首页 > 最新文献

Israel Journal of Chemistry最新文献

英文 中文
Cover Picture: (Isr. J. Chem. 1-2/2024) 封面图片:(Isr.)
IF 3.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-02-26 DOI: 10.1002/ijch.202480101

The cover picture shows a cyclic voltammogram and catalytically active intermediates, highlighting the importance of a rationale for innovations in the rapidly evolving field of molecular electrosynthesis. Also, as a product structure, a C7 substituted indole, derived through electrocatalysis, is depicted.

封面图片显示的是循环伏安图和催化活性中间体,突出了在快速发展的分子电合成领域创新原理的重要性。此外,还展示了通过电催化得到的 C7 取代吲哚的产品结构。
{"title":"Cover Picture: (Isr. J. Chem. 1-2/2024)","authors":"","doi":"10.1002/ijch.202480101","DOIUrl":"https://doi.org/10.1002/ijch.202480101","url":null,"abstract":"<p>The cover picture shows a cyclic voltammogram and catalytically active intermediates, highlighting the importance of a rationale for innovations in the rapidly evolving field of molecular electrosynthesis. Also, as a product structure, a C7 substituted indole, derived through electrocatalysis, is depicted.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 1-2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202480101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139976533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular Metabolic Labeling of Nucleic Acids and Its Applications 核酸的细胞代谢标记及其应用
IF 3.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-02-23 DOI: 10.1002/ijch.202300165
Dr. Zhiyong He, Prof. Xiang Zhou

Nucleic acids are considered as fundamental molecules of living systems, which serve as universal genetic information messengers and repositories. To uncover the multifaceted aspects of nucleic acid function and metabolism within cells, labeling has become indispensable. This labeling technique enables the visualization, isolation, characterization, and even quantification of specific nucleic acid species. This review delves into cellular metabolic approaches for nucleic acid labeling, wherein enzymatic steps are employed to introduce nucleic acid modifications before conjugation with a label for detection or isolation. The discussion begins with metabolic labeling for DNA, RNA with various reactive groups and post-transcriptional RNA labeling for RNA methylation and acetylation sites, emphasizing recent advancements in the field and then, we spotlighted pertinent applications for cellular imaging and sequencing. of labeling.

核酸被认为是生命系统的基本分子,是通用的遗传信息信使和储存库。要揭示细胞内核酸功能和新陈代谢的方方面面,标记技术已变得不可或缺。这种标记技术可实现特定核酸种类的可视化、分离、表征甚至量化。本综述深入探讨了核酸标记的细胞代谢方法,其中采用酶步骤引入核酸修饰,然后再与标记物连接进行检测或分离。讨论从 DNA 的代谢标记、带有各种活性基团的 RNA 标记以及转录后 RNA 甲基化和乙酰化位点的 RNA 标记开始,强调了该领域的最新进展,然后重点介绍了细胞成像和测序的相关应用。
{"title":"Cellular Metabolic Labeling of Nucleic Acids and Its Applications","authors":"Dr. Zhiyong He,&nbsp;Prof. Xiang Zhou","doi":"10.1002/ijch.202300165","DOIUrl":"10.1002/ijch.202300165","url":null,"abstract":"<p>Nucleic acids are considered as fundamental molecules of living systems, which serve as universal genetic information messengers and repositories. To uncover the multifaceted aspects of nucleic acid function and metabolism within cells, labeling has become indispensable. This labeling technique enables the visualization, isolation, characterization, and even quantification of specific nucleic acid species. This review delves into cellular metabolic approaches for nucleic acid labeling, wherein enzymatic steps are employed to introduce nucleic acid modifications before conjugation with a label for detection or isolation. The discussion begins with metabolic labeling for DNA, RNA with various reactive groups and post-transcriptional RNA labeling for RNA methylation and acetylation sites, emphasizing recent advancements in the field and then, we spotlighted pertinent applications for cellular imaging and sequencing. of labeling.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 3-4","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Issue on Electrochemically-Driven Organic Synthesis 电化学驱动的有机合成特刊
IF 3.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-02-22 DOI: 10.1002/ijch.202400022
Prof. Dr. Lutz Ackermann
<p>Molecular synthesis has gained considerable momentum through the impetus provided by electrochemically-enabled redox manipulation.<span><sup>1</sup></span> Organic electrosynthesis and electrocatalysis bear a unique potential to substantially improve molecular chemistry and provide a wide range of innovative transformations. While a first electrochemically-driven organic synthesis dates back to Kolbe's decarboxylative homocoupling in 1848,<span><sup>2</sup></span> organic electrosynthesis has remained largely underexplored. Particularly, recent years have witnessed a remarkable renaissance of electrochemically-enabled organic reactions. Pioneering contributions have during the past several years illustrated the unique opportunities that electrochemistry offers for the assembly of novel molecular structures, while improving the efficiency and sustainability of molecular synthesis. In this Special Issue, the <i>Israelian Journal of Chemistry</i> highlights the latest progress in this field.</p><p>Articles enclosed in this Special Issue cover overviews of important recent achievements in electrochemically driven organic synthesis as well as important original research articles on molecular organic electrosynthesis. Thus, Xu reviewed strategies that exploit ferrocene as redox catalyst, emphasizing the power towards catalyzed radical formation.<span><sup>3</sup></span> Likewise, Onomura summarized the potential of halogen mediators for environmentally-benign and at the same time efficient alcohol oxidations.<span><sup>4</sup></span> Jiao and Mei showed the power of paired electrolysis for organic reactions with ideal resource-economy,<span><sup>5</sup></span> while Cheng outlined the challenges and benefits of water as a particularly benign reaction medium.<span><sup>6</sup></span> Besides electrooxidative strategies, electroreductive transformations have garnered major recent attention. In this context, Weix summarized electrochemical nickel-catalyzed C−C bond formations through cross-electrophile coupling,<span><sup>7</sup></span> while Gosmini provided an overview on powerful transition metal-catalyzed electroreductive approachess for C−C bond formation.<span><sup>8</sup></span> On a different note, de Sarkar focused on electroreductive transformations involving C−C and C−O multiple bonds.<span><sup>9</sup></span> Novel innovative concepts in the realm of organic electrosynthesis, are presented in selected research articles highlighting exciting recent advances. Here, Ruan established an electrochemical cascade cyclization for a convenient access to 3-selenylindoles,<span><sup>10</sup></span> while Ackermann established C7-indole alkenylations based on rhodaelectrocatalysis.<span><sup>11</sup></span> The elegant design of an off/on switching enabled Kakiuchi to establish a one-pot cross-coupling/C−H bromination for bromoarylpyridines.<span><sup>12</sup></span> Finally, Fuchigami systematically compared the impact of the anode materials on the pe
1 有机电合成和电催化在大幅改进分子化学和提供广泛的创新转化方面具有独特的潜力。虽然最早的电化学驱动有机合成可追溯到 1848 年 Kolbe 的脱羧同偶联反应2 ,但有机电合成在很大程度上仍未得到充分探索。特别是近年来,电化学驱动的有机反应出现了显著的复兴。过去几年中,一些开创性的研究成果表明,电化学为组装新型分子结构提供了独特的机会,同时提高了分子合成的效率和可持续性。在本特刊中,《以色列化学杂志》重点介绍了这一领域的最新进展。本特刊收录的文章包括电化学驱动有机合成领域最新重要成就的概述,以及有关分子有机电合成的重要原创研究文章。因此,Xu 综述了利用二茂铁作为氧化还原催化剂的策略,强调了催化自由基形成的威力。3 同样,Onomura 总结了卤素介质在环境无害同时高效的醇氧化中的潜力。在这方面,Weix 总结了通过交叉亲电偶联的电化学镍催化 C-C 键形成7,而 Gosmini 则概述了强大的过渡金属催化 C-C 键形成的电还原方法8。其中,Ruan 建立了一种电化学级联环化方法,可方便地获得 3-硒基吲哚10,而 Ackermann 则建立了基于 rhodaelectrocatalysis 的 C7-indole 烯化反应11。最后,Fuchigami 系统地比较了阳极材料对各种阳极转化性能的影响。13 © WSS, Felix Wey总之,本特刊反映了有机电化学领域的巨大进步,来自美国、欧洲和亚洲的该领域世界领先的从业人员做出了杰出贡献,反映了利用电力实现可持续未来的国际重要性。电化学有机合成具有直接促进实现联合国众多可持续发展目标14 的潜力,包括 "良好的健康和福祉"、"负担得起的清洁能源"、"工业、创新和基础设施"、"负责任的消费和生产 "以及 "气候行动 "等目标。同时,电化学的统一影响涉及到绿色化学的所有十二项原则15。总体而言,电化学分子合成已被公认为有机化学家独一无二的强大平台。鉴于有机电化学在有机分子的可持续组装方面具有突出的创新潜力,预计这一快速发展的研究领 域将取得各种令人振奋的进展。
{"title":"Special Issue on Electrochemically-Driven Organic Synthesis","authors":"Prof. Dr. Lutz Ackermann","doi":"10.1002/ijch.202400022","DOIUrl":"10.1002/ijch.202400022","url":null,"abstract":"&lt;p&gt;Molecular synthesis has gained considerable momentum through the impetus provided by electrochemically-enabled redox manipulation.&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt; Organic electrosynthesis and electrocatalysis bear a unique potential to substantially improve molecular chemistry and provide a wide range of innovative transformations. While a first electrochemically-driven organic synthesis dates back to Kolbe's decarboxylative homocoupling in 1848,&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt; organic electrosynthesis has remained largely underexplored. Particularly, recent years have witnessed a remarkable renaissance of electrochemically-enabled organic reactions. Pioneering contributions have during the past several years illustrated the unique opportunities that electrochemistry offers for the assembly of novel molecular structures, while improving the efficiency and sustainability of molecular synthesis. In this Special Issue, the &lt;i&gt;Israelian Journal of Chemistry&lt;/i&gt; highlights the latest progress in this field.&lt;/p&gt;&lt;p&gt;Articles enclosed in this Special Issue cover overviews of important recent achievements in electrochemically driven organic synthesis as well as important original research articles on molecular organic electrosynthesis. Thus, Xu reviewed strategies that exploit ferrocene as redox catalyst, emphasizing the power towards catalyzed radical formation.&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt; Likewise, Onomura summarized the potential of halogen mediators for environmentally-benign and at the same time efficient alcohol oxidations.&lt;span&gt;&lt;sup&gt;4&lt;/sup&gt;&lt;/span&gt; Jiao and Mei showed the power of paired electrolysis for organic reactions with ideal resource-economy,&lt;span&gt;&lt;sup&gt;5&lt;/sup&gt;&lt;/span&gt; while Cheng outlined the challenges and benefits of water as a particularly benign reaction medium.&lt;span&gt;&lt;sup&gt;6&lt;/sup&gt;&lt;/span&gt; Besides electrooxidative strategies, electroreductive transformations have garnered major recent attention. In this context, Weix summarized electrochemical nickel-catalyzed C−C bond formations through cross-electrophile coupling,&lt;span&gt;&lt;sup&gt;7&lt;/sup&gt;&lt;/span&gt; while Gosmini provided an overview on powerful transition metal-catalyzed electroreductive approachess for C−C bond formation.&lt;span&gt;&lt;sup&gt;8&lt;/sup&gt;&lt;/span&gt; On a different note, de Sarkar focused on electroreductive transformations involving C−C and C−O multiple bonds.&lt;span&gt;&lt;sup&gt;9&lt;/sup&gt;&lt;/span&gt; Novel innovative concepts in the realm of organic electrosynthesis, are presented in selected research articles highlighting exciting recent advances. Here, Ruan established an electrochemical cascade cyclization for a convenient access to 3-selenylindoles,&lt;span&gt;&lt;sup&gt;10&lt;/sup&gt;&lt;/span&gt; while Ackermann established C7-indole alkenylations based on rhodaelectrocatalysis.&lt;span&gt;&lt;sup&gt;11&lt;/sup&gt;&lt;/span&gt; The elegant design of an off/on switching enabled Kakiuchi to establish a one-pot cross-coupling/C−H bromination for bromoarylpyridines.&lt;span&gt;&lt;sup&gt;12&lt;/sup&gt;&lt;/span&gt; Finally, Fuchigami systematically compared the impact of the anode materials on the pe","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 1-2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202400022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 4th Bowei Research Conference (BRC-4), January 3–5, 2024, Teachers′ Hostel, Sun Moon Lake, Taiwan 第四届博伟研究会议(BRC-4),2024 年 1 月 3-5 日,台湾日月潭教师宿舍
IF 3.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-02-21 DOI: 10.1002/ijch.202400018
Ehud Keinan

{"title":"The 4th Bowei Research Conference (BRC-4), January 3–5, 2024, Teachers′ Hostel, Sun Moon Lake, Taiwan","authors":"Ehud Keinan","doi":"10.1002/ijch.202400018","DOIUrl":"10.1002/ijch.202400018","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 1-2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202400018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139954867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered RNA-Binding Proteins: Studying and Controlling RNA Regulation 工程化 RNA 结合蛋白:研究和控制 RNA 调节
IF 3.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-02-16 DOI: 10.1002/ijch.202300169
Riley W. Sinnott, Yang Cao, Bryan C. Dickinson

The complexity of eukaryotic organisms is intricately tied to transcriptome-level processes, notably alternative splicing and the precise modulation of gene expression through a sophisticated interplay involving RNA-binding protein (RBP) networks and their RNA targets. Recent advances in our understanding of the molecular pathways responsible for this control have paved the way for the development of tools capable of steering and managing RNA regulation and gene expression. The fusion between a rapidly developing understanding of endogenous RNA regulation and the burgeoning capabilities of CRISPR-Cas and other programmable RBP platforms has given rise to an exciting frontier in engineered RNA regulators. This review offers an overview of the existing toolkit for constructing synthetic RNA regulators using programmable RBPs and effector domains, capable of altering RNA sequence composition or fate, and explores their diverse applications in both basic research and therapeutic contexts.

1 引言RNA是真核生物遗传信息流动的关键中间体,其调控是动态基因表达和细胞特性的基础。1 RNA在细胞内如何通过改变其稳定性、化学成分、序列和翻译速率来进行调控一直是一个深入的研究领域,近几十年来的研究结果极大地提升了我们对RNA调控在中心教条中重要性的认识。2 具体来说,改变 RNA 组成的事件,如替代剪接和 3' 端加工,通过影响蛋白质的组成和定位,对真核生物的复杂性起着奠基性的作用。我们还逐渐认识到,RNA 结合蛋白(RBPs)和非编码 RNA(如 miRNA 或 lncRNA)对 mRNA 稳定性和翻译的调控可以独特地调节不同组织的蛋白质组平衡。最近,何川研究小组及其同事对 N6-甲基腺苷(m6A)修饰等 RNA 调控途径的研究为 "表转录组学 "领域的出现奠定了基础(图 1a)。图 1在图形浏览器中打开PowerPoint 表转录组学的突破使工程化平台能够指导和研究 RNA 调控。a, m6A 修饰由 "写入 "酶安装,并由 "擦除 "酶去除,"读取 "蛋白介导修饰 RNA 的下游调控。b.可编程 RBPs 可将融合的 "写入器 "或 "擦除器 "酶引向明确的 RNA 靶点,并影响其特定位点的修饰。RBPs 能识别并结合特定的 RNA 修饰或序列基团,从而对结合的 RNA 产生影响,它们是在 RNA 水平上驱动化学修饰依赖性基因表达变化的功能性主力军。事实上,我们开始认识到,同一种修饰可对特定 RNA 产生不同的下游效应,这取决于与之结合的 RBP(每种 RBP 都具有不同的特定活性和/或相互作用伙伴)7。RNA 调控所具有的强大功能和多变性激发了人们对 RBPs 能否被精确设计以可编程方式影响基因表达的浓厚兴趣(图 1b)。我们对 RNA 调控的理解不断进步,而可编程 DNA 靶向技术的最新突破又为工程方法提供了新的信息,在这两者的共同推动下,这一兴趣已凝聚成一个迅速扩展的领域。在这篇综述中,我们将讨论工程蛋白质结合特定 RNA 序列的最新进展,以及这些蛋白质的功能化,以指导改变 RNA 组成和/或命运的各种过程。我们还将重点介绍这些系统在基础研究中用于探测和研究生物系统的几种令人兴奋的应用,以及具有治疗功能的合成 RBPs,用于纠正错误的基因表达。最后,我们将介绍在利用 RBPs 之外的 RNA 调节方面取得的进一步进展。
{"title":"Engineered RNA-Binding Proteins: Studying and Controlling RNA Regulation","authors":"Riley W. Sinnott,&nbsp;Yang Cao,&nbsp;Bryan C. Dickinson","doi":"10.1002/ijch.202300169","DOIUrl":"10.1002/ijch.202300169","url":null,"abstract":"<p>The complexity of eukaryotic organisms is intricately tied to transcriptome-level processes, notably alternative splicing and the precise modulation of gene expression through a sophisticated interplay involving RNA-binding protein (RBP) networks and their RNA targets. Recent advances in our understanding of the molecular pathways responsible for this control have paved the way for the development of tools capable of steering and managing RNA regulation and gene expression. The fusion between a rapidly developing understanding of endogenous RNA regulation and the burgeoning capabilities of CRISPR-Cas and other programmable RBP platforms has given rise to an exciting frontier in engineered RNA regulators. This review offers an overview of the existing toolkit for constructing synthetic RNA regulators using programmable RBPs and effector domains, capable of altering RNA sequence composition or fate, and explores their diverse applications in both basic research and therapeutic contexts.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 3-4","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202300169","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-Activity Relationships of 2-(Arylthio)benzoic Acid FTO Inhibitors 2-(芳硫基)苯甲酸 FTO 抑制剂的结构-活性关系
IF 3.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-02-15 DOI: 10.1002/ijch.202300166
Chao Yan, Qian Zhang, Pan Xiao, Xinyun Xie, Ming Li, Yuanlai Qiu, Liufa Wen, Xiaomin Song, Ze Dong, Cai-Guang Yang

The biological role of the fat mass and obesity-associated protein (FTO) in the initiation and progress of acute myeloid leukemia (AML) has been elucidated, and several representative FTO inhibitors can markedly suppress the proliferation of AML cells. We previously developed FTO inhibitors including FB23. In this study, we adopted bioisosteric replacement of the intramolecular hydrogen bond in FB23 with a sulfur-oxygen interaction to generate a series of 2-(arylthio)benzoic acid FTO inhibitors and established their structure-activity relationships. Compound 8c was the most potent 2-(arylthio)benzoic acid FTO inhibitor with an IC50 value of 0.3±0.1 μM, which was comparable with that of FB23 in vitro. To enhance the antiproliferative effects in AML cell lines, we applied a prodrug strategy and prepared some esters. 7l, the methyl ester of 8l, exerted a superior inhibitory effect on a panel of AML cancer cell lines. Additionally, 7l treatment notably increased global m6A abundance in AML cells. Collectively, our data suggest that 2-(arylthio)benzoic acid may be a new lead compound for inhibition of FTO, and the prodrug analog exhibit potential in the treatment of AML.

脂肪量和肥胖相关蛋白(FTO)在急性髓性白血病(AML)的发病和进展中的生物学作用已被阐明,几种具有代表性的 FTO 抑制剂可明显抑制 AML 细胞的增殖。我们之前开发了包括 FB23 在内的 FTO 抑制剂。在本研究中,我们采用生物异构法将 FB23 分子内氢键置换成硫氧相互作用,生成了一系列 2-(芳硫基)苯甲酸 FTO 抑制剂,并建立了它们的结构-活性关系。化合物 8c 是最有效的 2-(芳硫基)苯甲酸 FTO 抑制剂,其 IC50 值为 0.3±0.1 μM,与 FB23 在体外的 IC50 值相当。为了增强对 AML 细胞株的抗增殖作用,我们采用了原药策略,制备了一些酯类化合物。7l 是 8l 的甲酯,对一组急性髓细胞癌细胞株有很好的抑制作用。此外,7l 还能显著增加 AML 细胞中 m6A 的丰度。总之,我们的数据表明,2-(芳硫基)苯甲酸可能是抑制 FTO 的一种新的先导化合物,其原药类似物在治疗急性髓细胞性白血病方面具有潜力。
{"title":"Structure-Activity Relationships of 2-(Arylthio)benzoic Acid FTO Inhibitors","authors":"Chao Yan,&nbsp;Qian Zhang,&nbsp;Pan Xiao,&nbsp;Xinyun Xie,&nbsp;Ming Li,&nbsp;Yuanlai Qiu,&nbsp;Liufa Wen,&nbsp;Xiaomin Song,&nbsp;Ze Dong,&nbsp;Cai-Guang Yang","doi":"10.1002/ijch.202300166","DOIUrl":"10.1002/ijch.202300166","url":null,"abstract":"<p>The biological role of the fat mass and obesity-associated protein (FTO) in the initiation and progress of acute myeloid leukemia (AML) has been elucidated, and several representative FTO inhibitors can markedly suppress the proliferation of AML cells. We previously developed FTO inhibitors including FB23. In this study, we adopted bioisosteric replacement of the intramolecular hydrogen bond in FB23 with a sulfur-oxygen interaction to generate a series of 2-(arylthio)benzoic acid FTO inhibitors and established their structure-activity relationships. Compound <b>8c</b> was the most potent 2-(arylthio)benzoic acid FTO inhibitor with an IC<sub>50</sub> value of 0.3±0.1 μM, which was comparable with that of FB23 <i>in vitro</i>. To enhance the antiproliferative effects in AML cell lines, we applied a prodrug strategy and prepared some esters. <b>7l</b>, the methyl ester of <b>8l</b>, exerted a superior inhibitory effect on a panel of AML cancer cell lines. Additionally, <b>7l</b> treatment notably increased global m<sup>6</sup>A abundance in AML cells. Collectively, our data suggest that 2-(arylthio)benzoic acid may be a new lead compound for inhibition of FTO, and the prodrug analog exhibit potential in the treatment of AML.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 3-4","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advance in the Study on 5-Formylcytosine (f5C) RNA Modification 5-甲酰基胞嘧啶 (f5C) RNA 修饰研究的最新进展
IF 3.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-02-12 DOI: 10.1002/ijch.202300178
Xin Wang, Dr. Xiao-Yang Jin, Prof. Dr. Liang Cheng

The widespread involvement of 5-formylcytosine f5C RNA in gene function regulation and its impact on crucial life processes like cell differentiation, embryonic development, and disease development underscores the significance of detecting this specific base modification. This detection holds great importance for basic epigenetics research and the early diagnosis and pathogenesis research of various diseases. This review aims to summarize recent research progress in f5C detection methods using selective chemical labeling, with the hope of aiding future research endeavors.

5-甲酰基胞嘧啶 f5C RNA 广泛参与基因功能调控,并对细胞分化、胚胎发育和疾病发展等关键生命过程产生影响,因此检测这种特定碱基修饰意义重大。这种检测对表观遗传学基础研究以及各种疾病的早期诊断和发病机制研究具有重要意义。本综述旨在总结利用选择性化学标记法检测 f5C 的最新研究进展,希望对未来的研究工作有所帮助。
{"title":"Recent Advance in the Study on 5-Formylcytosine (f5C) RNA Modification","authors":"Xin Wang,&nbsp;Dr. Xiao-Yang Jin,&nbsp;Prof. Dr. Liang Cheng","doi":"10.1002/ijch.202300178","DOIUrl":"10.1002/ijch.202300178","url":null,"abstract":"<p>The widespread involvement of 5-formylcytosine f<sup>5</sup>C RNA in gene function regulation and its impact on crucial life processes like cell differentiation, embryonic development, and disease development underscores the significance of detecting this specific base modification. This detection holds great importance for basic epigenetics research and the early diagnosis and pathogenesis research of various diseases. This review aims to summarize recent research progress in f<sup>5</sup>C detection methods using selective chemical labeling, with the hope of aiding future research endeavors.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 3-4","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139770938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein Glycosylation Patterns Shaped By the IRE1-XBP1s Arm of the Unfolded Protein Response 由折叠蛋白反应的 IRE1-XBP1s臂形成的蛋白质糖基化模式
IF 3.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-02-05 DOI: 10.1002/ijch.202300162
Kenny Chen, Matthew D. Shoulders
<h2> Protein Glycosylation</h2><p>Protein post-translational modifications, including phosphorylation, acetylation, ubiquitylation, and more, confer key levels of regulation and can dramatically alter the structure and function of proteins, acting as molecular switches or rheostats for tuning activity.<span><sup>1</sup></span> Many post-translational modifications are specialized to specific subcellular compartments and clientele, such as the sophisticated pathways for protein <i>N-</i>glycosylation in the endoplasmic reticulum (ER) and Golgi mediated by a suite of glycosyltransferase and glycosidase enzymes. Protein glycosylation involves covalent modification of amino acid sidechains with sugars to yield linear or branched structures (glycans; Figure 1). The consequences of glycosylation shape protein function, cell–cell recognition, cell–matrix interactions, and more.<span><sup>2</sup></span></p><figure><picture><source media="(min-width: 1650px)" srcset="/cms/asset/42668d07-8a7d-4cdf-b366-41629a41fe4c/ijch202300162-fig-0001-m.jpg"/><img alt="Details are in the caption following the image" data-lg-src="/cms/asset/42668d07-8a7d-4cdf-b366-41629a41fe4c/ijch202300162-fig-0001-m.jpg" loading="lazy" src="/cms/asset/821703d3-642e-4abd-a95c-a22057767b00/ijch202300162-fig-0001-m.png" title="Details are in the caption following the image"/></picture><figcaption><div><strong>Figure 1<span style="font-weight:normal"></span></strong><div>Open in figure viewer<i aria-hidden="true"></i><span>PowerPoint</span></div></div><div><p>Protein <i>N</i>-linked glycosylation is a co- and post-translational modification that involves the installation of glycans on asparagine side chains in specific amino acid sequons in proteins traversing the secretory pathway. <i>A</i>: A 14-residue precursor oligosaccharide is first synthesized in a step-wise fashion while attached to a dolichol pyrophosphate molecule on the ER membrane. Monosaccharide substrates in the form of nucleotide sugars are each added to the growing sugar chain by their respective transferase enzymes. The dolichol-linked precursor then requires the action of flippase enzymes, prior to being added to a nascent ER client protein by the oligosaccharyltransferase (OST) complex as the polypeptide translocates from the ribosome to the ER. Note that <i>N</i>-glycans can also be installed post-translationally by OST. After installation of the precursor, folding and initial trimming occurs in the ER and the nascent glycoprotein is trafficked to the Golgi for further processing. <i>B</i>: Glycan-modifying enzymes in the ER and Golgi process the <i>N</i>-glycan via sequential removal and addition of monosaccharides by specific enzymes, ultimately yielding a vast array of potential glycan structures, including hybrid glycans, complex glycans, core fucosylated glycans, and sialylated glycans. The specific identity of the glycan has important and varied consequences for cellular communication and the function of
蛋白质糖基化蛋白质翻译后修饰,包括磷酸化、乙酰化、泛素化等,具有关键的调控水平,可以显著改变蛋白质的结构和功能,起到调整活性的分子开关或调速器的作用。许多翻译后修饰都是专门针对特定亚细胞区和客户的,例如内质网(ER)和高尔基体中由一系列糖基转移酶和糖苷酶介导的复杂的蛋白质 N-糖基化途径。蛋白质糖基化涉及氨基酸侧链与糖的共价修饰,从而产生线性或支链结构(聚糖;图 1)。糖基化的结果会影响蛋白质的功能、细胞-细胞识别、细胞-基质相互作用等。2图1在图形浏览器中打开PowerPoint蛋白质N-连接糖基化是一种共翻译修饰和翻译后修饰,涉及在穿过分泌途径的蛋白质中特定氨基酸序列的天冬酰胺侧链上安装聚糖。A: 14 个残基的前体寡糖首先以分步的方式合成,同时附着在 ER 膜上的焦磷酸多糖分子上。核苷酸糖形式的单糖底物通过各自的转移酶加入到不断增长的糖链中。然后,在多肽从核糖体转运到 ER 时,寡糖基转移酶(OST)复合体将寡糖连接的前体添加到新生的 ER 客户蛋白中,然后寡糖连接的前体需要翻转酶的作用。需要注意的是,N-聚糖也可以通过 OST 在翻译后安装。安装前体后,折叠和初步修剪在 ER 中进行,新生糖蛋白被输送到高尔基体进行进一步处理。B:ER 和高尔基体中的聚糖修饰酶通过特异性酶依次去除和添加单糖来处理 N-聚糖,最终产生大量潜在的聚糖结构,包括杂交聚糖、复合聚糖、核心岩藻糖基化聚糖和硅烷基化聚糖。与 DNA、RNA 和蛋白质等其他生物大分子不同,聚糖的合成不需要模板,而是依赖于核苷酸激活的单糖作为构建模块、与之相关的转运体3 以及介导糖的添加和去除的酶的可用性/合成。虽然细胞中会出现几种形式的蛋白质糖基化(包括但不限于N-连接、O-连接、C-连接和S-连接形式的糖基化),但天冬酰胺的N-连接糖基化可能是最常见的。N-糖基化的特点是分步合成 14 元前体寡糖,将前体整体转移到 ER 客户蛋白中的(典型的)Asn-Xaa-Ser/Thr(其中 Asn=天冬酰胺;Xaa=除脯氨酸外的任何氨基酸;Ser=丝氨酸;Thr=苏氨酸)序列上,然后由 ER 和高尔基定位酶进一步分步加工(图 1),6 最终产生种类繁多的高度分支结构。N-糖基化在进化过程中是保守的7 ,对健康和疾病有着广泛的影响8。事实上,所有生物界都具有 N-糖基化功能,尽管它们可能根据生物体的不同而利用专门的构建模块。
{"title":"Protein Glycosylation Patterns Shaped By the IRE1-XBP1s Arm of the Unfolded Protein Response","authors":"Kenny Chen, Matthew D. Shoulders","doi":"10.1002/ijch.202300162","DOIUrl":"https://doi.org/10.1002/ijch.202300162","url":null,"abstract":"&lt;h2&gt; Protein Glycosylation&lt;/h2&gt;\u0000&lt;p&gt;Protein post-translational modifications, including phosphorylation, acetylation, ubiquitylation, and more, confer key levels of regulation and can dramatically alter the structure and function of proteins, acting as molecular switches or rheostats for tuning activity.&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt; Many post-translational modifications are specialized to specific subcellular compartments and clientele, such as the sophisticated pathways for protein &lt;i&gt;N-&lt;/i&gt;glycosylation in the endoplasmic reticulum (ER) and Golgi mediated by a suite of glycosyltransferase and glycosidase enzymes. Protein glycosylation involves covalent modification of amino acid sidechains with sugars to yield linear or branched structures (glycans; Figure 1). The consequences of glycosylation shape protein function, cell–cell recognition, cell–matrix interactions, and more.&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt;\u0000&lt;/p&gt;\u0000&lt;figure&gt;&lt;picture&gt;\u0000&lt;source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/42668d07-8a7d-4cdf-b366-41629a41fe4c/ijch202300162-fig-0001-m.jpg\"/&gt;&lt;img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/42668d07-8a7d-4cdf-b366-41629a41fe4c/ijch202300162-fig-0001-m.jpg\" loading=\"lazy\" src=\"/cms/asset/821703d3-642e-4abd-a95c-a22057767b00/ijch202300162-fig-0001-m.png\" title=\"Details are in the caption following the image\"/&gt;&lt;/picture&gt;&lt;figcaption&gt;\u0000&lt;div&gt;&lt;strong&gt;Figure 1&lt;span style=\"font-weight:normal\"&gt;&lt;/span&gt;&lt;/strong&gt;&lt;div&gt;Open in figure viewer&lt;i aria-hidden=\"true\"&gt;&lt;/i&gt;&lt;span&gt;PowerPoint&lt;/span&gt;&lt;/div&gt;\u0000&lt;/div&gt;\u0000&lt;div&gt;\u0000&lt;p&gt;Protein &lt;i&gt;N&lt;/i&gt;-linked glycosylation is a co- and post-translational modification that involves the installation of glycans on asparagine side chains in specific amino acid sequons in proteins traversing the secretory pathway. &lt;i&gt;A&lt;/i&gt;: A 14-residue precursor oligosaccharide is first synthesized in a step-wise fashion while attached to a dolichol pyrophosphate molecule on the ER membrane. Monosaccharide substrates in the form of nucleotide sugars are each added to the growing sugar chain by their respective transferase enzymes. The dolichol-linked precursor then requires the action of flippase enzymes, prior to being added to a nascent ER client protein by the oligosaccharyltransferase (OST) complex as the polypeptide translocates from the ribosome to the ER. Note that &lt;i&gt;N&lt;/i&gt;-glycans can also be installed post-translationally by OST. After installation of the precursor, folding and initial trimming occurs in the ER and the nascent glycoprotein is trafficked to the Golgi for further processing. &lt;i&gt;B&lt;/i&gt;: Glycan-modifying enzymes in the ER and Golgi process the &lt;i&gt;N&lt;/i&gt;-glycan via sequential removal and addition of monosaccharides by specific enzymes, ultimately yielding a vast array of potential glycan structures, including hybrid glycans, complex glycans, core fucosylated glycans, and sialylated glycans. The specific identity of the glycan has important and varied consequences for cellular communication and the function of ","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"94 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanopore Direct RNA Sequencing for Modified Uridine Nucleotides Yields Signals Dependent on the Physical Properties of the Modified Base 纳米孔对修饰的尿苷酸核苷酸进行直接 RNA 测序产生的信号取决于修饰碱基的物理特性
IF 3.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-01-26 DOI: 10.1002/ijch.202300177
Prof. Aaron M. Fleming, Justin C. Dingman, Yizhou Wu, Spencer S. Hoon, Prof. Cynthia J. Burrows

Sequencing for RNA modifications with the nanopore direct RNA sequencing platform provides ionic current levels, helicase dwell times, and base call data that differentiate the modifications from the canonical form. Herein, model RNAs were synthesized with site-specific uridine (U) base modifications that enable the study of increasing an alkyl group size, halogen identity, or a change in base acidity to impact the nanopore data. The analysis concluded that increases in alkyl size trend with greater current blockage but a similar change in base-call error was not found. The addition of a halogen series to C5 of U revealed that the current levels recorded a trend with the water-octanol partition coefficient of the base, as well as the base call error. Studies with U modifications that are deprotonated (i. e., anionic) under the sequencing conditions gave broad current levels that influenced the base call error. Some modifications led to helicase dwell time changes. These insights provide design parameters for modification-specific chemical reagents that can shift nanopore signatures to minimize false positive reads, a known issue with this sequencing approach.

利益冲突A.M.F. 和 C. J.B. 拥有电子生物科学公司的纳米孔测序专利许可。
{"title":"Nanopore Direct RNA Sequencing for Modified Uridine Nucleotides Yields Signals Dependent on the Physical Properties of the Modified Base","authors":"Prof. Aaron M. Fleming,&nbsp;Justin C. Dingman,&nbsp;Yizhou Wu,&nbsp;Spencer S. Hoon,&nbsp;Prof. Cynthia J. Burrows","doi":"10.1002/ijch.202300177","DOIUrl":"10.1002/ijch.202300177","url":null,"abstract":"<p>Sequencing for RNA modifications with the nanopore direct RNA sequencing platform provides ionic current levels, helicase dwell times, and base call data that differentiate the modifications from the canonical form. Herein, model RNAs were synthesized with site-specific uridine (U) base modifications that enable the study of increasing an alkyl group size, halogen identity, or a change in base acidity to impact the nanopore data. The analysis concluded that increases in alkyl size trend with greater current blockage but a similar change in base-call error was not found. The addition of a halogen series to C5 of U revealed that the current levels recorded a trend with the water-octanol partition coefficient of the base, as well as the base call error. Studies with U modifications that are deprotonated (i. e., anionic) under the sequencing conditions gave broad current levels that influenced the base call error. Some modifications led to helicase dwell time changes. These insights provide design parameters for modification-specific chemical reagents that can shift nanopore signatures to minimize false positive reads, a known issue with this sequencing approach.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 3-4","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202300177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139581993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathogenicity Prediction of GABAA Receptor Missense Variants GABAA 受体错义变异体的致病性预测
IF 3.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-01-26 DOI: 10.1002/ijch.202300161
Ya-Juan Wang, Giang H. Vu, Ting-Wei Mu
<h2> Introduction</h2><p>Epilepsy is one of the most common neurological diseases in the world with a broad phenotypic spectrum.<span><sup>1</sup></span> Recent advances in genome sequencing identified an increasing number of genes that are associated with epilepsy.<span><sup>2</sup></span> According to protein functions, epilepsy-associated genes can be grouped to ion channels, enzymes and enzyme modulators, transports and receptors, and others.<span><sup>3</sup></span> Genetic epilepsy is often linked to developmental delay, movement disorder, and other comorbidities.<span><sup>4</sup></span> Due to the important role of neurotransmitter-gated ion channels in controlling the excitation-inhibition balance in the central nervous system, genes encoding these ion channels, including excitatory N-methyl-D-aspartate (NMDA) receptors and inhibitory γ-aminobutyric acid type A (GABA<sub>A</sub>) receptors, are recognized as prominent epilepsy-causing genes.<span><sup>5</sup></span> Here, we focus on GABA<sub>A</sub> receptors, the primary inhibitory neurotransmitter-gated ion channels in the human brain.<span><sup>6</sup></span> They mediate the fast inhibitory GABA-induced chloride currents and hyperpolarize the postsynaptic membranes to reduce neuronal firing.</p><p>Proteostasis maintenance of GABA<sub>A</sub> receptors is essential for their function in the central nervous system.<span><sup>7</sup></span> GABA<sub>A</sub> receptors are assembled as pentamers from a specific combination of 19 subunits, including α1-α6 (GABRA1-A6), β1-β3 (GABRB1-B3), γ1-γ3 (GABRG1-G3), δ (GABRD), ϵ (GABRE), θ (GABRQ), π (GABRP), and ρ1-ρ3 (GABRR1-R3). The distribution of GABA<sub>A</sub> receptors is throughout the brain regions, and the most abundant subtype is composed of two α1 subunits, two β2 subunits, and one γ2 subunit.<span><sup>8</sup></span> To function, GABA<sub>A</sub> receptor subunits need to fold in the endoplasmic reticulum (ER) with the assistance of molecular chaperones and subsequently assemble with other subunits to form heteropentamers. The properly assembled receptors exit the ER and traffic to the plasma membrane to act as chloride channels. Unassembled and misfolded subunits are retained in the ER, which could be routed to the degradation pathway by the ER-associated degradation.<span><sup>9</sup></span> Recent quantitative proteomics analysis identified the proteostasis network that regulates the folding, assembly, trafficking, and degradation of GABA<sub>A</sub> receptors.<span><sup>10</sup></span></p><p>Recent cryo-electron microscopy (cryo-EM) studies solved the high-resolution structures of pentameric GABA<sub>A</sub> receptors, including α1β2γ2 receptors<span><sup>11</sup></span> and α1β3γ2 receptors.<span><sup>12</sup></span> The pentameric receptors are arranged as β-α1-β-α1-γ2 counterclockwise when viewed from the synaptic cleft (Figure 1A). Each pentamer has two binding sites for the neurotransmitter, GABA, at the interfaces between
导言癫痫是世界上最常见的神经系统疾病之一,具有广泛的表型谱1。4 由于神经递质门控离子通道在控制中枢神经系统兴奋-抑制平衡中的重要作用,编码这些离子通道(包括兴奋性 N-甲基-D-天冬氨酸(NMDA)受体和抑制性γ-氨基丁酸 A 型(GABAA)受体)的基因被认为是主要的癫痫致病基因。GABAA 受体是人脑中主要的抑制性神经递质门控离子通道。6 GABAA 受体介导由 GABA 诱导的快速抑制性氯离子电流,并使突触后膜超极化,从而降低神经元的发射。GABAA 受体是由α1-α6(GABRA1-A6)、β1-β3(GABRB1-B3)、γ1-γ3(GABRG1-G3)、δ(GABRD)、ϵ(GABRE)、θ(GABRQ)、π(GABRP)和ρ1-ρ3(GABRR1-R3)等 19 个亚基的特定组合而成的五聚体。GABAA 受体分布在整个脑区,最丰富的亚型由两个 α1 亚基、两个 β2 亚基和一个 γ2 亚基组成。8 GABAA 受体亚基需要在分子伴侣的帮助下在内质网(ER)中折叠,然后与其他亚基组装成异源五聚体。正确组装的受体离开 ER,进入质膜,发挥氯离子通道的作用。未组装和折叠错误的亚基被保留在 ER 中,可通过 ER 相关降解作用进入降解途径。9 最近的定量蛋白质组学分析确定了调控 GABAA 受体折叠、组装、运输和降解的蛋白质稳态网络。最近的低温电子显微镜(cryo-EM)研究解决了五聚体 GABAA 受体(包括 α1β2γ2 受体11 和 α1β3γ2 受体12 )的高分辨率结构。每个五聚体在 β 亚基和 α1 亚基之间的界面上都有两个神经递质 GABA 的结合位点。来自 β 亚基的残基构成主要结合位点,称为 "正"(+)面,而来自 α1 亚基的残基构成互补结合位点,称为 "负"(-)面。每个亚基都有一个共同的结构支架,包括一个大的胞外 N 端结构域(NTD)、四个跨膜螺旋(TM1-TM4)、连接跨膜螺旋的环路(一个短的胞内 TM1-2 环路、一个短的胞外 TM2-3 环路和一个长的胞内 TM3-4 环路)以及一个短的胞外 C 端(图 1B、1C)。NTD 的二级结构包括两个 α-螺旋、十个 β-片(β1-β10)和连接环(图 1C、1D)。GABAA 受体属于 Cys 环状受体超家族7 。生化研究发现,GABAA 受体亚基中的几个片段在与配体结合时起着重要作用:主侧的结合环称为环 A-C,而互补侧的结合环称为环 D-F(图 1C、1D)。(A)根据 6X3S.pdb 构建的五聚体 α1βγ2 受体的图示。一个亚基的主侧表示为 "+",而一个亚基的互补侧表示为"-"。(B) GABAA 受体亚基的主要蛋白质序列示意图。NTD,N-末端结构域;M1-M4,跨膜螺旋 1 至 4。 (C) GABAA 受体亚基的二级结构。标志性 Cys 环中的两个半胱氨酸用黄色标出。(D) 人类 GABAA 受体主要亚基的序列比对,包括 α1、β2、β3 和 γ2。含有临床错义变异的残基位置高亮显示。根据 ClinVar 的注释,致病变异用红色表示,不确定变异用黄色表示,良性变异用绿色表示。迄今为止,ClinVar (www.clinvar.com) 已记录了超过 1000 个编码 GABAA 受体亚基的基因中的临床变异,包括错义、无义和框移变异。然而,由于这些变异大多缺乏功能特征描述,而且许多变异被归类为不确定或相互矛盾的解释,因此这些变异的临床意义并未得到充分探讨。 对于数量有限的 GABAA 受体变体,不断积累的证据表明,变体的错误折叠和过度降解导致的蛋白稳态缺陷是主要的致病机制。另一个重要的致病机制是,错义变体导致通道门控缺陷和电生理特性改变,如电流动力学、电流振幅和配体效力。在这里,我们应用了两种最先进的建模工具,即 AlphaMissense15 和 Rhapsody16,来全面预测 GABAA 受体主要亚基(α1、β2、β3 和 γ2)中饱和错义变体的致病性。AlphaMissense 结合了结构背景和进化保护,是错义变异预测领域的一项重大技术进步。15 其他基于机器学习的预测方法在训练数据库方面存在局限性,容易出现人为偏差、17 缺乏精确的结构信息18 或遗传进化约束不足19 等问题。首先,AlphaMissense 利用了来自种群频率数据的弱标签训练数据集;其次,AlphaMissense 对 AlphaFold 提供的高精度蛋白质结构进行了微调;20 第三,AlphaMissense 能够根据氨基酸序列学习进化约束。最近,AlphaMissense 被应用于预测囊性纤维化跨膜传导调节器(CFTR)变体的致病性,其结果与某些临床基准有很好的相关性21。在此,我们还将 AlphaMissense 和 Rhapsody 的预测结果与 ClinVar 临床基准进行了比较,旨在为临床解释提供见解,并为未来 GABAA 受体错义变体的实验研究提供指导。
{"title":"Pathogenicity Prediction of GABAA Receptor Missense Variants","authors":"Ya-Juan Wang, Giang H. Vu, Ting-Wei Mu","doi":"10.1002/ijch.202300161","DOIUrl":"https://doi.org/10.1002/ijch.202300161","url":null,"abstract":"&lt;h2&gt; Introduction&lt;/h2&gt;\u0000&lt;p&gt;Epilepsy is one of the most common neurological diseases in the world with a broad phenotypic spectrum.&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt; Recent advances in genome sequencing identified an increasing number of genes that are associated with epilepsy.&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt; According to protein functions, epilepsy-associated genes can be grouped to ion channels, enzymes and enzyme modulators, transports and receptors, and others.&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt; Genetic epilepsy is often linked to developmental delay, movement disorder, and other comorbidities.&lt;span&gt;&lt;sup&gt;4&lt;/sup&gt;&lt;/span&gt; Due to the important role of neurotransmitter-gated ion channels in controlling the excitation-inhibition balance in the central nervous system, genes encoding these ion channels, including excitatory N-methyl-D-aspartate (NMDA) receptors and inhibitory γ-aminobutyric acid type A (GABA&lt;sub&gt;A&lt;/sub&gt;) receptors, are recognized as prominent epilepsy-causing genes.&lt;span&gt;&lt;sup&gt;5&lt;/sup&gt;&lt;/span&gt; Here, we focus on GABA&lt;sub&gt;A&lt;/sub&gt; receptors, the primary inhibitory neurotransmitter-gated ion channels in the human brain.&lt;span&gt;&lt;sup&gt;6&lt;/sup&gt;&lt;/span&gt; They mediate the fast inhibitory GABA-induced chloride currents and hyperpolarize the postsynaptic membranes to reduce neuronal firing.&lt;/p&gt;\u0000&lt;p&gt;Proteostasis maintenance of GABA&lt;sub&gt;A&lt;/sub&gt; receptors is essential for their function in the central nervous system.&lt;span&gt;&lt;sup&gt;7&lt;/sup&gt;&lt;/span&gt; GABA&lt;sub&gt;A&lt;/sub&gt; receptors are assembled as pentamers from a specific combination of 19 subunits, including α1-α6 (GABRA1-A6), β1-β3 (GABRB1-B3), γ1-γ3 (GABRG1-G3), δ (GABRD), ϵ (GABRE), θ (GABRQ), π (GABRP), and ρ1-ρ3 (GABRR1-R3). The distribution of GABA&lt;sub&gt;A&lt;/sub&gt; receptors is throughout the brain regions, and the most abundant subtype is composed of two α1 subunits, two β2 subunits, and one γ2 subunit.&lt;span&gt;&lt;sup&gt;8&lt;/sup&gt;&lt;/span&gt; To function, GABA&lt;sub&gt;A&lt;/sub&gt; receptor subunits need to fold in the endoplasmic reticulum (ER) with the assistance of molecular chaperones and subsequently assemble with other subunits to form heteropentamers. The properly assembled receptors exit the ER and traffic to the plasma membrane to act as chloride channels. Unassembled and misfolded subunits are retained in the ER, which could be routed to the degradation pathway by the ER-associated degradation.&lt;span&gt;&lt;sup&gt;9&lt;/sup&gt;&lt;/span&gt; Recent quantitative proteomics analysis identified the proteostasis network that regulates the folding, assembly, trafficking, and degradation of GABA&lt;sub&gt;A&lt;/sub&gt; receptors.&lt;span&gt;&lt;sup&gt;10&lt;/sup&gt;&lt;/span&gt;&lt;/p&gt;\u0000&lt;p&gt;Recent cryo-electron microscopy (cryo-EM) studies solved the high-resolution structures of pentameric GABA&lt;sub&gt;A&lt;/sub&gt; receptors, including α1β2γ2 receptors&lt;span&gt;&lt;sup&gt;11&lt;/sup&gt;&lt;/span&gt; and α1β3γ2 receptors.&lt;span&gt;&lt;sup&gt;12&lt;/sup&gt;&lt;/span&gt; The pentameric receptors are arranged as β-α1-β-α1-γ2 counterclockwise when viewed from the synaptic cleft (Figure 1A). Each pentamer has two binding sites for the neurotransmitter, GABA, at the interfaces between","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"33 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139581952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Israel Journal of Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1