首页 > 最新文献

IUPHAR/BPS Guide to Pharmacology CITE最新文献

英文 中文
Vasopressin and oxytocin receptors in GtoPdb v.2023.1 抗利尿激素和催产素受体在GtoPdb .2023.1
Pub Date : 2023-04-26 DOI: 10.2218/gtopdb/f66/2023.1
D. Bichet, Michel Bouvier, B. Chini, G. Gimpl, G. Guillon, Tadashi Kimura, M. Knepper, S. Lolait, M. Manning, B. Mouillac, A. O'Carroll, C. Serradeil‐Le Gal, M. Soloff, J. Verbalis, M. Wheatley, H. Zingg
Vasopressin (AVP) and oxytocin (OT) receptors (nomenclature as recommended by NC-IUPHAR [94]) are activated by the endogenous cyclic nonapeptides vasopressin and oxytocin. These peptides are derived from precursors which also produce neurophysins (neurophysin I for oxytocin; neurophysin II for vasopressin). Vasopressin and oxytocin differ at only 2 amino acids (positions 3 and 8). There are metabolites of these neuropeptides that may be biologically active [69].
抗利尿激素(AVP)和催产素(OT)受体(命名由NC-IUPHAR推荐[94])被内源性环非肽抗利尿激素和催产素激活。这些多肽来源于前体,这些前体也产生神经physin(神经physin I为催产素;抗利尿激素(neurophysin II)。加压素和催产素仅在2个氨基酸(位置3和8)上存在差异。这些神经肽的代谢物可能具有生物活性[69]。
{"title":"Vasopressin and oxytocin receptors in GtoPdb v.2023.1","authors":"D. Bichet, Michel Bouvier, B. Chini, G. Gimpl, G. Guillon, Tadashi Kimura, M. Knepper, S. Lolait, M. Manning, B. Mouillac, A. O'Carroll, C. Serradeil‐Le Gal, M. Soloff, J. Verbalis, M. Wheatley, H. Zingg","doi":"10.2218/gtopdb/f66/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f66/2023.1","url":null,"abstract":"Vasopressin (AVP) and oxytocin (OT) receptors (nomenclature as recommended by NC-IUPHAR [94]) are activated by the endogenous cyclic nonapeptides vasopressin and oxytocin. These peptides are derived from precursors which also produce neurophysins (neurophysin I for oxytocin; neurophysin II for vasopressin). Vasopressin and oxytocin differ at only 2 amino acids (positions 3 and 8). There are metabolites of these neuropeptides that may be biologically active [69].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79517132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P1B P-type ATPases: Cu+-ATPases in GtoPdb v.2023.1 P1B p型ATPases: GtoPdb v.2023.1中的Cu+-ATPases
Pub Date : 2023-04-26 DOI: 10.2218/gtopdb/f161/2023.1
S. Lutsenko
Copper-transporting ATPases convey copper ions across cell-surface and intracellular membranes. They consist of eight TM domains and associate with multiple copper chaperone proteins (e.g. ATOX1, O00244).
铜转运atp酶通过细胞表面和细胞膜传递铜离子。它们由8个TM结构域组成,并与多个铜伴侣蛋白(如ATOX1, O00244)结合。
{"title":"P1B P-type ATPases: Cu+-ATPases in GtoPdb v.2023.1","authors":"S. Lutsenko","doi":"10.2218/gtopdb/f161/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f161/2023.1","url":null,"abstract":"Copper-transporting ATPases convey copper ions across cell-surface and intracellular membranes. They consist of eight TM domains and associate with multiple copper chaperone proteins (e.g. ATOX1, O00244).","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"315 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77572448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Class A Orphans in GtoPdb v.2023.1 GtoPdb v.2023.1中的A类孤儿
Pub Date : 2023-04-26 DOI: 10.2218/gtopdb/f16/2023.1
Stephen P.H. Alexander, Jim Battey, Helen E. Benson, Richard V. Benya, Tom I. Bonner, Anthony P. Davenport, Khuraijam Dhanachandra Singh, Satoru Eguchi, Anthony Harmar, Nick Holliday, Robert T. Jensen, Sadashiva Karnik, Evi Kostenis, Wen Chiy Liew, Amy E. Monaghan, Chido Mpamhanga, Richard Neubig, Adam J Pawson, Jean-Philippe Pin, Joanna L. Sharman, Michael Spedding, Eliot Spindel, Leigh Stoddart, Laura Storjohann, Walter G. Thomas, Kalyan Tirupula, Patrick Vanderheyden
Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [161], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [121]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3GPR4GPR6GPR12GPR15GPR17GPR20 GPR22GPR26GPR31GPR34GPR35GPR37GPR39 GPR50GPR63GPR65GPR68GPR75GPR84GPR87 GPR88GPR132GPR149GPR161GPR183LGR4LGR5 LGR6MAS1MRGPRDMRGPRX1MRGPRX2P2RY10TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119).
表1列出了NC-IUPHAR鉴定出的一些推测的gpcr[161],这些gpcr存在内源性配体的初步证据已经发表,或者与某种疾病或失调存在潜在联系。最近对这些gpcr进行了详细的综述[121]。表1中的gpcr均为A类视紫红质样gpcr。表1中未列出的A类孤儿gpcr是尚未确定内源性配体的推定gpcr。表1:具有推测内源性配体GPR3GPR4GPR6GPR12GPR15GPR17GPR20 GPR22GPR26GPR31GPR34GPR35GPR37GPR39 GPR50GPR63GPR65GPR68GPR75GPR84GPR87 GPR88GPR132GPR149GPR161GPR183LGR4LGR5 lgr6mas1mrgprdmrgprx1mrgpr2p2ry10taar2的孤儿受体GPR18, GPR55和GPR119被归类在一起(GPR18, GPR55和GPR119)。
{"title":"Class A Orphans in GtoPdb v.2023.1","authors":"Stephen P.H. Alexander, Jim Battey, Helen E. Benson, Richard V. Benya, Tom I. Bonner, Anthony P. Davenport, Khuraijam Dhanachandra Singh, Satoru Eguchi, Anthony Harmar, Nick Holliday, Robert T. Jensen, Sadashiva Karnik, Evi Kostenis, Wen Chiy Liew, Amy E. Monaghan, Chido Mpamhanga, Richard Neubig, Adam J Pawson, Jean-Philippe Pin, Joanna L. Sharman, Michael Spedding, Eliot Spindel, Leigh Stoddart, Laura Storjohann, Walter G. Thomas, Kalyan Tirupula, Patrick Vanderheyden","doi":"10.2218/gtopdb/f16/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f16/2023.1","url":null,"abstract":"Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [161], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [121]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3GPR4GPR6GPR12GPR15GPR17GPR20 GPR22GPR26GPR31GPR34GPR35GPR37GPR39 GPR50GPR63GPR65GPR68GPR75GPR84GPR87 GPR88GPR132GPR149GPR161GPR183LGR4LGR5 LGR6MAS1MRGPRDMRGPRX1MRGPRX2P2RY10TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119).","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"155 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135017137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adhesion Class GPCRs in GtoPdb v.2023.1 GtoPdb v.2023.1中粘附级gpcr
Pub Date : 2023-04-26 DOI: 10.2218/gtopdb/f17/2023.1
Demet Arac-Ozkan, Gabriela Aust, Tom I. Bonner, Heike Cappallo-Obermann, Caroline Formstone, Jörg Hamann, Breanne Harty, Henrike Heyne, Christiane Kirchhoff, Barbara Knapp, Arunkumar Krishnan, Tobias Langenhan, Diana Le Duc, Hsi-Hsien Lin, David C. Martinelli, Kelly Monk, Xianhua Piao, Simone Prömel, Torsten Schöneberg, Helgi Schiöth, Kathleen Singer, Martin Stacey, Yuri Ushkaryov, Uwe Wolfrum, Lei Xu
Adhesion GPCRs are structurally identified on the basis of a large extracellular region, similar to the Class B GPCR, but which is linked to the 7TM region by a GPCR autoproteolysis-inducing (GAIN) domain [10] containing a GPCR proteolysis site (GPS). The N-terminal extracellular region often shares structural homology with adhesive domains (e.g. cadherins, immunolobulin, lectins) facilitating inter- and matricellular interactions and leading to the term adhesion GPCR [104, 418]. Several receptors have been suggested to function as mechanosensors [320, 288, 396, 38]. Cryo-EM structures of the 7-transmembrane domain of several adhesion GPCRs have been determined recently [292, 21, 403, 212, 300, 302, 431, 293]. The nomenclature of these receptors was revised in 2015 as recommended by NC-IUPHAR and the Adhesion GPCR Consortium [125].
粘附GPCR在结构上基于一个大的细胞外区域进行识别,类似于B类GPCR,但它通过包含GPCR蛋白水解位点(GPS)的GPCR自蛋白水解诱导(GAIN)结构域[10]连接到7TM区域。n端细胞外区域通常与粘附结构域(如钙粘蛋白、免疫球蛋白、凝集素)具有结构同源性,促进细胞间和细胞基质相互作用,并导致术语粘附GPCR[104,418]。一些受体被认为具有机械传感器的功能[320,288,396,38]。最近研究人员已经确定了几种粘附gpcr的7-跨膜结构域的低温电镜结构[292,21,403,212,300,302,431,293]。根据NC-IUPHAR和粘附GPCR联盟的建议,这些受体的命名法在2015年进行了修订[125]。
{"title":"Adhesion Class GPCRs in GtoPdb v.2023.1","authors":"Demet Arac-Ozkan, Gabriela Aust, Tom I. Bonner, Heike Cappallo-Obermann, Caroline Formstone, Jörg Hamann, Breanne Harty, Henrike Heyne, Christiane Kirchhoff, Barbara Knapp, Arunkumar Krishnan, Tobias Langenhan, Diana Le Duc, Hsi-Hsien Lin, David C. Martinelli, Kelly Monk, Xianhua Piao, Simone Prömel, Torsten Schöneberg, Helgi Schiöth, Kathleen Singer, Martin Stacey, Yuri Ushkaryov, Uwe Wolfrum, Lei Xu","doi":"10.2218/gtopdb/f17/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f17/2023.1","url":null,"abstract":"Adhesion GPCRs are structurally identified on the basis of a large extracellular region, similar to the Class B GPCR, but which is linked to the 7TM region by a GPCR autoproteolysis-inducing (GAIN) domain [10] containing a GPCR proteolysis site (GPS). The N-terminal extracellular region often shares structural homology with adhesive domains (e.g. cadherins, immunolobulin, lectins) facilitating inter- and matricellular interactions and leading to the term adhesion GPCR [104, 418]. Several receptors have been suggested to function as mechanosensors [320, 288, 396, 38]. Cryo-EM structures of the 7-transmembrane domain of several adhesion GPCRs have been determined recently [292, 21, 403, 212, 300, 302, 431, 293]. The nomenclature of these receptors was revised in 2015 as recommended by NC-IUPHAR and the Adhesion GPCR Consortium [125].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135017415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histamine receptors in GtoPdb v.2023.1 GtoPdb v.2023.1中的组胺受体
Pub Date : 2023-04-26 DOI: 10.2218/gtopdb/f33/2023.1
Paul Chazot, Marlon Cowart, Hiroyuki Fukui, C. Robin Ganellin, Ralf Gutzmer, Helmut L. Haas, Stephen J. Hill, Rebecca Hills, Rob Leurs, Roberto Levi, Steve Liu, Pertti Panula, Walter Schunack, Jean-Charles Schwartz, Roland Seifert, Nigel P. Shankley, Holger Stark, Robin Thurmond, Henk Timmerman, J. Michael Young
Histamine receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Histamine Receptors [80, 174]) are activated by the endogenous ligand histamine. Marked species differences exist between histamine receptor orthologues [80]. The human and rat H3 receptor genes are subject to significant splice variance [12]. The potency order of histamine at histamine receptor subtypes is H3 = H4 > H2 > H1 [174]. Some agonists at the human H3 receptor display significant ligand bias [183]. Antagonists of all 4 histamine receptors have clinical uses: H1 antagonists for allergies (e.g. cetirizine), H2 antagonists for acid-reflux diseases (e.g. ranitidine), H3 antagonists for narcolepsy (e.g. pitolisant/WAKIX; Registered) and H4 antagonists for atopic dermatitis (e.g. adriforant; Phase IIa) [174] and vestibular neuritis (AUV) (SENS-111 (Seliforant, previously UR-63325), entered and completed vestibular neuritis (AUV) Phase IIa efficacy and safety trials, respectively) [217, 8].
组胺受体(由NC-IUPHAR组胺受体小组委员会商定的命名法[80,174])由内源性配体组胺激活。组胺受体同源物之间存在明显的物种差异[80]。人和大鼠的H3受体基因存在显著的剪接变异[12]。组胺在组胺受体亚型上的效价顺序为H3 = H4 >H2祝辞H1[174]。一些人H3受体激动剂表现出明显的配体偏倚[183]。所有4种组胺受体的拮抗剂都有临床用途:H1拮抗剂用于过敏(如西替利嗪),H2拮抗剂用于酸反流疾病(如雷尼替丁),H3拮抗剂用于发作性睡病(如pitolisant/WAKIX;已注册)和H4拮抗剂用于特应性皮炎(例如:adriforant;IIa期)[174]和前庭神经炎(AUV) (SENS-111 (Seliforant,原UR-63325)分别进入并完成了前庭神经炎(AUV) IIa期疗效和安全性试验)[217,8]。
{"title":"Histamine receptors in GtoPdb v.2023.1","authors":"Paul Chazot, Marlon Cowart, Hiroyuki Fukui, C. Robin Ganellin, Ralf Gutzmer, Helmut L. Haas, Stephen J. Hill, Rebecca Hills, Rob Leurs, Roberto Levi, Steve Liu, Pertti Panula, Walter Schunack, Jean-Charles Schwartz, Roland Seifert, Nigel P. Shankley, Holger Stark, Robin Thurmond, Henk Timmerman, J. Michael Young","doi":"10.2218/gtopdb/f33/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f33/2023.1","url":null,"abstract":"Histamine receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Histamine Receptors [80, 174]) are activated by the endogenous ligand histamine. Marked species differences exist between histamine receptor orthologues [80]. The human and rat H3 receptor genes are subject to significant splice variance [12]. The potency order of histamine at histamine receptor subtypes is H3 = H4 > H2 > H1 [174]. Some agonists at the human H3 receptor display significant ligand bias [183]. Antagonists of all 4 histamine receptors have clinical uses: H1 antagonists for allergies (e.g. cetirizine), H2 antagonists for acid-reflux diseases (e.g. ranitidine), H3 antagonists for narcolepsy (e.g. pitolisant/WAKIX; Registered) and H4 antagonists for atopic dermatitis (e.g. adriforant; Phase IIa) [174] and vestibular neuritis (AUV) (SENS-111 (Seliforant, previously UR-63325), entered and completed vestibular neuritis (AUV) Phase IIa efficacy and safety trials, respectively) [217, 8].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135017421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Succinate receptor in GtoPdb v.2023.1 琥珀酸受体在GtoPdb v.2023.1
Pub Date : 2023-04-26 DOI: 10.2218/gtopdb/f446/2023.1
Anthony P. Davenport, Julien Hanson, Wen Chiy Liew
Nomenclature as recommended by NC-IUPHAR [8]. The succinate receptor (GPR91, SUCNR1) is activated by the tricarboxylic acid (or Krebs) cycle intermediate succinate and other dicarboxylic acids with less clear physiological relevance such as maleate [17]. Since its pairing with its endogenous ligand in 2004, intense research has focused on the receptor-ligand pair role in various (patho)physiological processes such as regulation of renin production [17, 39], ischemia injury [17], fibrosis [25], retinal angiogenesis [34], inflammation [25, 23], immune response [32], obesity [44, 26, 21], diabetes [42, 22, 39], platelet aggregation [38, 36] or cancer [28, 46]. The succinate receptor is coupled to Gi/o [11, 17] and Gq/11 protein families [31, 17, 40]. Although the receptor is, upon ligand addition, rapidly desensitized [19, 31], and in some cells internalized [17], it seems to recruit arrestins weakly [10]. The cellular activation of the succinate receptor triggers various signalling pathways such as decrease of cAMP levels, [Ca2+]i mobilization and activation of kinases (ERK, c-Jun, Akt, Src, p38, PI3Kβ, etc.) [12]. The receptor is broadly expressed but is notably abundant in immune cells (M2 macrophages [40, 21], monocytes [32], immature dendritic cells [32], adipocytes [44], platelets [38, 36], etc.) and in the kidney [17].
NC-IUPHAR推荐的命名法[8]。琥珀酸受体(GPR91, SUCNR1)被三羧酸(或Krebs)循环中间体琥珀酸和其他生理相关性不太明确的二羧酸(如雄酸)激活[17]。自2004年与其内源性配体配对以来,人们对受体-配体对在各种(病理)生理过程中的作用进行了大量研究,如肾素产生的调节[17,39]、缺血损伤[17]、纤维化[25]、视网膜血管生成[34]、炎症[25,23]、免疫反应[32]、肥胖[44,26,21]、糖尿病[42,22,39]、血小板聚集[38,36]或癌症[28,46]。琥珀酸受体偶联到Gi/o蛋白家族[11,17]和Gq/11蛋白家族[31,17,40]。虽然在配体加入后,受体会迅速脱敏[19,31],并且在一些内化的细胞中[17],但它似乎招募阻滞因子的能力较弱[10]。琥珀酸受体的细胞活化触发多种信号通路,如cAMP水平降低、[Ca2+]i动员和激酶(ERK、c-Jun、Akt、Src、p38、PI3Kβ等)的激活[12]。该受体广泛表达,但在免疫细胞(M2巨噬细胞[40,21]、单核细胞[32]、未成熟树突状细胞[32]、脂肪细胞[44]、血小板[38,36]等)和肾脏中表达丰富[17]。
{"title":"Succinate receptor in GtoPdb v.2023.1","authors":"Anthony P. Davenport, Julien Hanson, Wen Chiy Liew","doi":"10.2218/gtopdb/f446/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f446/2023.1","url":null,"abstract":"Nomenclature as recommended by NC-IUPHAR [8]. The succinate receptor (GPR91, SUCNR1) is activated by the tricarboxylic acid (or Krebs) cycle intermediate succinate and other dicarboxylic acids with less clear physiological relevance such as maleate [17]. Since its pairing with its endogenous ligand in 2004, intense research has focused on the receptor-ligand pair role in various (patho)physiological processes such as regulation of renin production [17, 39], ischemia injury [17], fibrosis [25], retinal angiogenesis [34], inflammation [25, 23], immune response [32], obesity [44, 26, 21], diabetes [42, 22, 39], platelet aggregation [38, 36] or cancer [28, 46]. The succinate receptor is coupled to Gi/o [11, 17] and Gq/11 protein families [31, 17, 40]. Although the receptor is, upon ligand addition, rapidly desensitized [19, 31], and in some cells internalized [17], it seems to recruit arrestins weakly [10]. The cellular activation of the succinate receptor triggers various signalling pathways such as decrease of cAMP levels, [Ca2+]i mobilization and activation of kinases (ERK, c-Jun, Akt, Src, p38, PI3Kβ, etc.) [12]. The receptor is broadly expressed but is notably abundant in immune cells (M2 macrophages [40, 21], monocytes [32], immature dendritic cells [32], adipocytes [44], platelets [38, 36], etc.) and in the kidney [17].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135018173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabotropic glutamate receptors in GtoPdb v.2023.1 GtoPdb v.2023.1中代谢性谷氨酸受体
Pub Date : 2023-04-26 DOI: 10.2218/gtopdb/f40/2023.1
F. Acher, G. Battaglia, H. Bräuner‐Osborne, P. Conn, R. Duvoisin, F. Ferraguti, P. Flor, C. Goudet, K. Gregory, D. Hampson, Michael P. Johnson, Y. Kubo, J. Monn, S. Nakanishi, F. Nicoletti, C. Niswender, J. Pin, P. Rondard, D. Schoepp, R. Shigemoto, M. Tateyama
Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [351]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate [140]. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. mGlu form constitutive dimers, cross-linked by a disulfide bridge. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [200, 275, 268, 403]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organisation similar to that of other GPCRs, although the helices appear more compacted [88, 433, 62]. Recent advances in cryo-electron microscopy have provided structures of full-length mGlu receptor homodimers [217, 191] and heterodimers [91]. Studies have revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [89]. First characterised in transfected cells, co-localisation and specific pharmacological properties suggest the existence of such heterodimers in the brain [270, 440, 145, 283, 259, 218]. Beyond heteromerisation with other mGlu receptor subtypes, increasing evidence suggests mGlu receptors form heteromers and larger order complexes with class A GPCRs (reviewed in [140]). The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [30] and antagonised by (S)-hexylhomoibotenic acid [235]. Group-II mGlu receptors may be activated by LY389795 [269], LY379268 [269], eglumegad [354, 434], DCG-IV and (2R,3R)-APDC [355], and antagonised by eGlu [170] and LY307452 [425, 105]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [130]. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [185]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as ‘potentiators’ of an orthosteric agonist response, without signif
代谢性谷氨酸受体(metabolic - tropic glutamate receptor, mGlu)是由神经递质谷氨酸激活的G蛋白偶联受体家族[140],其命名由NC-IUPHAR代谢性谷氨酸受体小组委员会[351]商定。mGlu家族由8个成员组成(命名为mGlu1至mGlu8),根据激动剂药理、一级序列和G蛋白与效应物偶联的相似性分为三组:组i (mGlu1和mGlu5)、组ii (mGlu2和mGlu3)和组iii (mGlu4、mGlu6、mGlu7和mGlu8)(见进一步阅读)。在结构上,mGlu由三个并列的结构域组成:一个核心的G蛋白激活七跨膜结构域(TM)是所有gpcr共同的,通过一个刚性的富含半胱氨酸结构域(CRD)连接到捕蝇草结构域(VFTD),这是一个大的双叶胞外结构域,谷氨酸结合在这里。mGlu形成本构二聚体,由二硫化桥交联。mGlu1、mGlu2、mGlu3、mGlu5和mGlu7的VFTD结构已被求解[200,275,268,403]。mGlu1和mGlu5的7个跨膜结构域的结构已经被解决,并证实了与其他gpcr相似的一般螺旋组织,尽管螺旋看起来更加紧密[88,433,62]。冷冻电镜技术的最新进展已经提供了全长mGlu受体同型二聚体[217,191]和异源二聚体[91]的结构。研究表明,在i类受体之间、ii类和-III类受体内部和之间可能形成异源二聚体[89]。首先在转染细胞中表征,共定位和特定的药理学特性表明这种异源二聚体在大脑中存在[270,440,145,283,259,218]。除了与其他mGlu受体亚型异质化外,越来越多的证据表明,mGlu受体与A类gpcr形成异聚体和更大阶的复合物(见[140])。mGlu的内源性配体有l -谷氨酸、l -磷酸丝氨酸、n -乙酰天冬氨酸谷氨酸(NAAG)和l -半胱氨酸磺酸。组i mGlu受体可被3,5- dhpg和(S)-3HPG[30]激活,并可被(S)-己基同黑素酸拮抗[235]。Group-II mGlu受体可被LY389795[269]、LY379268[269]、eglumegad[354,434]、DCG-IV和(2R,3R)-APDC[355]激活,并被eGlu[170]和LY307452[425, 105]拮抗。iii组mGlu受体可被L-AP4和(R,S)-4-PPG激活[130]。mGlu受体选择性拮抗剂的一个例子是LY341495,它在低纳摩尔浓度下阻断mGlu2和mGlu3,在高纳摩尔浓度下阻断mGlu8,在微摩尔范围内阻断mGlu4、mGlu5和mGlu7[185]。除了直接与谷氨酸识别位点相互作用的正构配体外,还描述了在TM结构域内结合的变构调节剂。负变构调制器单独列出。正变构调节剂通常作为正构激动剂反应的“增强剂”,在没有激动剂的情况下不会显著激活受体。
{"title":"Metabotropic glutamate receptors in GtoPdb v.2023.1","authors":"F. Acher, G. Battaglia, H. Bräuner‐Osborne, P. Conn, R. Duvoisin, F. Ferraguti, P. Flor, C. Goudet, K. Gregory, D. Hampson, Michael P. Johnson, Y. Kubo, J. Monn, S. Nakanishi, F. Nicoletti, C. Niswender, J. Pin, P. Rondard, D. Schoepp, R. Shigemoto, M. Tateyama","doi":"10.2218/gtopdb/f40/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f40/2023.1","url":null,"abstract":"Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [351]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate [140]. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. mGlu form constitutive dimers, cross-linked by a disulfide bridge. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [200, 275, 268, 403]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organisation similar to that of other GPCRs, although the helices appear more compacted [88, 433, 62]. Recent advances in cryo-electron microscopy have provided structures of full-length mGlu receptor homodimers [217, 191] and heterodimers [91]. Studies have revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [89]. First characterised in transfected cells, co-localisation and specific pharmacological properties suggest the existence of such heterodimers in the brain [270, 440, 145, 283, 259, 218]. Beyond heteromerisation with other mGlu receptor subtypes, increasing evidence suggests mGlu receptors form heteromers and larger order complexes with class A GPCRs (reviewed in [140]). The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [30] and antagonised by (S)-hexylhomoibotenic acid [235]. Group-II mGlu receptors may be activated by LY389795 [269], LY379268 [269], eglumegad [354, 434], DCG-IV and (2R,3R)-APDC [355], and antagonised by eGlu [170] and LY307452 [425, 105]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [130]. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [185]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as ‘potentiators’ of an orthosteric agonist response, without signif","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84720484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
SLC31 family of copper transporters in GtoPdb v.2023.1 GtoPdb v.2023.1中的SLC31家族铜转运体
Pub Date : 2023-04-26 DOI: 10.2218/gtopdb/f218/2023.1
S. Lutsenko
SLC31 family members, alongside the Cu-ATPases are involved in the regulation of cellular copper levels. The CTR1 transporter is a cell-surface transporter to allow monovalent copper accumulation into cells, while CTR2 appears to be a vacuolar/vesicular transporter [5]. Functional copper transporters appear to be trimeric with each subunit having three TM regions and an extracellular N-terminus. CTR1 is considered to be a higher affinity copper transporter compared to CTR2. The stoichiometry of copper accumulation is unclear, but appears to be energy-independent [4].
SLC31家族成员与cu - atp酶一起参与细胞铜水平的调节。CTR1转运体是一种细胞表面转运体,允许单价铜积聚到细胞中,而CTR2似乎是一种液泡/泡状转运体[5]。功能性铜转运体似乎是三聚体,每个亚基具有三个TM区域和一个细胞外n端。与CTR2相比,CTR1被认为是一种亲和力更高的铜转运体。铜积累的化学计量尚不清楚,但似乎与能量无关。
{"title":"SLC31 family of copper transporters in GtoPdb v.2023.1","authors":"S. Lutsenko","doi":"10.2218/gtopdb/f218/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f218/2023.1","url":null,"abstract":"SLC31 family members, alongside the Cu-ATPases are involved in the regulation of cellular copper levels. The CTR1 transporter is a cell-surface transporter to allow monovalent copper accumulation into cells, while CTR2 appears to be a vacuolar/vesicular transporter [5]. Functional copper transporters appear to be trimeric with each subunit having three TM regions and an extracellular N-terminus. CTR1 is considered to be a higher affinity copper transporter compared to CTR2. The stoichiometry of copper accumulation is unclear, but appears to be energy-independent [4].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91288296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prokineticin receptors in GtoPdb v.2023.1 促动素受体在GtoPdb v.2023.1
Pub Date : 2023-04-26 DOI: 10.2218/gtopdb/f56/2023.1
R. Hills, Adam J. Pawson, P. Rondard, O. Sbai, Q. Zhou
Prokineticin receptors, PKR1 and PKR2 (provisional nomenclature as recommended by NC-IUPHAR [26]) respond to the cysteine-rich 81-86 amino-acid peptides prokineticin-1 (also known as endocrine gland-derived vascular endothelial growth factor, mambakine) and prokineticin-2 (protein Bv8 homologue). An orthologue of PROK1 from black mamba (Dendroaspis polylepis) venom, mamba intestinal toxin 1 (MIT1, [71]) is a potent, non-selective agonist at prokineticin receptors [46], while Bv8, an orthologue of PROK2 from amphibians (Bombina sp., [49]), is equipotent at recombinant PKR1 and PKR2 [53], and has high potency in macrophage chemotaxis assays, which are lost in PKR1-null mice.
促运动素受体PKR1和PKR2 (NC-IUPHAR推荐的临时命名[26])对富含半胱氨酸的81-86氨基酸肽prokinetic -1(也称为内分泌腺源性血管内皮生长因子,mambakine)和prokinetic -2(蛋白Bv8同源物)有反应。黑曼巴(Dendroaspis polylepis)毒液中PROK1的同源物,曼巴肠毒素1 (MIT1,[71])是促动素受体的有效非选择性激动剂[46],而两栖动物(Bombina sp.,[49])中PROK2的同源物Bv8在重组PKR1和PKR2中具有同等效力[53],并且在巨噬细胞趋化试验中具有高效力,在PKR1缺失的小鼠中缺失。
{"title":"Prokineticin receptors in GtoPdb v.2023.1","authors":"R. Hills, Adam J. Pawson, P. Rondard, O. Sbai, Q. Zhou","doi":"10.2218/gtopdb/f56/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f56/2023.1","url":null,"abstract":"Prokineticin receptors, PKR1 and PKR2 (provisional nomenclature as recommended by NC-IUPHAR [26]) respond to the cysteine-rich 81-86 amino-acid peptides prokineticin-1 (also known as endocrine gland-derived vascular endothelial growth factor, mambakine) and prokineticin-2 (protein Bv8 homologue). An orthologue of PROK1 from black mamba (Dendroaspis polylepis) venom, mamba intestinal toxin 1 (MIT1, [71]) is a potent, non-selective agonist at prokineticin receptors [46], while Bv8, an orthologue of PROK2 from amphibians (Bombina sp., [49]), is equipotent at recombinant PKR1 and PKR2 [53], and has high potency in macrophage chemotaxis assays, which are lost in PKR1-null mice.","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91517619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P2Y receptors in GtoPdb v.2023.1 GtoPdb v.2023.1中的P2Y受体
Pub Date : 2023-04-26 DOI: 10.2218/gtopdb/f52/2023.1
M. Abbracchio, J. Boeynaems, J. Boyer, G. Burnstock, S. Ceruti, M. Fumagalli, C. Gachet, R. Hills, R. G. Humphries, Kazu Inoue, K. Jacobson, C. Kennedy, B. King, D. Lecca, C. Müller, M. Miras-Portugal, V. Ralevic, G. Weisman
P2Y receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on P2Y Receptors [3, 5, 189]) are activated by the endogenous ligands ATP, ADP, UTP, UDP, UDP-glucose and adenosine. The eight mammalian P2Y receptors are activated by distinct nucleotides: P2Y1, P2Y11, P2Y12 and P2Y13 are activated by adenosine-nucleotides; P2Y2, P2Y4 can be activated by both adenosine and uridine nucleotides, with some species-specific differences; P2Y6 is mainly activated by UDP; P2Y14 is preferentially activated by sugar-uracil nucleotides. The missing numbers in the receptor nomenclature refer either to non-mammalian orthologs or receptors having some sequence homology to P2Y receptors but for which there is no functional evidence of responsiveness to nucleotides [380]. Based on their G protein coupling P2Y receptors can be divided into two subfamilies: P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11 receptors couple via Gq proteins to stimulate phospholipase C followed by increases in inositol phosphates and mobilization of Ca2+ from intracellular stores. P2Y11 receptors couple in addition to Gs proteins followed by increased adenylate cyclase activity. In contrast, P2Y12, P2Y13, and P2Y14 receptors signal primarily through activation of Gi proteins and inhibition of adenylate cyclase activity or control of ion channel activity [380]. Clinically used drugs acting on these receptors include the dinucleoside polyphosphate diquafosol, agonist of the P2Y2 receptor subtype, approved in Japan and South Korea for the management of dry eye disease [238], and the P2Y12 receptor antagonists prasugrel, ticagrelor and cangrelor, all approved as antiplatelet drugs [52, 320].
P2Y受体(由NC-IUPHAR P2Y受体小组委员会商定的命名[3,5,189])被内源性配体ATP、ADP、UTP、UDP、UDP-葡萄糖和腺苷激活。8种哺乳动物P2Y受体被不同的核苷酸激活:P2Y1、P2Y11、P2Y12和P2Y13被腺苷核苷酸激活;P2Y2、P2Y4可被腺苷和尿苷核苷酸激活,但有一定的物种特异性差异;P2Y6主要由UDP激活;P2Y14优先被糖尿嘧啶核苷酸激活。受体命名法中缺失的数字是指非哺乳动物同源物或与P2Y受体具有某种序列同源性但没有对核苷酸反应的功能证据的受体[380]。基于它们的G蛋白偶联,P2Y受体可分为两个亚家族:P2Y1、P2Y2、P2Y4、P2Y6和P2Y11受体通过Gq蛋白偶联刺激磷脂酶C,随后增加肌醇磷酸和从细胞内储存的Ca2+的动员。P2Y11受体与Gs蛋白偶联,随后腺苷酸环化酶活性增加。相比之下,P2Y12、P2Y13和P2Y14受体主要通过激活Gi蛋白和抑制腺苷酸环化酶活性或控制离子通道活性来发出信号[380]。临床使用的作用于这些受体的药物包括二核苷类多磷酸双喹福醇,P2Y2受体亚型激动剂,在日本和韩国被批准用于治疗干眼病[238],以及P2Y12受体拮抗剂普拉格雷、替格瑞洛和康格瑞洛,均被批准作为抗血小板药物[52,320]。
{"title":"P2Y receptors in GtoPdb v.2023.1","authors":"M. Abbracchio, J. Boeynaems, J. Boyer, G. Burnstock, S. Ceruti, M. Fumagalli, C. Gachet, R. Hills, R. G. Humphries, Kazu Inoue, K. Jacobson, C. Kennedy, B. King, D. Lecca, C. Müller, M. Miras-Portugal, V. Ralevic, G. Weisman","doi":"10.2218/gtopdb/f52/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f52/2023.1","url":null,"abstract":"P2Y receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on P2Y Receptors [3, 5, 189]) are activated by the endogenous ligands ATP, ADP, UTP, UDP, UDP-glucose and adenosine. The eight mammalian P2Y receptors are activated by distinct nucleotides: P2Y1, P2Y11, P2Y12 and P2Y13 are activated by adenosine-nucleotides; P2Y2, P2Y4 can be activated by both adenosine and uridine nucleotides, with some species-specific differences; P2Y6 is mainly activated by UDP; P2Y14 is preferentially activated by sugar-uracil nucleotides. The missing numbers in the receptor nomenclature refer either to non-mammalian orthologs or receptors having some sequence homology to P2Y receptors but for which there is no functional evidence of responsiveness to nucleotides [380]. Based on their G protein coupling P2Y receptors can be divided into two subfamilies: P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11 receptors couple via Gq proteins to stimulate phospholipase C followed by increases in inositol phosphates and mobilization of Ca2+ from intracellular stores. P2Y11 receptors couple in addition to Gs proteins followed by increased adenylate cyclase activity. In contrast, P2Y12, P2Y13, and P2Y14 receptors signal primarily through activation of Gi proteins and inhibition of adenylate cyclase activity or control of ion channel activity [380]. Clinically used drugs acting on these receptors include the dinucleoside polyphosphate diquafosol, agonist of the P2Y2 receptor subtype, approved in Japan and South Korea for the management of dry eye disease [238], and the P2Y12 receptor antagonists prasugrel, ticagrelor and cangrelor, all approved as antiplatelet drugs [52, 320].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79896496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IUPHAR/BPS Guide to Pharmacology CITE
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1