A lift-offset system for a single-rotor-type compound helicopter is proposed to improve the aerodynamic performance in high-speed flight. The proposed system utilizes the differential flap deflections on the fixed wings to produce a rolling moment, which is counteracted by the single main rotor, causing the rotor to operate in a lift-offset state. The performance of the proposed system is evaluated through numerical simulations. At first, the effect of lift offset with regard to lift-share ratio on the rotor performance is investigated. Then, the impact of lift offset due to the differential flaps on the overall effective lift-to-drag ratio is studied. The results show that the lift offset significantly improves the rotor performance and the overall effective lift-to-drag ratios, especially at larger rotor lift-share ratios. The overall effective lift-to-drag ratio increases by 10% due to the differential flaps compared to the zero-flap deflections. It is concluded that the lift offset due to the differential flaps achieves more efficient cruising flight for a single-rotor-type compound helicopter.
The study extends the investigation of the fixed-pitch small-scale propeller in the ceiling effect to forward flight conditions at different propeller incidence angles. Force-based experiments, phase-locked particle image velocimetry (PIV), and surface oil flow visualization were conducted on two APC propellers at the University of Dayton Low Speed Wind Tunnel. For propellers in edgewise flight, the power required at constant thrust decreases at small advance ratios for each and then increases with a further increase in the advance ratio. Tilting the propeller forward reduces the ceiling effect benefits in both thrust and power, particularly at higher advance ratios. Performance similarity in the propeller ceiling effect at different is observed, and a performance prediction method is proposed. Phase-locked PIV showed an increase in the propeller inflow angle in the ceiling effect at small advance ratios, resulting in higher thrust generation. This effect reduces with an increase in the advance ratio due to minimized interactions with the ceiling plate. Hence, the measured propeller in-ceiling-effect (ICE) propeller performance cannot represent the propeller ICE performance at a higher forward flight speed. Additionally, PIV and surface flow visualization indicated the presence of a stagnation point on the ceiling plate near the trailing side of the propeller disk at higher advance ratios, leading to a reduction in propeller thrust generation.
Distributed electric propulsion in aircraft design is a concept that involves placing multiple electric motors across the aircraft’s airframe. Such a system has the potential to contribute to sustainable aviation by significantly reducing greenhouse gas emissions, minimizing noise pollution, improving fuel efficiency, and encouraging the use of cleaner energy sources. This paper investigates the impact and relationship of turbo-electric propulsion component characteristics with three performance quantities of interest: lift-to-drag ratio, operating empty weight, and fuel burn. Using the small- and medium-range “DRAGON” aircraft concept, we performed design exploration enabled through the explainable surrogate model strategy. This work uses Shapley additive explanations to illuminate the dependencies of these critical performance metrics on specific turbo-electric propulsion component characteristics, offering valuable insights to inform future advancements in electric propulsion technology. Through global sensitivity analysis, the study reveals a significant impact of electrical power unit (EPU) power density on lift-to-drag ratio, alongside notable roles played by EPU-specific power and applied voltage. For operating empty weight, EPU-specific power and voltage are highlighted as critical factors, while turboshaft power-specific fuel consumption notably influences fuel burn. The analysis concludes by exploring the implications of the insights for the future development of turbo-electric propulsion technology.
This paper presents a stochastic approach for modeling the turbulent airwake suitable for real-time simulation of the helicopter–ship dynamic interface. This approach relies on the measurements of unsteady loads collected during a wind-tunnel test campaign with a scaled helicopter operating over the deck of simple frigate shape 1. Power spectral densities of the measured aerodynamic loads combined with the estimated frequency response functions are used to find, through an optimization algorithm, a model of airwake spectra over the range of frequencies which mainly affects the pilot workload during shipboard operations. Then, a set of autoregressive filters is designed for every particular rotor position and wind-over-deck condition, so that when driven by white noise, the spectrum of the output will reproduce those obtained from the optimization. This approach is applied to three different tested wind directions and three rotor positions by implementing the autoregressive filters into the multibody model of the experimental rotor. Frequency response analysis of the aerodynamic loads demonstrates that the turbulent airwake model obtained from the experimental data can predict the unsteadiness of loads comparable to those measured in the wind tunnel across the bandwidth of interest for pilot activities. The identified airwake models could be applied to a full-scale model to simulate the unsteady loads effectively experienced by the helicopter during a ship landing flight.
An airfoil design framework is introduced in which boundary-layer integral parameters serve as the driving design mechanism. The method consists of generating a parameterized pressure distribution capable of producing the desired boundary-layer characteristics for inverse design use. Additionally, by deduction from the Squire–Young theory, the method allows for the determination of the pressure distribution that results in the minimum theoretical drag. To assess this design framework, several airfoils were developed based on the mission requirements of the RQ-4B Global Hawk aircraft. Numerical results obtained using a viscous-inviscid solver of the integral boundary layer and Euler equations showed that the optimized airfoils achieved profile drag reductions of 9.06 and 6.00%, respectively, for and design points. A validation experimental campaign was also performed using the optimized CA5427-72 airfoil. The acquired data produced the expected pressure distribution characteristics and aerodynamic performance improvements, typifying the efficacy of the design framework.