Casey J Wagnon, Brandon T Bestelmeyer, Robert L Schooley
Environmental change is expected to alter trophic interactions and food web dynamics with consequences for ecosystem structure, function and stability. However, the mechanisms by which environmental change influences top-down and bottom-up processes are poorly documented. Here, we examined how environmental change caused by shrub encroachment affects trophic interactions in a dryland. The predator-prey system included an apex canid predator (coyote; Canis latrans), an intermediate canid predator (kit fox; Vulpes macrotis), and two herbivorous lagomorph prey (black-tailed jackrabbit, Lepus californicus; and desert cottontail, Sylvilagus audubonii) in the Chihuahuan Desert of New Mexico, USA. We evaluated alternative hypotheses for how shrub encroachment could affect habitat use and trophic interactions, including (i) modifying bottom-up processes by reducing herbaceous forage, (ii) modifying top-down processes by changing canid space use or the landscape of fear experienced by lagomorph prey and (iii) altering intraguild interactions between the dominant coyote and the intermediate kit fox. We used 7 years of camera trap data collected across grassland-to-shrubland gradients under variable precipitation to test our a priori hypotheses within a structural equation modelling framework. Lagomorph prey responded strongly to bottom-up pulses during years of high summer precipitation, but only at sites with moderate to high shrub cover. This outcome is inconsistent with the hypothesis that bottom-up effects should be strongest in grasslands because of greater herbaceous food resources. Instead, this interaction likely reflects changes in the landscape of fear because perceived predation risk in lagomorphs is reduced in shrub-dominated habitats. Shrub encroachment did not directly affect predation pressure on lagomorphs by changing canid site use intensity. However, site use intensity of both canid species was positively associated with jackrabbits, indicating additional bottom-up effects. Finally, we detected interactions between predators in which coyotes restricted space use of kit foxes, but these intraguild interactions also depended on shrub encroachment. Our findings demonstrate how environmental change can affect trophic interactions beyond traditional top-down and bottom-up processes by altering perceived predation risk in prey. These results have implications for understanding spatial patterns of herbivory and the feedbacks that reinforce shrubland states in drylands worldwide.
{"title":"Dryland state transitions alter trophic interactions in a predator-prey system.","authors":"Casey J Wagnon, Brandon T Bestelmeyer, Robert L Schooley","doi":"10.1111/1365-2656.14197","DOIUrl":"https://doi.org/10.1111/1365-2656.14197","url":null,"abstract":"<p><p>Environmental change is expected to alter trophic interactions and food web dynamics with consequences for ecosystem structure, function and stability. However, the mechanisms by which environmental change influences top-down and bottom-up processes are poorly documented. Here, we examined how environmental change caused by shrub encroachment affects trophic interactions in a dryland. The predator-prey system included an apex canid predator (coyote; Canis latrans), an intermediate canid predator (kit fox; Vulpes macrotis), and two herbivorous lagomorph prey (black-tailed jackrabbit, Lepus californicus; and desert cottontail, Sylvilagus audubonii) in the Chihuahuan Desert of New Mexico, USA. We evaluated alternative hypotheses for how shrub encroachment could affect habitat use and trophic interactions, including (i) modifying bottom-up processes by reducing herbaceous forage, (ii) modifying top-down processes by changing canid space use or the landscape of fear experienced by lagomorph prey and (iii) altering intraguild interactions between the dominant coyote and the intermediate kit fox. We used 7 years of camera trap data collected across grassland-to-shrubland gradients under variable precipitation to test our a priori hypotheses within a structural equation modelling framework. Lagomorph prey responded strongly to bottom-up pulses during years of high summer precipitation, but only at sites with moderate to high shrub cover. This outcome is inconsistent with the hypothesis that bottom-up effects should be strongest in grasslands because of greater herbaceous food resources. Instead, this interaction likely reflects changes in the landscape of fear because perceived predation risk in lagomorphs is reduced in shrub-dominated habitats. Shrub encroachment did not directly affect predation pressure on lagomorphs by changing canid site use intensity. However, site use intensity of both canid species was positively associated with jackrabbits, indicating additional bottom-up effects. Finally, we detected interactions between predators in which coyotes restricted space use of kit foxes, but these intraguild interactions also depended on shrub encroachment. Our findings demonstrate how environmental change can affect trophic interactions beyond traditional top-down and bottom-up processes by altering perceived predation risk in prey. These results have implications for understanding spatial patterns of herbivory and the feedbacks that reinforce shrubland states in drylands worldwide.</p>","PeriodicalId":14934,"journal":{"name":"Journal of Animal Ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica Castellanos-Labarcena, Dirk Steinke, Sarah J Adamowicz
Knowledge of global patterns of genetic diversity is essential for biodiversity conservation as this parameter describes the ability of a species to respond to environmental changes. Ichneumonoids parasitoid wasps are among the few taxa showing an anomalous latitudinal diversity gradient. Using the largest georeferenced molecular dataset for this group, we used a macrogenetics approach to examine latitudinal patterns and predictors of intraspecific genetic diversity. We calculated the mean nucleotide diversity of mitochondrial DNA barcode sequences at three geographic levels: grid cells, latitudinal bands and climatic zones. Nucleotide diversity values were consistently higher at northern temperate latitudes, peaking at 50°. We found a positive but weak relationship between intraspecific diversity and the latitude, between intra- and interspecific diversity, and a positive effect of the temperature range. Examining the spatial relationship between different levels of biodiversity and its drivers is particularly relevant considering climate change and its impact on species distribution. Yet, in insects, it has been challenging to integrate ecological, evolutionary and geographical components when analysing the processes leading to species richness gradients.
了解遗传多样性的全球模式对保护生物多样性至关重要,因为这一参数描述了物种应对环境变化的能力。Ichneumonoids寄生蜂是少数显示出异常纬度多样性梯度的类群之一。利用该类群最大的地理参照分子数据集,我们采用宏遗传学方法研究了种内遗传多样性的纬度模式和预测因素。我们计算了线粒体 DNA 条形码序列在三个地理层次上的平均核苷酸多样性:网格单元、纬度带和气候带。核苷酸多样性值在北温带纬度一直较高,在 50° 达到峰值。我们发现,种内多样性与纬度、种内多样性与种间多样性之间存在正向但微弱的关系,温度范围也有正向影响。考虑到气候变化及其对物种分布的影响,研究不同生物多样性水平及其驱动因素之间的空间关系尤为重要。然而,对于昆虫来说,在分析物种丰富度梯度的形成过程时,将生态、进化和地理因素结合起来一直是一个挑战。
{"title":"Anomalous latitudinal gradients in parasitoid wasp diversity-Hotspots in regions with larger temperature range.","authors":"Jessica Castellanos-Labarcena, Dirk Steinke, Sarah J Adamowicz","doi":"10.1111/1365-2656.14196","DOIUrl":"https://doi.org/10.1111/1365-2656.14196","url":null,"abstract":"<p><p>Knowledge of global patterns of genetic diversity is essential for biodiversity conservation as this parameter describes the ability of a species to respond to environmental changes. Ichneumonoids parasitoid wasps are among the few taxa showing an anomalous latitudinal diversity gradient. Using the largest georeferenced molecular dataset for this group, we used a macrogenetics approach to examine latitudinal patterns and predictors of intraspecific genetic diversity. We calculated the mean nucleotide diversity of mitochondrial DNA barcode sequences at three geographic levels: grid cells, latitudinal bands and climatic zones. Nucleotide diversity values were consistently higher at northern temperate latitudes, peaking at 50°. We found a positive but weak relationship between intraspecific diversity and the latitude, between intra- and interspecific diversity, and a positive effect of the temperature range. Examining the spatial relationship between different levels of biodiversity and its drivers is particularly relevant considering climate change and its impact on species distribution. Yet, in insects, it has been challenging to integrate ecological, evolutionary and geographical components when analysing the processes leading to species richness gradients.</p>","PeriodicalId":14934,"journal":{"name":"Journal of Animal Ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}