Pub Date : 2021-03-11DOI: 10.23967/WCCM-ECCOMAS.2020.254
À. Alsalti-Baldellou, F. Trias, A. Gorobets, A. Oliva
. It is well known that the solution by means of iterative methods of very ill-conditioned systems leads to very poor convergence rates. In this context, preconditioning becomes crucial in order to modify the spectrum of the system being solved and improve the performance of the solvers. A proper balance between the reduction in the number of iterations and the overhead of the construction and application of the preconditioner needs to be sought to actually decrease the total execution time of the solvers. This is particularly important when considering variable coefficients matrices as, in general, its preconditioners will also be variable and need to be updated regularly at an affordable cost. In this work we present a family of variable preconditioners designed for the effective solution of variable Poisson equation with extreme contrasts in the coefficients, which represents a particularly challenging case as it translates into a variable and extremely ill-conditioned system arising in many situations such as with multiphase flows presenting high density ratios or in the presence of highly-stretched adaptive mesh refinements
{"title":"On Preconditioning Variable Poisson Equation with Extreme Contrasts in the Coefficients","authors":"À. Alsalti-Baldellou, F. Trias, A. Gorobets, A. Oliva","doi":"10.23967/WCCM-ECCOMAS.2020.254","DOIUrl":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.254","url":null,"abstract":". It is well known that the solution by means of iterative methods of very ill-conditioned systems leads to very poor convergence rates. In this context, preconditioning becomes crucial in order to modify the spectrum of the system being solved and improve the performance of the solvers. A proper balance between the reduction in the number of iterations and the overhead of the construction and application of the preconditioner needs to be sought to actually decrease the total execution time of the solvers. This is particularly important when considering variable coefficients matrices as, in general, its preconditioners will also be variable and need to be updated regularly at an affordable cost. In this work we present a family of variable preconditioners designed for the effective solution of variable Poisson equation with extreme contrasts in the coefficients, which represents a particularly challenging case as it translates into a variable and extremely ill-conditioned system arising in many situations such as with multiphase flows presenting high density ratios or in the presence of highly-stretched adaptive mesh refinements","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"30 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114003105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-11DOI: 10.23967/WCCM-ECCOMAS.2020.175
T. Zirwes, F. Zhang, P. Habisreuther, J. Denev, H. Bockhorn, D. Trimis
. To meet future climate goals, the efficiency of combustion devices has to be increased. This requires a better understanding of the underlying physics. The simulation of turbulent flames is a challenge because of the multi-scale nature of combustion processes: relevant length scales span over five orders of magnitude and time scales over more than ten. Because of this, the direct numerical simulation (DNS) of turbulent flames is only possible on large supercomputers. A DNS solver for chemically reacting flows implemented in the open-source framework OpenFOAM is presented. The thermo-chemical library Cantera is used to compute detailed transport coefficients based on kinetic gas theory. The multi-scale nature of time scales, which are much lower for the combustion chemistry than for the flow, are bridged by an operator splitting approach, which employs the open-source solver Sundials to integrate chemical reaction rates. Because the direct simulation
{"title":"Implementation and Validation of a Computationally Efficient DNS Solver for Reacting Flows in OpenFOAM","authors":"T. Zirwes, F. Zhang, P. Habisreuther, J. Denev, H. Bockhorn, D. Trimis","doi":"10.23967/WCCM-ECCOMAS.2020.175","DOIUrl":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.175","url":null,"abstract":". To meet future climate goals, the efficiency of combustion devices has to be increased. This requires a better understanding of the underlying physics. The simulation of turbulent flames is a challenge because of the multi-scale nature of combustion processes: relevant length scales span over five orders of magnitude and time scales over more than ten. Because of this, the direct numerical simulation (DNS) of turbulent flames is only possible on large supercomputers. A DNS solver for chemically reacting flows implemented in the open-source framework OpenFOAM is presented. The thermo-chemical library Cantera is used to compute detailed transport coefficients based on kinetic gas theory. The multi-scale nature of time scales, which are much lower for the combustion chemistry than for the flow, are bridged by an operator splitting approach, which employs the open-source solver Sundials to integrate chemical reaction rates. Because the direct simulation","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129678919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-11DOI: 10.23967/WCCM-ECCOMAS.2020.225
Felix Grubert, M. Nuño, K. Schröder
. De-icing of general aviation aircraft is usually realized by chemical or thermal processes. These lead to an increase in fuel consumption or usage of electrical energy. Mechanical de-icing is a way to significantly reduce this consumption. In mechanical de-icing, a surface is deformed so that the required failure mechanisms are induced in the ice, causing it to detach. In this paper, the release behavior of ice on a CFRP layer is investigated. The CFRP layer consists of two plies, each 0.3 mm thick. A numerical calculation is performed to determine the natural frequency and the required amplitudes of the vibration. In addition, the relationship between the various failure mechanisms of ice and the ice layer thickness, as well as the control values are determined. Tests are also being conducted to demonstrate the feasibility of mechanical de-icing. For this purpose, the surface of a CFRP layer is iced with water in a climate chamber at -20°C. A modal shaker is connected to the CFRP and generates the required displacements at desired frequencies to observe the detachment of the ice.
{"title":"Numerical Analysis of a Mechanical De-Icing Process by Low Frequency Oscillation of a CFRP Layer","authors":"Felix Grubert, M. Nuño, K. Schröder","doi":"10.23967/WCCM-ECCOMAS.2020.225","DOIUrl":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.225","url":null,"abstract":". De-icing of general aviation aircraft is usually realized by chemical or thermal processes. These lead to an increase in fuel consumption or usage of electrical energy. Mechanical de-icing is a way to significantly reduce this consumption. In mechanical de-icing, a surface is deformed so that the required failure mechanisms are induced in the ice, causing it to detach. In this paper, the release behavior of ice on a CFRP layer is investigated. The CFRP layer consists of two plies, each 0.3 mm thick. A numerical calculation is performed to determine the natural frequency and the required amplitudes of the vibration. In addition, the relationship between the various failure mechanisms of ice and the ice layer thickness, as well as the control values are determined. Tests are also being conducted to demonstrate the feasibility of mechanical de-icing. For this purpose, the surface of a CFRP layer is iced with water in a climate chamber at -20°C. A modal shaker is connected to the CFRP and generates the required displacements at desired frequencies to observe the detachment of the ice.","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132398935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-11DOI: 10.23967/WCCM-ECCOMAS.2020.294
N. Huynh, L. Pavarino, S. Scacchi
Abstract. Two parallel Newton-Krylov Balancing Domain Decomposition by Constraints (BDDC) and Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) solvers are analyzed and numerically studied for implicit time discretizations of the Bidomain equations. This system models the cardiac bioelectrical activity and it consists of a degenerate system of two non-linear reaction-diffusion partial differential equations (PDEs), coupled with a stiff system of ordinary differential equations (ODEs). A non-linear algebraic system arises from a finite element discretization in space and an implicit discretization in time, based on decoupling the PDEs from the ODEs. Within each Newton iteration, the Jacobian linear system is solved by a Krylov method, accelerated by BDDC or FETI-DP preconditioners, both augmented with the recently introduced deluxe scaling of the dual variables. Several parallel numerical tests on Linux clusters confirm a novel polylogarithmic convergence rate bound, showing scalability and quasi-optimality of the proposed solvers.
{"title":"Scalable Newton-Krylov-BDDC and FETI-DP Deluxe Solvers for Decoupled Cardiac Reaction-Diffusion Models","authors":"N. Huynh, L. Pavarino, S. Scacchi","doi":"10.23967/WCCM-ECCOMAS.2020.294","DOIUrl":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.294","url":null,"abstract":"Abstract. Two parallel Newton-Krylov Balancing Domain Decomposition by Constraints (BDDC) and Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) solvers are analyzed and numerically studied for implicit time discretizations of the Bidomain equations. This system models the cardiac bioelectrical activity and it consists of a degenerate system of two non-linear reaction-diffusion partial differential equations (PDEs), coupled with a stiff system of ordinary differential equations (ODEs). A non-linear algebraic system arises from a finite element discretization in space and an implicit discretization in time, based on decoupling the PDEs from the ODEs. Within each Newton iteration, the Jacobian linear system is solved by a Krylov method, accelerated by BDDC or FETI-DP preconditioners, both augmented with the recently introduced deluxe scaling of the dual variables. Several parallel numerical tests on Linux clusters confirm a novel polylogarithmic convergence rate bound, showing scalability and quasi-optimality of the proposed solvers.","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115738446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-11DOI: 10.23967/WCCM-ECCOMAS.2020.152
B. Guidio, C. Jeong
. There is a need to estimate complex seismic input motions in a near-surface domain, without resorting to the hypocenter, from restricted seismic measurement data. Thus, engineers can replicate responses within structures and soils after an earthquake occurrence by using the estimated seismic in-puts and evaluate the impact of an earthquake on the built environment. To date, there has been no robust numerical method that can identify complex seismic input motions in a solid, truncated by a wave-absorbing boundary condition. Existing methods are limited to large-scale seismic-source inversion approaches and deconvolution. To fill this gap, a new inversion modeling method is presented for reconstructing complex, incoherent SH wave input motions in a two-dimensional (2D) domain that is truncated by a wave-absorbing boundary condition (WABC), using a partial differential equation (PDE)-constrained optimization method. In a set of numerical examples, targeted, dynamic traction at the WABC mimics seismic incident wavefield. The discretize-then-optimize (DTO) approach is used in the mathematical modeling and numerical implementation, and the finite element method (FEM) is applied to solve state and adjoint problems. The numerical results indicate that the presented inversion algorithm can reconstruct incident, inclined plane waves. Second, the accuracy of our inversion solver is not compromised by the material complexity of a background domain. Lastly, the minimizer suffers less from solution multiplicity when it identifies lower frequency traction (e.g., a realistic seismic
{"title":"Full-Waveform Inversion of SH-Wave Input Motions in a Near-Surface 2D Domain","authors":"B. Guidio, C. Jeong","doi":"10.23967/WCCM-ECCOMAS.2020.152","DOIUrl":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.152","url":null,"abstract":". There is a need to estimate complex seismic input motions in a near-surface domain, without resorting to the hypocenter, from restricted seismic measurement data. Thus, engineers can replicate responses within structures and soils after an earthquake occurrence by using the estimated seismic in-puts and evaluate the impact of an earthquake on the built environment. To date, there has been no robust numerical method that can identify complex seismic input motions in a solid, truncated by a wave-absorbing boundary condition. Existing methods are limited to large-scale seismic-source inversion approaches and deconvolution. To fill this gap, a new inversion modeling method is presented for reconstructing complex, incoherent SH wave input motions in a two-dimensional (2D) domain that is truncated by a wave-absorbing boundary condition (WABC), using a partial differential equation (PDE)-constrained optimization method. In a set of numerical examples, targeted, dynamic traction at the WABC mimics seismic incident wavefield. The discretize-then-optimize (DTO) approach is used in the mathematical modeling and numerical implementation, and the finite element method (FEM) is applied to solve state and adjoint problems. The numerical results indicate that the presented inversion algorithm can reconstruct incident, inclined plane waves. Second, the accuracy of our inversion solver is not compromised by the material complexity of a background domain. Lastly, the minimizer suffers less from solution multiplicity when it identifies lower frequency traction (e.g., a realistic seismic","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123146453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-11DOI: 10.23967/WCCM-ECCOMAS.2020.036
H. Bai, D. Lemosse, Y. Aoues, J. Cherfils, C. Huang
{"title":"A Probabilistic Approach In Long-Term Fatigue Analysis Of Onshore Wind Turbine Tower","authors":"H. Bai, D. Lemosse, Y. Aoues, J. Cherfils, C. Huang","doi":"10.23967/WCCM-ECCOMAS.2020.036","DOIUrl":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.036","url":null,"abstract":"","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133010795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-11DOI: 10.23967/WCCM-ECCOMAS.2020.300
F. Bonizzoni, Davide Pradovera
We study a PDE-constrained optimization problem, where the shape and liner material of the na-celle of an aircraft engine are optimized in order to minimize the noise radiated by the engine. More precisely, the acoustic problem is modeled by the Helmholtz equation with varying wavenumber k on an exterior domain. A model reduction strategy is employed to alleviate the cost of the design optimization: the minimal rational interpolation technique is used to construct a surrogate (w.r.t. k ) for the quantity of interest at fixed shape/material parameter values, and a parametric model order reduction approach is employed to combine surrogates at different shape/material designs, resulting in a nonintrusive methodology. Numerical experiments for shape and shape/material optimization are provided, to showcase the effectiveness of the presented methodology.
{"title":"Shape Optimization for a Noise Reduction Problem by Non-Intrusive Parametric Reduced Modeling","authors":"F. Bonizzoni, Davide Pradovera","doi":"10.23967/WCCM-ECCOMAS.2020.300","DOIUrl":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.300","url":null,"abstract":"We study a PDE-constrained optimization problem, where the shape and liner material of the na-celle of an aircraft engine are optimized in order to minimize the noise radiated by the engine. More precisely, the acoustic problem is modeled by the Helmholtz equation with varying wavenumber k on an exterior domain. A model reduction strategy is employed to alleviate the cost of the design optimization: the minimal rational interpolation technique is used to construct a surrogate (w.r.t. k ) for the quantity of interest at fixed shape/material parameter values, and a parametric model order reduction approach is employed to combine surrogates at different shape/material designs, resulting in a nonintrusive methodology. Numerical experiments for shape and shape/material optimization are provided, to showcase the effectiveness of the presented methodology.","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125511254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-11DOI: 10.23967/WCCM-ECCOMAS.2020.187
R. Lichtenheldt, S. Ono, L. Stubbig
Abstract. In planetary exploration, testing under the actual mission conditions is inherently not possible. Hence, simulation campaigns complement ground test campaigns. This specially applies to surface missions that include the complex behaviour of soils under non-terrestrial gravitation. Increasingly ambitious mission goals made large simulation campaigns with very precise particle models necessary for the simulation of soil interaction. Thus, to limit the amount of time and the computation hardware needed, DLR developed the particle simulation tool “Sir partsival”. This tool does not only speed up simulations by usage of GPU computing, but also integrates the institute’s experience in modelling of soil on Earth and beyond. Using partsival it was possible to speed up simulations by more than a factor of ten and thus conduct large simulation campaigns. Two examples are shown: a large, on-going validation campaign of DEM for wheel simulations, and the completed traction optimization for the MMX rover wheel.
{"title":"Large Scale Discrete Element Simulation Campaigns – Simulating Extraterrestrial Soils in Partsival","authors":"R. Lichtenheldt, S. Ono, L. Stubbig","doi":"10.23967/WCCM-ECCOMAS.2020.187","DOIUrl":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.187","url":null,"abstract":"Abstract. In planetary exploration, testing under the actual mission conditions is inherently not possible. Hence, simulation campaigns complement ground test campaigns. This specially applies to surface missions that include the complex behaviour of soils under non-terrestrial gravitation. Increasingly ambitious mission goals made large simulation campaigns with very precise particle models necessary for the simulation of soil interaction. Thus, to limit the amount of time and the computation hardware needed, DLR developed the particle simulation tool “Sir partsival”. This tool does not only speed up simulations by usage of GPU computing, but also integrates the institute’s experience in modelling of soil on Earth and beyond. Using partsival it was possible to speed up simulations by more than a factor of ten and thus conduct large simulation campaigns. Two examples are shown: a large, on-going validation campaign of DEM for wheel simulations, and the completed traction optimization for the MMX rover wheel.","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121070598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-11DOI: 10.23967/WCCM-ECCOMAS.2020.089
Florian Theobald, K. Schäfer, Jiasheng Yang, B. Frohnapfel, M. Stripf, P. Forooghi, A. Stroh
In the present study we investigate an incompressible turbulent channel flow with heat transfer at Reτ = 180 with a deterministic surface topography consisting of truncated cones. Two solvers for each of the two boundary handling strategies are considered. With Nek5000 and OpenFOAM the influence of the roughness elements is directly accounted for by an unstructured body fitted mesh, whereas Xcompact3d and SIMSON utilize the immersed boundary method (IBM) to deal with the 3D geometry. The main focus of this work is on an evaluation of the usability of the IBM and a comparison of the parallel performance of the different solvers. Since usability is an ambiguous definition, various quantities are compared: global statistics like Nusselt number and friction coefficient, one-dimensional wall-normal profiles for first and second order statistics, as well as three-dimensional averages over roughness sections. In addition, the computational effort for each method is documented.
{"title":"Comparison of Different Solvers and Geometry Representation Strategies for Dns of Rough Wall Channel Flow","authors":"Florian Theobald, K. Schäfer, Jiasheng Yang, B. Frohnapfel, M. Stripf, P. Forooghi, A. Stroh","doi":"10.23967/WCCM-ECCOMAS.2020.089","DOIUrl":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.089","url":null,"abstract":"In the present study we investigate an incompressible turbulent channel flow with heat transfer at Reτ = 180 with a deterministic surface topography consisting of truncated cones. Two solvers for each of the two boundary handling strategies are considered. With Nek5000 and OpenFOAM the influence of the roughness elements is directly accounted for by an unstructured body fitted mesh, whereas Xcompact3d and SIMSON utilize the immersed boundary method (IBM) to deal with the 3D geometry. The main focus of this work is on an evaluation of the usability of the IBM and a comparison of the parallel performance of the different solvers. Since usability is an ambiguous definition, various quantities are compared: global statistics like Nusselt number and friction coefficient, one-dimensional wall-normal profiles for first and second order statistics, as well as three-dimensional averages over roughness sections. In addition, the computational effort for each method is documented.","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"223 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131693907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-11DOI: 10.23967/WCCM-ECCOMAS.2020.130
H. Grimm‐Strele, M. Kabel, H. Andrä, S. Staub, J. Lienhard, T. Schweiger, O. Herd
{"title":"Efficient Characterization and Modelling of the Nonlinear Behaviour of LFT for Crash Simulations","authors":"H. Grimm‐Strele, M. Kabel, H. Andrä, S. Staub, J. Lienhard, T. Schweiger, O. Herd","doi":"10.23967/WCCM-ECCOMAS.2020.130","DOIUrl":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.130","url":null,"abstract":"","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"154 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122051262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}