix which may contribute to bone fragility. Further studies are necessary to elucidate the pathways affected by these genetic alterations since elucidating these pathways will be vital to correcting the underlying biology of bone disease in the CKD population.","PeriodicalId":14611,"journal":{"name":"JBMR Plus","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osteocytes are the most abundant cell type in bone, important for mechanosensation, signaling for bone formation, resorption and osteocytes reside in a complex lacuno-canalicular network (OLCN). Osteocyte signaling is reduced under diabetic conditions, and both type 1 and type 2 diabetes lead to reduced bone turnover, perturbed bone composition and increased fracture risk. We hypothesized this reduced bone turnover and altered bone composition with diabetes is associated with reduced OLCN architecture and connectivity. This study aimed to elucidate: 1) the sequence of OLCN changes with diabetes related to bone turnover, and 2) whether changes to the OLCN are associated with tissue composition and mechanical properties. 12–14 week old male C57BL/6 mice were administered streptozotocin at 50 mg/kg for 5 consecutive days to induce hyperglycemia, sacrificed at baseline (BL), or after being diabetic for 3 (D3), 7 (D7) weeks with age-matched (C3, C7) controls (n = 10–12 per group). Mineralized femoral sections were infiltrated with rhodamine, imaged with confocal microscopy, then the OLCN morphology and topology were characterized and correlated against bone histomorphometry, local and whole bone mechanics and composition. D7 mice exhibited a lower number of peripheral branches relative to C7. The total number of canalicular intersections (nodes) was lower in D3 and D7 relative to BL (p < 0.05 for all) and a reduced bone formation rate (BFR) was observed at D7 vs. C7. The number of nodes explained only 15% of BFR, but 45% of Ct.BV/TV, and 31% of ultimate load. The number of branches explained 30% and 22% of the elastic work at the perilacunar and intracortical region, respectively. Collectively, the reduction in OLCN architecture, and association of OLCN measures with bone turnover, mechanics and composition highlights the relevance of the osteocyte and the OLCN, and a potential therapeutic target for treating diabetic skeletal fragility.
{"title":"Peripheral canalicular branching is decreased in streptozotocin-induced diabetes and correlates with decreased whole-bone ultimate load and perilacunar elastic work","authors":"Morgan W. Bolger, Tara Tekkey, David H. Kohn","doi":"10.1093/jbmrpl/ziad017","DOIUrl":"https://doi.org/10.1093/jbmrpl/ziad017","url":null,"abstract":"\u0000 Osteocytes are the most abundant cell type in bone, important for mechanosensation, signaling for bone formation, resorption and osteocytes reside in a complex lacuno-canalicular network (OLCN). Osteocyte signaling is reduced under diabetic conditions, and both type 1 and type 2 diabetes lead to reduced bone turnover, perturbed bone composition and increased fracture risk. We hypothesized this reduced bone turnover and altered bone composition with diabetes is associated with reduced OLCN architecture and connectivity. This study aimed to elucidate: 1) the sequence of OLCN changes with diabetes related to bone turnover, and 2) whether changes to the OLCN are associated with tissue composition and mechanical properties. 12–14 week old male C57BL/6 mice were administered streptozotocin at 50 mg/kg for 5 consecutive days to induce hyperglycemia, sacrificed at baseline (BL), or after being diabetic for 3 (D3), 7 (D7) weeks with age-matched (C3, C7) controls (n = 10–12 per group). Mineralized femoral sections were infiltrated with rhodamine, imaged with confocal microscopy, then the OLCN morphology and topology were characterized and correlated against bone histomorphometry, local and whole bone mechanics and composition. D7 mice exhibited a lower number of peripheral branches relative to C7. The total number of canalicular intersections (nodes) was lower in D3 and D7 relative to BL (p < 0.05 for all) and a reduced bone formation rate (BFR) was observed at D7 vs. C7. The number of nodes explained only 15% of BFR, but 45% of Ct.BV/TV, and 31% of ultimate load. The number of branches explained 30% and 22% of the elastic work at the perilacunar and intracortical region, respectively. Collectively, the reduction in OLCN architecture, and association of OLCN measures with bone turnover, mechanics and composition highlights the relevance of the osteocyte and the OLCN, and a potential therapeutic target for treating diabetic skeletal fragility.","PeriodicalId":14611,"journal":{"name":"JBMR Plus","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stuart J Warden, Andrew Dick, Janet E Simon, Todd M. Manini, David W. Russ, Charalampos Lyssikatos, Leatha A. Clark, Brian C. Clark
Osteoporosis is characterized by low bone mass and structural deterioration of bone tissue, leading to bone fragility (i.e., weakness) and an increased risk for fracture. The current standard for assessing bone health and diagnosing osteoporosis is dual-energy x-ray absorptiometry (DXA), which quantifies areal bone mineral density (BMD), typically at the hip and spine. However, DXA-derived BMD assesses only one component of bone health and is notably limited in evaluating bone strength, a critical factor in fracture resistance. Although multifrequency vibration analysis can quickly and painlessly assay bone strength, there has been limited success in advancing a device of this nature. Recent progress has resulted in the development of Cortical Bone Mechanics Technology (CBMT), which conducts a dynamic 3-point bending test to assess the flexural rigidity (EI) of ulnar cortical bone. Data indicates that ulnar EI accurately estimates ulnar whole bone strength and provides unique and independent information about cortical bone compared to DXA-derived BMD. Consequently, CBMT has the potential to address a critical unmet need: better identification of patients with diminished bone strength who are at high risk of experiencing a fragility fracture. However, the clinical utility of CBMT-derived EI has not yet been demonstrated. We have designed a clinical study to assess the accuracy of CBMT-derived ulnar EI in discriminating post-menopausal women who have suffered a fragility fracture from those who have not. These data will be compared to DXA-derived peripheral and central measures of BMD obtained from the same subjects. In this article, we describe the study protocol for this multi-center fracture discrimination study (The STRONGER Study).
骨质疏松症的特点是骨量低和骨组织结构退化,导致骨质脆弱(即软弱无力)和骨折风险增加。目前评估骨骼健康和诊断骨质疏松症的标准是双能 X 射线吸收测量法(DXA),它可以量化骨矿密度(BMD),通常是髋关节和脊柱的骨矿密度。然而,DXA 导出的 BMD 仅能评估骨骼健康的一个组成部分,在评估骨强度(抗骨折的一个关键因素)方面具有明显的局限性。虽然多频振动分析可以快速、无痛地检测骨强度,但在推广此类设备方面取得的成功却很有限。最近的进展是开发出了皮质骨力学技术(CBMT),该技术可进行动态三点弯曲测试,以评估尺骨皮质骨的弯曲刚度(EI)。数据表明,尺骨 EI 能准确估算尺骨整体强度,与 DXA 导出的 BMD 相比,它能提供独特而独立的皮质骨信息。因此,CBMT 有可能满足一项关键的未满足需求:更好地识别骨强度减弱且有发生脆性骨折高风险的患者。然而,CBMT 衍生 EI 的临床实用性尚未得到证实。我们设计了一项临床研究,以评估 CBMT 导出的尺骨 EI 在区分绝经后脆性骨折妇女和未发生脆性骨折妇女方面的准确性。这些数据将与从同一受试者身上获得的 DXA 导出的外周和中心 BMD 测量值进行比较。在本文中,我们将介绍这项多中心骨折鉴别研究(STRONGER 研究)的研究方案。
{"title":"Fracture discrimination capability of ulnar flexural rigidity measured via cortical bone mechanics technology: study protocol for the Stronger study","authors":"Stuart J Warden, Andrew Dick, Janet E Simon, Todd M. Manini, David W. Russ, Charalampos Lyssikatos, Leatha A. Clark, Brian C. Clark","doi":"10.1093/jbmrpl/ziad002","DOIUrl":"https://doi.org/10.1093/jbmrpl/ziad002","url":null,"abstract":"\u0000 Osteoporosis is characterized by low bone mass and structural deterioration of bone tissue, leading to bone fragility (i.e., weakness) and an increased risk for fracture. The current standard for assessing bone health and diagnosing osteoporosis is dual-energy x-ray absorptiometry (DXA), which quantifies areal bone mineral density (BMD), typically at the hip and spine. However, DXA-derived BMD assesses only one component of bone health and is notably limited in evaluating bone strength, a critical factor in fracture resistance. Although multifrequency vibration analysis can quickly and painlessly assay bone strength, there has been limited success in advancing a device of this nature. Recent progress has resulted in the development of Cortical Bone Mechanics Technology (CBMT), which conducts a dynamic 3-point bending test to assess the flexural rigidity (EI) of ulnar cortical bone. Data indicates that ulnar EI accurately estimates ulnar whole bone strength and provides unique and independent information about cortical bone compared to DXA-derived BMD. Consequently, CBMT has the potential to address a critical unmet need: better identification of patients with diminished bone strength who are at high risk of experiencing a fragility fracture. However, the clinical utility of CBMT-derived EI has not yet been demonstrated. We have designed a clinical study to assess the accuracy of CBMT-derived ulnar EI in discriminating post-menopausal women who have suffered a fragility fracture from those who have not. These data will be compared to DXA-derived peripheral and central measures of BMD obtained from the same subjects. In this article, we describe the study protocol for this multi-center fracture discrimination study (The STRONGER Study).","PeriodicalId":14611,"journal":{"name":"JBMR Plus","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139450579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phoebe T T Ng, Kylie Tucker, Farah Zahir, M. Izatt, Leon Straker, Andrew Claus
Nutrition-related variables including lower body mass index (BMI), lower bone mineral density (BMD), altered body composition and hormone levels have been reported in adolescent idiopathic scoliosis (AIS). To determine if physiological and behavioural nutrition-related factors differ between people with and without AIS, and to quantify their relationship with AIS, in unbiased cohort sample. BMI, presence of an eating disorder, leptin, adiponectin, BMD, vitamin D, lean mass and fat mass were compared between those with and without AIS at ages 8, 10, 14, 17 and 20 years, and multiple logistic regression was performed between these variables and AIS. Lower total body BMD (median 1.0 g/cm2 vs 1.1 g/cm2, p = 0.03) and lean mass (median 38.8 kg vs 46.0 kg, p = 0.04) at age 20 years were observed in those with AIS compared to those without scoliosis. At age 20, the odds of AIS were 3.23 times higher for adolescents with an eating disorder compared to those with no eating disorder (95%CI[1.02, 8.63)) when adjusted for BMI. Every 1 kg/m2 increase in BMI decreased the odds of AIS by 0.88 times (95%CI[0.76 to 0.98]) after adjusting for eating disorder diagnosis. Lower BMI in mid-adolescence and presence of eating disorder outcomes, lower BMD and lower lean mass in late adolescence were associated with the presence of AIS. Current data do not explain the mechanisms for these associations, but suggest that serum leptin, adiponectin and vitamin D are unlikely to be contributing factors. Conclusive determination of the prevalence of eating disorders in AIS will require further studies with larger sample sizes.
{"title":"Comparison of physiological and behavioural nutrition-related factors in people with and without adolescent idiopathic scoliosis, from cohort data at 8 to 20 years","authors":"Phoebe T T Ng, Kylie Tucker, Farah Zahir, M. Izatt, Leon Straker, Andrew Claus","doi":"10.1093/jbmrpl/ziad013","DOIUrl":"https://doi.org/10.1093/jbmrpl/ziad013","url":null,"abstract":"\u0000 \u0000 \u0000 Nutrition-related variables including lower body mass index (BMI), lower bone mineral density (BMD), altered body composition and hormone levels have been reported in adolescent idiopathic scoliosis (AIS).\u0000 \u0000 \u0000 \u0000 To determine if physiological and behavioural nutrition-related factors differ between people with and without AIS, and to quantify their relationship with AIS, in unbiased cohort sample.\u0000 \u0000 \u0000 \u0000 BMI, presence of an eating disorder, leptin, adiponectin, BMD, vitamin D, lean mass and fat mass were compared between those with and without AIS at ages 8, 10, 14, 17 and 20 years, and multiple logistic regression was performed between these variables and AIS.\u0000 \u0000 \u0000 \u0000 Lower total body BMD (median 1.0 g/cm2 vs 1.1 g/cm2, p = 0.03) and lean mass (median 38.8 kg vs 46.0 kg, p = 0.04) at age 20 years were observed in those with AIS compared to those without scoliosis. At age 20, the odds of AIS were 3.23 times higher for adolescents with an eating disorder compared to those with no eating disorder (95%CI[1.02, 8.63)) when adjusted for BMI. Every 1 kg/m2 increase in BMI decreased the odds of AIS by 0.88 times (95%CI[0.76 to 0.98]) after adjusting for eating disorder diagnosis.\u0000 \u0000 \u0000 \u0000 Lower BMI in mid-adolescence and presence of eating disorder outcomes, lower BMD and lower lean mass in late adolescence were associated with the presence of AIS. Current data do not explain the mechanisms for these associations, but suggest that serum leptin, adiponectin and vitamin D are unlikely to be contributing factors. Conclusive determination of the prevalence of eating disorders in AIS will require further studies with larger sample sizes.\u0000","PeriodicalId":14611,"journal":{"name":"JBMR Plus","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}