The evolution of chemotherapy, especially the dawn of metal-based drugs, represents a transformative era in cancer treatment. From the serendipitous discovery of mustard gas's cytotoxic effects to the sophisticated development of targeted therapies, chemotherapy has significantly refined. Central to this progression is the incorporation of metal-based compounds, such as platinum (Pt), ruthenium (Ru), and gold (Au), which offer unique mechanisms of action, distinguishing them from organic therapeutics. Among these, Ru complexes, exemplified by BOLD-100 and TLD1433, have shown exceptional promise due to their selective activity, lower propensity for resistance, and the ability to target spescific cellular pathways. This paper explores the journey of such Ru candidates, focusing on the mechanisms, efficacy, and clinical potential of these Ru-based drugs, which stand at the forefront of current research, aiming to provide more targeted, less toxic, and highly effective cancer treatments.
{"title":"From Concept to Cure: The Road Ahead for Ruthenium-Based Anticancer Drugs.","authors":"Srividya Swaminathan, Jebiti Haribabu, Ramasamy Karvembu","doi":"10.1002/cmdc.202400435","DOIUrl":"https://doi.org/10.1002/cmdc.202400435","url":null,"abstract":"<p><p>The evolution of chemotherapy, especially the dawn of metal-based drugs, represents a transformative era in cancer treatment. From the serendipitous discovery of mustard gas's cytotoxic effects to the sophisticated development of targeted therapies, chemotherapy has significantly refined. Central to this progression is the incorporation of metal-based compounds, such as platinum (Pt), ruthenium (Ru), and gold (Au), which offer unique mechanisms of action, distinguishing them from organic therapeutics. Among these, Ru complexes, exemplified by BOLD-100 and TLD1433, have shown exceptional promise due to their selective activity, lower propensity for resistance, and the ability to target spescific cellular pathways. This paper explores the journey of such Ru candidates, focusing on the mechanisms, efficacy, and clinical potential of these Ru-based drugs, which stand at the forefront of current research, aiming to provide more targeted, less toxic, and highly effective cancer treatments.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400435"},"PeriodicalIF":3.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephen J McBride, Keilian MacCulloch, Patrick TomHon, Austin Browning, Samantha Meisel, Mustapha Abdulmojeed, Boyd M Goodson, Eduard Y Chekmenev, Thomas Theis
Signal Amplification by Reversible Exchange (SABRE) is a relatively simple and fast hyperpolarization technique that has been used to hyperpolarize the α-ketocarboxylate pyruvate, a central metabolite and the leading hyperpolarized MRI contrast agent. In this work, we show that SABRE can readily be extended to hyperpolarize 13C nuclei at natural abundance on many other α-ketocarboxylates. Hyperpolarization is observed and optimized on pyruvate (P13C=17%) and 2-oxobutyrate (P13C=25%) with alkyl chains in the R-group, oxaloacetate (P13C=11%) and alpha-ketoglutarate (P13C=13%) with carboxylate moieties in the R group, and phenylpyruvate (P13C=2%) and phenylglyoxylate (P13C=2%) with phenyl rings in the R-group. New catalytically active SABRE binding motifs of the substrates to the hyperpolarization transfer catalyst-particularly for oxaloacetate-are observed. We experimentally explore the connection between temperature and exchange rates for all of these SABRE systems and develop a theoretical kinetic model, which is used to fit the hyperpolarization build-up and decay during SABRE activity.
{"title":"Carbon-13 Hyperpolarization of α-Ketocarboxylates with Parahydrogen in Reversible Exchange.","authors":"Stephen J McBride, Keilian MacCulloch, Patrick TomHon, Austin Browning, Samantha Meisel, Mustapha Abdulmojeed, Boyd M Goodson, Eduard Y Chekmenev, Thomas Theis","doi":"10.1002/cmdc.202400378","DOIUrl":"https://doi.org/10.1002/cmdc.202400378","url":null,"abstract":"<p><p>Signal Amplification by Reversible Exchange (SABRE) is a relatively simple and fast hyperpolarization technique that has been used to hyperpolarize the α-ketocarboxylate pyruvate, a central metabolite and the leading hyperpolarized MRI contrast agent. In this work, we show that SABRE can readily be extended to hyperpolarize 13C nuclei at natural abundance on many other α-ketocarboxylates. Hyperpolarization is observed and optimized on pyruvate (P13C=17%) and 2-oxobutyrate (P13C=25%) with alkyl chains in the R-group, oxaloacetate (P13C=11%) and alpha-ketoglutarate (P13C=13%) with carboxylate moieties in the R group, and phenylpyruvate (P13C=2%) and phenylglyoxylate (P13C=2%) with phenyl rings in the R-group. New catalytically active SABRE binding motifs of the substrates to the hyperpolarization transfer catalyst-particularly for oxaloacetate-are observed. We experimentally explore the connection between temperature and exchange rates for all of these SABRE systems and develop a theoretical kinetic model, which is used to fit the hyperpolarization build-up and decay during SABRE activity.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400378"},"PeriodicalIF":3.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc Farag, Nicolas Guedeney, Florian Schwalen, Aymeric Zadoroznyj, Amélie Barczyk, Martin Giret, Kevin Antraygues, Alice Wang, Marie Cornu, Peggy Suzanne, Marc Since, Anne Sophie Voisin-Chiret, Laurence Dubrez, Natascha Leleu-Chavain, Charline Kieffer, Jana Sopkova-de Oliveira Santos
The X-chromosome-linked inhibitor of apoptosis protein (XIAP) plays a crucial role in controlling cell survival across multiple regulated cell death pathways and coordinating a range of inflammatory signalling events. The discovery of selective inhibitors for XIAP-BIR2, able to disrupt the direct physical interaction between XIAP and RIPK2, offer promising therapeutic options for NOD2-mediated diseases like Crohn's disease, sarcoidosis, and Blau syndrome. The objective of this study was to design, synthesize, and evaluate small synthetic molecules with binding selectivity to XIAP-BIR2 domain. To achieve this, we applied an interdisciplinary drug design approach and firstly we have synthesized an initial fragment library to achieve a first XIAP inhibition activity. Then using a growing strategy, larger compounds were synthesized and one of them presents a good selectivity for XIAP-BIR2 versus XIAP-BIR3 domain, compound 20 c. The ability of compound 20 c to block the NOD1/2 pathway was confirmed in cell models. These data show that we have synthesized molecules capable of blocking NOD1/2 signalling pathways in cellulo, and ultimately leading to new anti-inflammatory compounds.
{"title":"Towards New Anti-Inflammatory Agents: Design, Synthesis and Evaluation of Molecules Targeting XIAP-BIR2.","authors":"Marc Farag, Nicolas Guedeney, Florian Schwalen, Aymeric Zadoroznyj, Amélie Barczyk, Martin Giret, Kevin Antraygues, Alice Wang, Marie Cornu, Peggy Suzanne, Marc Since, Anne Sophie Voisin-Chiret, Laurence Dubrez, Natascha Leleu-Chavain, Charline Kieffer, Jana Sopkova-de Oliveira Santos","doi":"10.1002/cmdc.202400567","DOIUrl":"10.1002/cmdc.202400567","url":null,"abstract":"<p><p>The X-chromosome-linked inhibitor of apoptosis protein (XIAP) plays a crucial role in controlling cell survival across multiple regulated cell death pathways and coordinating a range of inflammatory signalling events. The discovery of selective inhibitors for XIAP-BIR2, able to disrupt the direct physical interaction between XIAP and RIPK2, offer promising therapeutic options for NOD2-mediated diseases like Crohn's disease, sarcoidosis, and Blau syndrome. The objective of this study was to design, synthesize, and evaluate small synthetic molecules with binding selectivity to XIAP-BIR2 domain. To achieve this, we applied an interdisciplinary drug design approach and firstly we have synthesized an initial fragment library to achieve a first XIAP inhibition activity. Then using a growing strategy, larger compounds were synthesized and one of them presents a good selectivity for XIAP-BIR2 versus XIAP-BIR3 domain, compound 20 c. The ability of compound 20 c to block the NOD1/2 pathway was confirmed in cell models. These data show that we have synthesized molecules capable of blocking NOD1/2 signalling pathways in cellulo, and ultimately leading to new anti-inflammatory compounds.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400567"},"PeriodicalIF":3.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roxana Damiescu, Dr. rer. nat. Mohamed Elbadawi, Dr. rer. nat. Mona Dawood, PD Dr. Sabine M. Klauck, Prof. Dr. Gerhard Bringmann, Prof. Dr. Thomas Efferth
The Front Cover shows the identification of the new natural product aniquinazoline B from the marine fungus Aspergillus nidulans by virtual drug screening of a chemical library with 40000 compounds. Aniquinazoline B binds to the μ-opioid receptor. The amino acid sequence of the human μ opioid receptor in the background represents the basis for the 3D structure enabling virtual drug screening. Biochemical and cell culture experiments confirmed the μ-opioid receptor agonizing effect. This compound may be a promising candidate in pain-management to fight the opioid crisis. More details can be found in article 10.1002/cmdc.202400213 by Thomas Efferth and co-workers. The figure was created with biorender.com and parts of the figure were retrieved from smart servier medical art (smart.servier.com).