首页 > 最新文献

Journal of Advances in Modeling Earth Systems最新文献

英文 中文
Variational All-Sky Assimilation Framework for MWHS-II With Hydrometeors Control Variables and Its Impacts on Analysis and Forecast of Typhoon Cases 带有水文参数控制变量的 MWHS-II 变量全天空同化框架及其对台风案例分析和预报的影响
IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-25 DOI: 10.1029/2023MS004153
Luyao Qin, Yaodeng Chen, Deming Meng, Xiaoping Cheng, Peng Zhang

All-sky radiance assimilation has been extensively developed to provide additional information for numerical weather prediction under cloudy conditions. Microwave radiances are particularly sensitive to hydrometeors, which can be used to initialize hydrometeor directly if the hydrometeor control variables (HCVs) are available. However, the effects of HCVs statistical structure and their multivariate correlation on all-sky radiance assimilation remain unclear. In this study, five HCVs are introduced into the variational assimilation system. The characteristics of hydrometeor background errors are analyzed, and the combined effect with the observation operator is discussed. Then a 3D Variational all-sky assimilation framework with HCVs is modified to assimilate Fengyun-3C/D Microwave Humidity Sounder-II radiance. It is shown that hydrometeors are initialized by radiance directly, and the thermodynamic fields are adjusted accordingly. The characteristics of multi-variables increments are associated with both the characteristics of HCVs in background error and the Jacobians in observation operator. Furthermore, cycle assimilation and forecast experiments for three typhoon cases are conducted. It is found that the difference between observed and analyzed brightness temperatures decreases when HCVs are activated, and the hydrometeors analysis fields are more consistent with observations. Additionally, the typhoon intensity forecasts are improved with enhanced double warm-core and the secondary circulation. This paper analyzes the characteristics of variational all-sky assimilation framework with HCVs, and demonstrates the potential value of HCVs for variational all-sky radiance assimilation.

全天空辐射同化技术已得到广泛开发,可为多云条件下的数值天气预报提供更多信息。微波辐射对水文流星特别敏感,如果有水文流星控制变量(HCVs),就可以直接利用微波辐射初始化水文流星。然而,HCVs 的统计结构及其多元相关性对全天辐射同化的影响仍不清楚。本研究在变分同化系统中引入了五个 HCV。分析了水文气象背景误差的特征,并讨论了其与观测算子的综合效应。然后修改了含有 HCVs 的三维变分全天空同化框架,以同化风云-3C/D 微波湿度探测仪-II 辐射。结果表明,水文参数直接由辐射量初始化,热力学场也会相应调整。多变量增量的特征与背景误差中 HCV 的特征和观测算子中 Jacobian 的特征相关。此外,还对三个台风案例进行了循环同化和预报试验。结果发现,当 HCV 被激活时,观测到的亮度温度与分析到的亮度温度之间的差异减小,水文流体分析场与观测结果更加一致。此外,双暖核和二次环流增强后,台风强度预报也得到了改善。本文分析了使用 HCVs 的变分全天空同化框架的特点,并展示了 HCVs 在变分全天空辐射同化方面的潜在价值。
{"title":"Variational All-Sky Assimilation Framework for MWHS-II With Hydrometeors Control Variables and Its Impacts on Analysis and Forecast of Typhoon Cases","authors":"Luyao Qin,&nbsp;Yaodeng Chen,&nbsp;Deming Meng,&nbsp;Xiaoping Cheng,&nbsp;Peng Zhang","doi":"10.1029/2023MS004153","DOIUrl":"https://doi.org/10.1029/2023MS004153","url":null,"abstract":"<p>All-sky radiance assimilation has been extensively developed to provide additional information for numerical weather prediction under cloudy conditions. Microwave radiances are particularly sensitive to hydrometeors, which can be used to initialize hydrometeor directly if the hydrometeor control variables (HCVs) are available. However, the effects of HCVs statistical structure and their multivariate correlation on all-sky radiance assimilation remain unclear. In this study, five HCVs are introduced into the variational assimilation system. The characteristics of hydrometeor background errors are analyzed, and the combined effect with the observation operator is discussed. Then a 3D Variational all-sky assimilation framework with HCVs is modified to assimilate Fengyun-3C/D Microwave Humidity Sounder-II radiance. It is shown that hydrometeors are initialized by radiance directly, and the thermodynamic fields are adjusted accordingly. The characteristics of multi-variables increments are associated with both the characteristics of HCVs in background error and the Jacobians in observation operator. Furthermore, cycle assimilation and forecast experiments for three typhoon cases are conducted. It is found that the difference between observed and analyzed brightness temperatures decreases when HCVs are activated, and the hydrometeors analysis fields are more consistent with observations. Additionally, the typhoon intensity forecasts are improved with enhanced double warm-core and the secondary circulation. This paper analyzes the characteristics of variational all-sky assimilation framework with HCVs, and demonstrates the potential value of HCVs for variational all-sky radiance assimilation.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytic Parameterization of Longwave Optical Properties of Bulk Vegetation Layer Permitting Non-Zero Leaf Reflectivity and Its Implementation in CLM5 允许非零叶片反射率的大体积植被层长波光学特性分析参数化及其在 CLM5 中的应用
IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-23 DOI: 10.1029/2023MS003957
Hyeon-Ju Gim, Seon Ki Park

For modern land surface models (LSMs) representing a singular bulk vegetation layer, the longwave optical properties (i.e., emissivity, reflectivity, and transmittivity) of vegetation layer are derived with a simplified constraint of assuming zero leaf reflectivity. This constraint is necessary, for instance, to the Beer–Lambert (B–L) law to establish a relationship between the optical properties and leaf area index. However, the simplified constraint leads to an overestimation of land surface emissivity in the vegetated regions. In this study, we introduce a new scheme considering realistic leaf reflectivity values rather than assuming zero. This new scheme is based on the relationship derived from the B–L law, but it is statistically augmented to consider the effects of leaf reflections. It is designed to emulate a multi-vegetation-layer numerical model known as the Norman model, which is capable of numerical calculations of multi-reflections among leaves. This new method consists of only a couple of simple equations; despite its simplicity, it very closely mimics the Norman model; The discrepancy of the results between the new method and the Norman model is less than measurement uncertainties for any combination of input parameters. When the new scheme is implemented in the Community Land Model version 5 (CLM5), the land surface emissivity values are simulated much more consistently with global measurements, resulting in significant alterations of land surface energy budget. The enhanced realism through our new scheme is poised to contribute to more accurate numerical weather and climate simulations.

现代地表模型(LSMs)表示单一的植被层,植被层的长波光学特性(即发射率、反射率和透射率)是在假定叶片反射率为零的简化约束条件下得出的。例如,这种约束对于比尔-朗伯(B-L)定律来说是必要的,它可以建立光学特性与叶面积指数之间的关系。然而,简化约束会导致高估植被区的地表发射率。在本研究中,我们引入了一种新方案,考虑到实际的叶片反射率值,而不是假设为零。这一新方案以 B-L 法则的关系为基础,但考虑到叶片反射的影响,对其进行了统计增强。它的设计目的是模拟一种称为诺曼模型的多植被层数值模型,该模型能够对树叶间的多重反射进行数值计算。在任何输入参数组合下,新方法与诺曼模型之间的结果差异都小于测量不确定性。将新方案应用于社区土地模型 5(CLM5)版本时,模拟的地表发射率值与全球测量值更加一致,从而显著改变了地表能量预算。我们的新方案增强了真实性,有望为更精确的天气和气候数值模拟做出贡献。
{"title":"Analytic Parameterization of Longwave Optical Properties of Bulk Vegetation Layer Permitting Non-Zero Leaf Reflectivity and Its Implementation in CLM5","authors":"Hyeon-Ju Gim,&nbsp;Seon Ki Park","doi":"10.1029/2023MS003957","DOIUrl":"https://doi.org/10.1029/2023MS003957","url":null,"abstract":"<p>For modern land surface models (LSMs) representing a singular bulk vegetation layer, the longwave optical properties (i.e., emissivity, reflectivity, and transmittivity) of vegetation layer are derived with a simplified constraint of assuming zero leaf reflectivity. This constraint is necessary, for instance, to the Beer–Lambert (B–L) law to establish a relationship between the optical properties and leaf area index. However, the simplified constraint leads to an overestimation of land surface emissivity in the vegetated regions. In this study, we introduce a new scheme considering realistic leaf reflectivity values rather than assuming zero. This new scheme is based on the relationship derived from the B–L law, but it is statistically augmented to consider the effects of leaf reflections. It is designed to emulate a multi-vegetation-layer numerical model known as the Norman model, which is capable of numerical calculations of multi-reflections among leaves. This new method consists of only a couple of simple equations; despite its simplicity, it very closely mimics the Norman model; The discrepancy of the results between the new method and the Norman model is less than measurement uncertainties for any combination of input parameters. When the new scheme is implemented in the Community Land Model version 5 (CLM5), the land surface emissivity values are simulated much more consistently with global measurements, resulting in significant alterations of land surface energy budget. The enhanced realism through our new scheme is poised to contribute to more accurate numerical weather and climate simulations.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003957","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The K-Profile Parameterization Augmented by Deep Neural Networks (KPP_DNN) in the General Ocean Turbulence Model (GOTM) 一般海洋湍流模式(GOTM)中的深度神经网络(KPP_DNN)增强型 K-轮廓参数化
IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-19 DOI: 10.1029/2024MS004405
Jianguo Yuan, Jun-Hong Liang, Eric P. Chassignet, Olmo Zavala-Romero, Xiaoliang Wan, Meghan F. Cronin

This study utilizes Deep Neural Networks (DNN) to improve the K-Profile Parameterization (KPP) for the vertical mixing effects in the ocean's surface boundary layer turbulence. The deep neural networks were trained using 11-year turbulence-resolving solutions, obtained by running a large eddy simulation model for Ocean Station Papa, to predict the turbulence velocity scale coefficient and unresolved shear coefficient in the KPP. The DNN-augmented KPP schemes (KPP_DNN) have been implemented in the General Ocean Turbulence Model (GOTM). The KPP_DNN is stable for long-term integration and more efficient than existing variants of KPP schemes with wave effects. Three different KPP_DNN schemes, each differing in their input and output variables, have been developed and trained. The performance of models utilizing the KPP_DNN schemes is compared to those employing traditional deterministic first-order and second-moment closure turbulent mixing parameterizations. Solution comparisons indicate that the simulated mixed layer becomes cooler and deeper when wave effects are included in parameterizations, aligning closer with observations. In the KPP framework, the velocity scale of unresolved shear, which is used to calculate ocean surface boundary layer depth, has a greater impact on the simulated mixed layer than the magnitude of diffusivity does. In the KPP_DNN, unresolved shear depends not only on wave forcing, but also on the mixed layer depth and buoyancy forcing.

本研究利用深度神经网络(DNN)改进了海洋表层边界层湍流垂直混合效应的 K-Profile 参数化(KPP)。通过运行帕帕海洋站的大涡模拟模型获得的 11 年湍流解析解训练了深度神经网络,以预测 KPP 中的湍流速度尺度系数和未解析剪切系数。DNN 增强 KPP 方案(KPP_DNN)已在通用海洋湍流模型(GOTM)中实现。KPP_DNN 对于长期集成来说是稳定的,而且比带有波浪效应的现有 KPP 方案变体更有效。目前已开发并训练了三种不同的 KPP_DNN 方案,每种方案的输入和输出变量各不相同。将使用 KPP_DNN 方案的模型性能与使用传统确定性一阶和二阶闭合湍流混合参数的模型性能进行了比较。比较结果表明,当参数化中包含波浪效应时,模拟的混合层变得更冷、更深,更接近观测结果。在 KPP 框架中,用于计算海洋表面边界层深度的未解析切变的速度尺度对模拟混合层的影响比扩散率的大小更大。在 KPP_DNN 中,未解决切变不仅取决于波浪作用力,还取决于混合层深度和浮力作用力。
{"title":"The K-Profile Parameterization Augmented by Deep Neural Networks (KPP_DNN) in the General Ocean Turbulence Model (GOTM)","authors":"Jianguo Yuan,&nbsp;Jun-Hong Liang,&nbsp;Eric P. Chassignet,&nbsp;Olmo Zavala-Romero,&nbsp;Xiaoliang Wan,&nbsp;Meghan F. Cronin","doi":"10.1029/2024MS004405","DOIUrl":"https://doi.org/10.1029/2024MS004405","url":null,"abstract":"<p>This study utilizes Deep Neural Networks (DNN) to improve the K-Profile Parameterization (KPP) for the vertical mixing effects in the ocean's surface boundary layer turbulence. The deep neural networks were trained using 11-year turbulence-resolving solutions, obtained by running a large eddy simulation model for Ocean Station Papa, to predict the turbulence velocity scale coefficient and unresolved shear coefficient in the KPP. The DNN-augmented KPP schemes (KPP_DNN) have been implemented in the General Ocean Turbulence Model (GOTM). The KPP_DNN is stable for long-term integration and more efficient than existing variants of KPP schemes with wave effects. Three different KPP_DNN schemes, each differing in their input and output variables, have been developed and trained. The performance of models utilizing the KPP_DNN schemes is compared to those employing traditional deterministic first-order and second-moment closure turbulent mixing parameterizations. Solution comparisons indicate that the simulated mixed layer becomes cooler and deeper when wave effects are included in parameterizations, aligning closer with observations. In the KPP framework, the velocity scale of unresolved shear, which is used to calculate ocean surface boundary layer depth, has a greater impact on the simulated mixed layer than the magnitude of diffusivity does. In the KPP_DNN, unresolved shear depends not only on wave forcing, but also on the mixed layer depth and buoyancy forcing.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004405","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circumpolar Transport and Overturning Strength Inferred From Satellite Observables Using Deep Learning in an Eddying Southern Ocean Channel Model 在涡动南大洋航道模型中利用深度学习从卫星观测数据推断极圈传输和翻转强度
IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-18 DOI: 10.1029/2024MS004262
Shuai Meng, Andrew L. Stewart, Georgy Manucharyan

The Southern Ocean connects the ocean's major basins via the Antarctic Circumpolar Current (ACC), and closes the global meridional overturning circulation (MOC). Observing these transports is challenging because three-dimensional mesoscale-resolving measurements of currents, temperature, and salinity are required to calculate transport in density coordinates. Previous studies have proposed to circumvent these limitations by inferring subsurface transports from satellite measurements using data-driven methods. However, it is unclear whether these approaches can identify the signatures of subsurface transport in the Southern Ocean, which exhibits an energetic mesoscale eddy field superposed on a highly heterogeneous mean stratification and circulation. This study employs Deep Learning techniques to link the transports of the ACC and the upper and lower branches of the MOC to sea surface height (SSH) and ocean bottom pressure (OBP), using an idealized channel model of the Southern Ocean as a test bed. A key result is that a convolutional neural network produces skillful predictions of the ACC transport and MOC strength (skill score of ${sim} $0.74 and ${sim} $0.44, respectively). The skill of these predictions is similar across timescales ranging from daily to decadal but decreases substantially if SSH or OBP is omitted as a predictor. Using a fully connected or linear neural network yields similarly accurate predictions of the ACC transport but substantially less skillful predictions of the MOC strength. Our results suggest that Deep Learning offers a route to linking the Southern Ocean's zonal transport and overturning circulation to remote measurements, even in the presence of pronounced mesoscale variability.

南大洋通过南极环极洋流(ACC)连接大洋的主要盆地,并关闭全球经向翻转环流(MOC)。观测这些传输是一项挑战,因为要计算密度坐标中的传输,需要对海流、温度和盐度进行三维中尺度分辨率测量。以前的研究曾提出利用数据驱动方法,通过卫星测量推断次表层传输来规避这些限制。然而,目前还不清楚这些方法能否识别南大洋的次表层传输特征,因为南大洋在高度异质的平均分层和环流上叠加了高能中尺度涡场。本研究以理想化的南大洋通道模型为试验平台,采用深度学习技术将 ACC 和 MOC 上下分支的传输与海面高度(SSH)和洋底压力(OBP)联系起来。一个关键结果是卷积神经网络对ACC传输和MOC强度产生了娴熟的预测(技能得分分别为∼ ${sim} $ 0.74和∼ ${sim} $ 0.44)。在从日到十年的时间尺度上,这些预测的技能是相似的,但如果省略 SSH 或 OBP 作为预测因子,预测技能就会大大降低。使用全连接或线性神经网络可以得到类似准确的 ACC 传输预测结果,但对 MOC 强度的预测技能却大大降低。我们的研究结果表明,深度学习提供了一条将南大洋的带状传输和倾覆环流与遥感测量联系起来的途径,即使存在明显的中尺度变率。
{"title":"Circumpolar Transport and Overturning Strength Inferred From Satellite Observables Using Deep Learning in an Eddying Southern Ocean Channel Model","authors":"Shuai Meng,&nbsp;Andrew L. Stewart,&nbsp;Georgy Manucharyan","doi":"10.1029/2024MS004262","DOIUrl":"https://doi.org/10.1029/2024MS004262","url":null,"abstract":"<p>The Southern Ocean connects the ocean's major basins via the Antarctic Circumpolar Current (ACC), and closes the global meridional overturning circulation (MOC). Observing these transports is challenging because three-dimensional mesoscale-resolving measurements of currents, temperature, and salinity are required to calculate transport in density coordinates. Previous studies have proposed to circumvent these limitations by inferring subsurface transports from satellite measurements using data-driven methods. However, it is unclear whether these approaches can identify the signatures of subsurface transport in the Southern Ocean, which exhibits an energetic mesoscale eddy field superposed on a highly heterogeneous mean stratification and circulation. This study employs Deep Learning techniques to link the transports of the ACC and the upper and lower branches of the MOC to sea surface height (SSH) and ocean bottom pressure (OBP), using an idealized channel model of the Southern Ocean as a test bed. A key result is that a convolutional neural network produces skillful predictions of the ACC transport and MOC strength (skill score of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>∼</mo>\u0000 </mrow>\u0000 <annotation> ${sim} $</annotation>\u0000 </semantics></math>0.74 and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>∼</mo>\u0000 </mrow>\u0000 <annotation> ${sim} $</annotation>\u0000 </semantics></math>0.44, respectively). The skill of these predictions is similar across timescales ranging from daily to decadal but decreases substantially if SSH or OBP is omitted as a predictor. Using a fully connected or linear neural network yields similarly accurate predictions of the ACC transport but substantially less skillful predictions of the MOC strength. Our results suggest that Deep Learning offers a route to linking the Southern Ocean's zonal transport and overturning circulation to remote measurements, even in the presence of pronounced mesoscale variability.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004262","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduction of the Tropical Atmospheric Dynamics Into Shallow-Water Analogs: A Formulation Analysis 将热带大气动力学还原为浅水模拟:公式分析
IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-18 DOI: 10.1029/2023MS004180
Jun-Ichi Yano

The shallow-water analogue models for the tropical atmosphere are examined from a formulational point of view. The normal-mode approach provides a formal procedure to reduce the primitive equation system to a shallow-water analogue, although approaches based on vertical integrals of the primitive equation system may be more intuitively appealing. Under a general framework of the latter, classical models by Gill (1980, https://doi.org/10.1256/smsqj.44904) and Lindzen and Nigam (1987, 2.0.co;2>https://doi.org/10.1175/1520-0469(1987)044<2418:otross>2.0.co;2) are derived in a deductive manner, by elucidating their limitations, implications, as well physical processes assumed. Major advantage of shallow-water analogue models is that after a vertical integral, the determination of convective heating rate simply reduces to that of a precipitation rate. Consequently, the question of representing convection also almost reduces to that of precipitation. This fact leads to confusions in literature about distinction between large-scale precipitation and subgrid-scale convection. This framework further supports a popular notion of the moisture as a key variable for describing convection. By reviewing the existing formulations, it is shown that convection can be parameterized without moisture under the limit of the parcel-environment quasi-equilibrium.

从公式的角度研究了热带大气的浅水模拟模型。尽管基于原始方程系统垂直积分的方法可能更直观,但常模方法提供了将原始方程系统简化为浅水模拟的正式程序。在后者的一般框架下,Gill (1980, https://doi.org/10.1256/smsqj.44904) 和 Lindzen 与 Nigam (1987, 2.0.co;2>https://doi.org/10.1175/1520-0469(1987)044<2418:otross>2.0.co;2) 的经典模型是以演绎的方式推导出来的,阐明了它们的局限性、含义以及假定的物理过程。浅水模拟模型的主要优点是,经过垂直积分后,对流加热率的确定简单地简化为降水率的确定。因此,表示对流的问题也几乎简化为表示降水的问题。这一事实导致文献中对大尺度降水和亚网格尺度对流之间区别的混淆。这一框架进一步支持了将湿度作为描述对流的关键变量这一流行概念。通过对现有公式的回顾,可以发现在包裹-环境准平衡的限制下,对流可以在没有水汽的情况下进行参数化。
{"title":"Reduction of the Tropical Atmospheric Dynamics Into Shallow-Water Analogs: A Formulation Analysis","authors":"Jun-Ichi Yano","doi":"10.1029/2023MS004180","DOIUrl":"https://doi.org/10.1029/2023MS004180","url":null,"abstract":"<p>The shallow-water analogue models for the tropical atmosphere are examined from a formulational point of view. The normal-mode approach provides a formal procedure to reduce the primitive equation system to a shallow-water analogue, although approaches based on vertical integrals of the primitive equation system may be more intuitively appealing. Under a general framework of the latter, classical models by Gill (1980, https://doi.org/10.1256/smsqj.44904) and Lindzen and Nigam (1987, 2.0.co;2&gt;https://doi.org/10.1175/1520-0469(1987)044&lt;2418:otross&gt;2.0.co;2) are derived in a deductive manner, by elucidating their limitations, implications, as well physical processes assumed. Major advantage of shallow-water analogue models is that after a vertical integral, the determination of convective heating rate simply reduces to that of a precipitation rate. Consequently, the question of representing convection also <i>almost</i> reduces to that of precipitation. This fact leads to confusions in literature about distinction between large-scale precipitation and subgrid-scale convection. This framework further supports a popular notion of the moisture as a key variable for describing convection. By reviewing the existing formulations, it is shown that convection can be parameterized without moisture under the limit of the parcel-environment quasi-equilibrium.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004180","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Decadal Soil Moisture and Crop Yield Variability—A Case Study With the Community Land Model (CLM5) 多年代土壤水分和作物产量变异性--社区土地模型 (CLM5) 案例研究
IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-17 DOI: 10.1029/2023MS004023
Theresa Boas, Heye Bogena, Dongryeol Ryu, Andrew Western, Harrie-Jan Hendricks Franssen

While the impacts of climate change on global food security have been studied extensively, the capability of emerging tools that couple land surface processes and crop growth in reproducing inter-annual yield variability at regional scale remains to be tested rigorously. In this study, we analyzed the effects of weather variations between years (1999–2019) on regional crop productivity for two agriculturally managed regions with contrasting climate and cropping conditions: the German state of North Rhine-Westphalia (DE-NRW) and the Australian state of Victoria (AUS-VIC), using the latest version of the Community Land Model (CLM5) and the WFDE5 (WATCH Forcing Data methodology applied to ECMWF reanalysis version 5) reanalysis. Overall, the simulation results were able to reproduce the total annual crop yields of certain crops, while also capturing the differences in total yield magnitudes between the domains. However, the simulations showed limitations in correctly capturing inter-annual differences of crop yield compared to official yield records, which resulted in relatively low correlation coefficients between 0.07 and 0.39 in AUS-VIC and between 0.11 and 0.42 in DE-NRW. The mean absolute deviation of simulated winter wheat yields was up to 4.6 times lower compared to state-wide records from 1999 to 2019. Our results suggest the following limitations of CLM5: (a) limitations in simulating yield responses from plant hydraulic stress; (b) errors in simulating soil moisture contents compared to satellite-derived data; and (c) errors in the representation of cropland in general, for example, crop parameterizations and human influences.

虽然气候变化对全球粮食安全的影响已得到广泛研究,但将地表过程与作物生长结合起来的新兴工具在区域范围内再现年际产量变化的能力仍有待严格检验。在这项研究中,我们利用最新版本的社区土地模型(CLM5)和 WFDE5(WATCH Forcing Data methodology applied to ECMWF reanalysis version 5)再分析,分析了德国北莱茵-威斯特法伦州(DE-NRW)和澳大利亚维多利亚州(AUS-VIC)这两个气候和耕作条件截然不同的农业管理区的年际天气变化(1999-2019 年)对区域作物产量的影响。总体而言,模拟结果能够再现某些作物的年总产量,同时也能捕捉到不同区域总产量的差异。然而,与官方产量记录相比,模拟结果在正确捕捉作物产量的年际差异方面存在局限性,这导致相关系数相对较低,澳大利 亚-维多利亚州介于 0.07 和 0.39 之间,而德国-西北地区介于 0.11 和 0.42 之间。与 1999 年至 2019 年的全州记录相比,模拟冬小麦产量的平均绝对偏差最多低 4.6 倍。我们的结果表明 CLM5 存在以下局限性:(a)在模拟植物水力胁迫的产量响应方面存在局限性;(b)与卫星数据相比,在模拟土壤含水量方面存在误差;以及(c)在表示一般耕地方面存在误差,例如作物参数化和人为影响。
{"title":"Multi-Decadal Soil Moisture and Crop Yield Variability—A Case Study With the Community Land Model (CLM5)","authors":"Theresa Boas,&nbsp;Heye Bogena,&nbsp;Dongryeol Ryu,&nbsp;Andrew Western,&nbsp;Harrie-Jan Hendricks Franssen","doi":"10.1029/2023MS004023","DOIUrl":"https://doi.org/10.1029/2023MS004023","url":null,"abstract":"<p>While the impacts of climate change on global food security have been studied extensively, the capability of emerging tools that couple land surface processes and crop growth in reproducing inter-annual yield variability at regional scale remains to be tested rigorously. In this study, we analyzed the effects of weather variations between years (1999–2019) on regional crop productivity for two agriculturally managed regions with contrasting climate and cropping conditions: the German state of North Rhine-Westphalia (DE-NRW) and the Australian state of Victoria (AUS-VIC), using the latest version of the Community Land Model (CLM5) and the WFDE5 (WATCH Forcing Data methodology applied to ECMWF reanalysis version 5) reanalysis. Overall, the simulation results were able to reproduce the total annual crop yields of certain crops, while also capturing the differences in total yield magnitudes between the domains. However, the simulations showed limitations in correctly capturing inter-annual differences of crop yield compared to official yield records, which resulted in relatively low correlation coefficients between 0.07 and 0.39 in AUS-VIC and between 0.11 and 0.42 in DE-NRW. The mean absolute deviation of simulated winter wheat yields was up to 4.6 times lower compared to state-wide records from 1999 to 2019. Our results suggest the following limitations of CLM5: (a) limitations in simulating yield responses from plant hydraulic stress; (b) errors in simulating soil moisture contents compared to satellite-derived data; and (c) errors in the representation of cropland in general, for example, crop parameterizations and human influences.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupling Soil Erosion and Sediment Transport Processes With the Variable Infiltration Capacity Model (VIC-SED) for Applications Suitable With Coarse Spatial and Temporal Resolutions 将土壤侵蚀和沉积物迁移过程与可变渗透能力模型(VIC-SED)耦合起来,以满足粗时空分辨率的应用需求
IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-14 DOI: 10.1029/2024MS004307
Xianhong Xie, Xu Liang

Understanding soil erosion and sediment transport from the hillslope scale to the regional scale is crucial for studies on water quality, soil-water conservation, the lateral carbon cycle, environmental zoning and vulnerability. However, most existing erosion and sediment transport models are only applicable at the hillslope scale or for small watersheds with fine spatial resolutions (typically much less than 1 km). This study presents a process-based soil erosion and sediment transport model for model applications designed for applications with coarse spatial (e.g., ≥10 km) and temporal (e.g., from hourly to daily) resolutions. This new model, referred to as VIC-SED, effectively accounts for interactions between erosion and hydrological processes. This is achieved by tightly coupling the erosion processes with a hydrologically based Three-layer Variable Infiltration Capacity (VIC-3L) land surface model (LSM) and to a multi-scale routing (MSR) model. VIC-SED considers the impacts of (a) the spatio-temporal variability of rainfall intensity on erosion processes and (b) soil moisture on the soil detachment process. VIC-SED is evaluated in two watersheds. Results demonstrate that VIC-SED is capable of reproducing water and suspended sediment discharges at coarse spatial resolutions and varying temporal scales varying from 15-min to daily intervals. Our study indicates that the VIC-SED model is a promising tool for studying and assessing the impacts of climate and land cover changes on suspended sediment yields over large regions using coarse spatial and temporal resolutions.

了解从山坡尺度到区域尺度的土壤侵蚀和沉积物迁移对水质、水土保持、横向碳循环、环境分区和脆弱性研究至关重要。然而,大多数现有的侵蚀和沉积物迁移模型仅适用于山坡尺度或空间分辨率较低(通常小于 1 千米)的小流域。本研究提出了一种基于过程的土壤侵蚀和泥沙输运模型,该模型专为粗空间分辨率(如≥10 公里)和时间分辨率(如从每小时到每天)的应用而设计。这一新模型被称为 VIC-SED,可有效解释侵蚀和水文过程之间的相互作用。这是通过将侵蚀过程与基于水文的三层可变渗透能力(VIC-3L)地表模型(LSM)和多尺度路由模型(MSR)紧密耦合来实现的。VIC-SED 考虑了(a)降雨强度的时空变化对侵蚀过程的影响和(b)土壤湿度对土壤剥离过程的影响。在两个流域对 VIC-SED 进行了评估。结果表明,VIC-SED 能够以较高的空间分辨率和不同的时间尺度(从 15 分钟到每天)再现水和悬浮沉积物的排放。我们的研究表明,VIC-SED 模型是一种很有前途的工具,可以利用较高的空间和时间分辨率研究和评估气候和土地覆盖变化对大面积悬浮泥沙产量的影响。
{"title":"Coupling Soil Erosion and Sediment Transport Processes With the Variable Infiltration Capacity Model (VIC-SED) for Applications Suitable With Coarse Spatial and Temporal Resolutions","authors":"Xianhong Xie,&nbsp;Xu Liang","doi":"10.1029/2024MS004307","DOIUrl":"https://doi.org/10.1029/2024MS004307","url":null,"abstract":"<p>Understanding soil erosion and sediment transport from the hillslope scale to the regional scale is crucial for studies on water quality, soil-water conservation, the lateral carbon cycle, environmental zoning and vulnerability. However, most existing erosion and sediment transport models are only applicable at the hillslope scale or for small watersheds with fine spatial resolutions (typically much less than 1 km). This study presents a process-based soil erosion and sediment transport model for model applications designed for applications with coarse spatial (e.g., ≥10 km) and temporal (e.g., from hourly to daily) resolutions. This new model, referred to as VIC-SED, effectively accounts for interactions between erosion and hydrological processes. This is achieved by tightly coupling the erosion processes with a hydrologically based Three-layer Variable Infiltration Capacity (VIC-3L) land surface model (LSM) and to a multi-scale routing (MSR) model. VIC-SED considers the impacts of (a) the spatio-temporal variability of rainfall intensity on erosion processes and (b) soil moisture on the soil detachment process. VIC-SED is evaluated in two watersheds. Results demonstrate that VIC-SED is capable of reproducing water and suspended sediment discharges at coarse spatial resolutions and varying temporal scales varying from 15-min to daily intervals. Our study indicates that the VIC-SED model is a promising tool for studying and assessing the impacts of climate and land cover changes on suspended sediment yields over large regions using coarse spatial and temporal resolutions.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004307","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Shortened Spin-Ups to Speed Up Ocean Biogeochemical Model Optimization 利用缩短的自旋加速海洋生物地球化学模型优化
IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-10 DOI: 10.1029/2023MS003941
S. Oliver, S. Khatiwala, C. Cartis, Ben Ward, Iris Kriest

The performance of global ocean biogeochemical models can be quantified as the misfit between modeled tracer distributions and observations, which is sought to be minimized during parameter optimization. These models are computationally expensive due to the long spin-up time required to reach equilibrium, and therefore optimization is often laborious. To reduce the required computational time, we investigate whether optimization of a biogeochemical model with shorter spin-ups provides the same optimized parameters as one with a full-length, equilibrated spin-up over several millennia. We use the global ocean biogeochemical model MOPS with a range of lengths of model spin-up and calibrate the model against synthetic observations derived from previous model runs using a derivative-free optimization algorithm (DFO-LS). When initiating the biogeochemical model with tracer distributions that differ from the synthetic observations used for calibration, a minimum spin-up length of 2,000 years was required for successful optimization due to certain parameters which influence the transport of matter from the surface to the deeper ocean, where timescales are longer. However, preliminary results indicate that successful optimization may occur with an even shorter spin-up by a judicious choice of initial condition, here the synthetic observations used for calibration, suggesting a fruitful avenue for future research.

全球海洋生物地球化学模式的性能可以量化为模式示踪剂分布与观测数据之间的不匹配度,在参数优化过程中力求将其最小化。由于达到平衡所需的自旋时间较长,这些模型的计算成本较高,因此优化工作往往十分费力。为了减少所需的计算时间,我们研究了对自旋时间较短的生物地球化学模型进行优化,是否能获得与自旋时间较长、平衡时间长达数千年的生物地球化学模型相同的优化参数。我们使用了全球海洋生物地球化学模型 MOPS 和一系列模型自旋长度,并使用无导数优化算法(DFO-LS)根据以前模型运行中的合成观测结果对模型进行了校准。由于某些参数会影响物质从表层向深海的迁移,而深海的时间尺度较长,因此在启动生物地球化学模式时,示踪剂分布与校准所用的合成观测数据不同,因此至少需要 2000 年的启动时间才能成功优化。不过,初步结果表明,通过明智地选择初始条件(这里指用于校准的合成观测数据),在更短的自旋时间内也可以成功优化,这为今后的研究提供了一条富有成效的途径。
{"title":"Using Shortened Spin-Ups to Speed Up Ocean Biogeochemical Model Optimization","authors":"S. Oliver,&nbsp;S. Khatiwala,&nbsp;C. Cartis,&nbsp;Ben Ward,&nbsp;Iris Kriest","doi":"10.1029/2023MS003941","DOIUrl":"https://doi.org/10.1029/2023MS003941","url":null,"abstract":"<p>The performance of global ocean biogeochemical models can be quantified as the misfit between modeled tracer distributions and observations, which is sought to be minimized during parameter optimization. These models are computationally expensive due to the long spin-up time required to reach equilibrium, and therefore optimization is often laborious. To reduce the required computational time, we investigate whether optimization of a biogeochemical model with shorter spin-ups provides the same optimized parameters as one with a full-length, equilibrated spin-up over several millennia. We use the global ocean biogeochemical model MOPS with a range of lengths of model spin-up and calibrate the model against synthetic observations derived from previous model runs using a derivative-free optimization algorithm (DFO-LS). When initiating the biogeochemical model with tracer distributions that differ from the synthetic observations used for calibration, a minimum spin-up length of 2,000 years was required for successful optimization due to certain parameters which influence the transport of matter from the surface to the deeper ocean, where timescales are longer. However, preliminary results indicate that successful optimization may occur with an even shorter spin-up by a judicious choice of initial condition, here the synthetic observations used for calibration, suggesting a fruitful avenue for future research.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003941","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating Uncertainty in Simulated ENSO Statistics 估计厄尔尼诺/南方涛动模拟统计的不确定性
IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-09 DOI: 10.1029/2023MS004147
Yann Y. Planton, Jiwoo Lee, Andrew T. Wittenberg, Peter J. Gleckler, Éric Guilyardi, Shayne McGregor, Michael J. McPhaden

Large ensembles of model simulations are frequently used to reduce the impact of internal variability when evaluating climate models and assessing climate change induced trends. However, the optimal number of ensemble members required to distinguish model biases and climate change signals from internal variability varies across models and metrics. Here we analyze the mean, variance and skewness of precipitation and sea surface temperature in the eastern equatorial Pacific region often used to describe the El Niño–Southern Oscillation (ENSO), obtained from large ensembles of Coupled model intercomparison project phase 6 climate simulations. Leveraging established statistical theory, we develop and assess equations to estimate, a priori, the ensemble size or simulation length required to limit sampling-based uncertainties in ENSO statistics to within a desired tolerance. Our results confirm that the uncertainty of these statistics decreases with the square root of the time series length and/or ensemble size. Moreover, we demonstrate that uncertainties of these statistics are generally comparable when computed using either pre-industrial control or historical runs. This suggests that pre-industrial runs can sometimes be used to estimate the expected uncertainty of statistics computed from an existing historical member or ensemble, and the number of simulation years (run duration and/or ensemble size) required to adequately characterize the statistic. This advance allows us to use existing simulations (e.g., control runs that are performed during model development) to design ensembles that can sufficiently limit diagnostic uncertainties arising from simulated internal variability. These results may well be applicable to variables and regions beyond ENSO.

在评估气候模式和气候变化趋势时,经常使用大型模式模拟集合来减少内部变异的影响。然而,从内部变率中区分模式偏差和气候变化信号所需的最佳集合成员数因模式和指标而异。在这里,我们分析了经常用来描述厄尔尼诺-南方涛动(ENSO)的东赤道太平洋地区降水和海面温度的平均值、方差和偏度,这些数据是从耦合模式相互比较项目第 6 阶段气候模拟的大型集合中获得的。利用已建立的统计理论,我们开发并评估了一些方程,以先验地估计将厄尔尼诺-南方涛动统计中基于采样的不确定性限制在所需容限内所需的集合规模或模拟长度。我们的结果证实,这些统计数据的不确定性会随着时间序列长度和/或集合规模的平方根而减小。此外,我们还证明,在使用工业化前对照或历史运行进行计算时,这些统计量的不确定性基本相当。这表明,工业化前的运行有时可用于估算根据现有历史成员或集合计算的统计量的预期不确定性,以及充分描述统计量所需的模拟年数(运行持续时间和/或集合规模)。这一进步使我们能够利用现有的模拟(例如,在模型开发过程中进行的控制运行)来设计集合,以充分限制模拟内部变异性引起的诊断不确定性。这些结果很可能适用于厄尔尼诺/南方涛动以外的变量和区域。
{"title":"Estimating Uncertainty in Simulated ENSO Statistics","authors":"Yann Y. Planton,&nbsp;Jiwoo Lee,&nbsp;Andrew T. Wittenberg,&nbsp;Peter J. Gleckler,&nbsp;Éric Guilyardi,&nbsp;Shayne McGregor,&nbsp;Michael J. McPhaden","doi":"10.1029/2023MS004147","DOIUrl":"https://doi.org/10.1029/2023MS004147","url":null,"abstract":"<p>Large ensembles of model simulations are frequently used to reduce the impact of internal variability when evaluating climate models and assessing climate change induced trends. However, the optimal number of ensemble members required to distinguish model biases and climate change signals from internal variability varies across models and metrics. Here we analyze the mean, variance and skewness of precipitation and sea surface temperature in the eastern equatorial Pacific region often used to describe the El Niño–Southern Oscillation (ENSO), obtained from large ensembles of Coupled model intercomparison project phase 6 climate simulations. Leveraging established statistical theory, we develop and assess equations to estimate, a priori, the ensemble size or simulation length required to limit sampling-based uncertainties in ENSO statistics to within a desired tolerance. Our results confirm that the uncertainty of these statistics decreases with the square root of the time series length and/or ensemble size. Moreover, we demonstrate that uncertainties of these statistics are generally comparable when computed using either pre-industrial control or historical runs. This suggests that pre-industrial runs can sometimes be used to estimate the expected uncertainty of statistics computed from an existing historical member or ensemble, and the number of simulation years (run duration and/or ensemble size) required to adequately characterize the statistic. This advance allows us to use existing simulations (e.g., control runs that are performed during model development) to design ensembles that can sufficiently limit diagnostic uncertainties arising from simulated internal variability. These results may well be applicable to variables and regions beyond ENSO.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Climate Change and Trade Cumulus Organization 气候变化与贸易积云组织
IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-07 DOI: 10.1029/2023MS004057
Jan Kazil, Pornampai Narenpitak, Takanobu Yamaguchi, Graham Feingold

We investigate the role of mesoscale organization for the response of trade cumulus (Tc) clouds to climate change. Among four recently identified states of Tc organization, the “Sugar” state has the lowest and the “Flower” state the highest cloud fraction and cloud radiative effect. Using large-eddy simulations, we find that the Flower Tc state is more sensitive to climate change than the Sugar Tc state. In the considered case, the short-wave cloud radiative effect weakens by 0.28 W m−2 in the Sugar state and by 1.5 W m−2 in the Flower state over the course of 21st century under the RCP8.5 emissions scenario. This is accompanied by a reduction of the short-wave cloud radiative effect variance on the mesoscale. The primary mechanism is stabilization of the boundary layer by stronger long-wave radiative heating at the inversion associated with higher greenhouse gas levels. This weakens the boundary layer mesoscale circulation that is responsible for aggregation of moisture and formation of the Flower Tc state. Thus, in the considered case, organization on the mesoscale amplifies the positive feedback of Tc clouds to climate change. Owing to the widespread occurrence of boundary layer mesoscale circulations in the Tc regime, this mechanism could modulate the Tc response to climate change in general.

我们研究了中尺度组织对贸易积云(Tc)对气候变化响应的作用。在最近确定的四种 Tc 组织状态中,"糖 "状态的云分数和云辐射效应最低,而 "花 "状态的云分数和云辐射效应最高。通过大涡流模拟,我们发现 "花 "Tc 状态比 "糖 "Tc 状态对气候变化更敏感。在考虑的情况下,在 RCP8.5 排放情景下,21 世纪的短波云辐射效应在 "糖 "状态下减弱了 0.28 W m-2,在 "花 "状态下减弱了 1.5 W m-2。与此同时,中尺度上的短波云辐射效应方差也在减小。其主要机制是,由于温室气体水平升高,反转处的长波辐射加热增强,边界层趋于稳定。这削弱了边界层中尺度环流,而边界层中尺度环流负责水汽的聚集和花 Tc 状态的形成。因此,在所考虑的情况下,中尺度上的组织放大了 Tc 云对气候变化的正反馈。由于边界层中尺度环流在 Tc 状态中广泛存在,这一机制可能会在总体上调节 Tc 对气候变化的响应。
{"title":"On Climate Change and Trade Cumulus Organization","authors":"Jan Kazil,&nbsp;Pornampai Narenpitak,&nbsp;Takanobu Yamaguchi,&nbsp;Graham Feingold","doi":"10.1029/2023MS004057","DOIUrl":"https://doi.org/10.1029/2023MS004057","url":null,"abstract":"<p>We investigate the role of mesoscale organization for the response of trade cumulus (Tc) clouds to climate change. Among four recently identified states of Tc organization, the “Sugar” state has the lowest and the “Flower” state the highest cloud fraction and cloud radiative effect. Using large-eddy simulations, we find that the Flower Tc state is more sensitive to climate change than the Sugar Tc state. In the considered case, the short-wave cloud radiative effect weakens by 0.28 W m<sup>−2</sup> in the Sugar state and by 1.5 W m<sup>−2</sup> in the Flower state over the course of 21st century under the RCP8.5 emissions scenario. This is accompanied by a reduction of the short-wave cloud radiative effect variance on the mesoscale. The primary mechanism is stabilization of the boundary layer by stronger long-wave radiative heating at the inversion associated with higher greenhouse gas levels. This weakens the boundary layer mesoscale circulation that is responsible for aggregation of moisture and formation of the Flower Tc state. Thus, in the considered case, organization on the mesoscale amplifies the positive feedback of Tc clouds to climate change. Owing to the widespread occurrence of boundary layer mesoscale circulations in the Tc regime, this mechanism could modulate the Tc response to climate change in general.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Advances in Modeling Earth Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1