Mariana de Fátima Albuquerque Pereira, Larissa Gabriela Morais de Ávila, Bruna Cristina Dos Santos Cruz, Lucas Filipe Almeida, Jordana Macedo Simões, Bruno Campos Silva, Ananda Pereira Aguilar, Leandro Licursi de Oliveira, Reggiani Vilela Gonçalves, Andréa de Oliveira Barros Ribon, Tiago Antônio de Oliveira Mendes, Maria do Carmo Gouveia Peluzio
Aims: Salmonellosis, a major global cause of diarrheal diseases, significantly impacts the intestinal microbiome. Probiotic-rich beverages, such as kefir, are increasingly utilized as alternative health-promoting beverages associated with various microbiota benefits. This study investigated the repercussions of daily consumption of household-produced milk kefir on Salmonella enterica serovar Typhimurium infection in C57BL-6 mice.
Methods and results: Kefir consumption pre-infection reduced the presence of inflammatory cells in the colon and altered the cytokine profile by reducing IL-10 and increasing IFN-γ. Despite reducing intestinal inflammation, kefir intake did not yield a prompt response to an acute infection caused by the aggressive pathogen Salmonella. This contributed to increased mortality in the mice, evidenced by higher fecal Salmonella counts post-infection. Metabarcoding analysis demonstrated that the use of kefir before infection increases butyric acid by the higher abundance of Lachnospiraceae and Prevotellaceae families and genus in feces, coupled with an increase in Muribaculaceae family and Bacteroides genus among infected kefir-treated mice. While kefir hinted at microbiota alterations reducing enterobacteria (Helicobacter), decrease IL-10, and increased IFN-γ, butyric acid on pre-infection, the beverage potentially facilitated the systemic translocation of pathogens, intensifying the infection's severity by altering the immune response.
Conclusions: The use of kefir in the dosage of 10% w/v (109 CFU), for acute infections with Salmonella Typhimurium, may not be enough to combat the infection and worsen the prognosis, leaving the intestine less inflamed, favoring the replication and translocation of the pathogen. These findings underscore the importance of prudently evaluating the widespread use of probiotics and probiotic-rich beverages, especially during acute infections, given their potential association with adverse effects during these diseases.
{"title":"Daily intake of household-produced milk kefir on Salmonella Typhimurium infection in C57BL/6 mice: mortality, microbiota modulation, and immunological implications.","authors":"Mariana de Fátima Albuquerque Pereira, Larissa Gabriela Morais de Ávila, Bruna Cristina Dos Santos Cruz, Lucas Filipe Almeida, Jordana Macedo Simões, Bruno Campos Silva, Ananda Pereira Aguilar, Leandro Licursi de Oliveira, Reggiani Vilela Gonçalves, Andréa de Oliveira Barros Ribon, Tiago Antônio de Oliveira Mendes, Maria do Carmo Gouveia Peluzio","doi":"10.1093/jambio/lxae249","DOIUrl":"10.1093/jambio/lxae249","url":null,"abstract":"<p><strong>Aims: </strong>Salmonellosis, a major global cause of diarrheal diseases, significantly impacts the intestinal microbiome. Probiotic-rich beverages, such as kefir, are increasingly utilized as alternative health-promoting beverages associated with various microbiota benefits. This study investigated the repercussions of daily consumption of household-produced milk kefir on Salmonella enterica serovar Typhimurium infection in C57BL-6 mice.</p><p><strong>Methods and results: </strong>Kefir consumption pre-infection reduced the presence of inflammatory cells in the colon and altered the cytokine profile by reducing IL-10 and increasing IFN-γ. Despite reducing intestinal inflammation, kefir intake did not yield a prompt response to an acute infection caused by the aggressive pathogen Salmonella. This contributed to increased mortality in the mice, evidenced by higher fecal Salmonella counts post-infection. Metabarcoding analysis demonstrated that the use of kefir before infection increases butyric acid by the higher abundance of Lachnospiraceae and Prevotellaceae families and genus in feces, coupled with an increase in Muribaculaceae family and Bacteroides genus among infected kefir-treated mice. While kefir hinted at microbiota alterations reducing enterobacteria (Helicobacter), decrease IL-10, and increased IFN-γ, butyric acid on pre-infection, the beverage potentially facilitated the systemic translocation of pathogens, intensifying the infection's severity by altering the immune response.</p><p><strong>Conclusions: </strong>The use of kefir in the dosage of 10% w/v (109 CFU), for acute infections with Salmonella Typhimurium, may not be enough to combat the infection and worsen the prognosis, leaving the intestine less inflamed, favoring the replication and translocation of the pathogen. These findings underscore the importance of prudently evaluating the widespread use of probiotics and probiotic-rich beverages, especially during acute infections, given their potential association with adverse effects during these diseases.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marwa I Abd El-Hamid, Rania M S El-Malt, H S Al-Khalaifah, Afaf Al-Nasser, Sara T Elazab, Asmaa Basiony, Amira M Ali, Dalia I Mohamed, Mohamed A Nassan, Doaa Ibrahim
Aims: This study aimed to explore the effectiveness of dietary citronellol, thymol, and trans-cinnamaldehyde (CTC) essential oils blend on broilers' growth performance, immunity, intestinal microbial count, gut integrity, and resistance against Clostridium perfringens utilizing the necrotic enteritis (NE) challenge model.
Methods and results: A total of 200 Ross 308 male broiler chicks received either a control diet or diet supplemented with three graded levels of CTC blend, including 300, 600, and 900 mg of CTC blend/kg diet and experimentally infected with C. perfringens strain at 23 days of age. Herein, dietary CTC blend fortifications significantly improved the broilers' growth performance, which was supported by upregulating the expression levels of MUC-2, occludin, and JAM-2 genes. Moreover, dietary CTC blend inclusion significantly enhanced the levels of blood phagocytic percentage and serum IgA, IgG, and MPO, and reduced the values of serum CRP, and NO at 5 days pre-infection, 10-, and 15 days post-infection (dpi) with C. perfringens. At 15 dpi, CTC blend inclusion significantly reduced the intestinal digesta pH, coliforms and C. perfringens loads, and the expression levels of genes related to C. perfringens virulence (cpe, cnaA, and nanI), proinflammatory cytokines (IL-1β and TNF-α), and chemokines (CCL20), in addition to increasing the count of beneficial total Lactobacillus and total aerobic bacteria, and the expression levels of genes related to anti-inflammatory cytokines (IL-10) and chemokines (AvBD6 and AvBD612).
Conclusion: Our results point to the growth-provoking, immunostimulant, antibacterial, anti-inflammatory, and antivirulence characteristics of the CTC blend, which improves the broilers' resistance to C. perfringens and ameliorates the negative impacts of NE.
{"title":"Exploring the interactive impacts of citronellol, thymol, and trans-cinnamaldehyde in broilers: moving toward an improved performance, immunity, gastrointestinal integrity, and Clostridium perfringens resistance.","authors":"Marwa I Abd El-Hamid, Rania M S El-Malt, H S Al-Khalaifah, Afaf Al-Nasser, Sara T Elazab, Asmaa Basiony, Amira M Ali, Dalia I Mohamed, Mohamed A Nassan, Doaa Ibrahim","doi":"10.1093/jambio/lxae206","DOIUrl":"10.1093/jambio/lxae206","url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to explore the effectiveness of dietary citronellol, thymol, and trans-cinnamaldehyde (CTC) essential oils blend on broilers' growth performance, immunity, intestinal microbial count, gut integrity, and resistance against Clostridium perfringens utilizing the necrotic enteritis (NE) challenge model.</p><p><strong>Methods and results: </strong>A total of 200 Ross 308 male broiler chicks received either a control diet or diet supplemented with three graded levels of CTC blend, including 300, 600, and 900 mg of CTC blend/kg diet and experimentally infected with C. perfringens strain at 23 days of age. Herein, dietary CTC blend fortifications significantly improved the broilers' growth performance, which was supported by upregulating the expression levels of MUC-2, occludin, and JAM-2 genes. Moreover, dietary CTC blend inclusion significantly enhanced the levels of blood phagocytic percentage and serum IgA, IgG, and MPO, and reduced the values of serum CRP, and NO at 5 days pre-infection, 10-, and 15 days post-infection (dpi) with C. perfringens. At 15 dpi, CTC blend inclusion significantly reduced the intestinal digesta pH, coliforms and C. perfringens loads, and the expression levels of genes related to C. perfringens virulence (cpe, cnaA, and nanI), proinflammatory cytokines (IL-1β and TNF-α), and chemokines (CCL20), in addition to increasing the count of beneficial total Lactobacillus and total aerobic bacteria, and the expression levels of genes related to anti-inflammatory cytokines (IL-10) and chemokines (AvBD6 and AvBD612).</p><p><strong>Conclusion: </strong>Our results point to the growth-provoking, immunostimulant, antibacterial, anti-inflammatory, and antivirulence characteristics of the CTC blend, which improves the broilers' resistance to C. perfringens and ameliorates the negative impacts of NE.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matilde Kratter, Marzia Beccaccioli, Ylenia Vassallo, Francesca Benedetti, Giancarlo La Penna, Anacleto Proietti, Gianluca Zanellato, Luigi Faino, Angela Cirigliano, Fiona Neisje de Kruif, Maria Cristina Tomassetti, Marco Rossi, Massimo Reverberi, Andrea Quagliariello, Teresa Rinaldi
Aims: Hypogeal environments with cultural heritage interest pose a real challenge for their preservation and conservation. The ancient Etruscan Necropolis of Tarquinia, Italy, consists of 200 tombs decorated with extraordinary mural paintings, of great artistic and historical value. Since the beginning of the restoration campaign in 2016, a regular microbiological survey has been performed in the Tomba degli Scudi. The aim of this study was to investigate the nature of an expansion of black spots on the pictorial layers recently observed.
Methods and results: To determine the origin of the black spots in the atrium chamber of the Tomba degli Scudi, the fungal community was sampled using various techniques: cellulose discs, swabs, and nylon membranes and investigated by a multi-analytical approach. The obtained results suggest that the identified fungal strains (e.g. Gliomastix murorum and Pseudogymnoascus pannorum) are common to many subterranean environments around the world, such as Lascaux cave.
Conclusions: The continuous and long-term monitoring made it possible to detect alterations at an early stage and assess the harmfulness of different fungal strains. This work is a demonstration of the effectiveness of prevention and monitoring actions within these fragile and valuable environments.
目的:具有文化遗产价值的下地层环境对其保护和保存构成了真正的挑战。意大利塔尔奎尼亚的伊特鲁里亚古墓群由 200 座墓葬组成,这些墓葬装饰着非凡的壁画,具有极高的艺术和历史价值。自 2016 年修复活动开始以来,对 Tomba degli Scudi 进行了定期微生物调查。本研究的目的是调查最近观察到的壁画层上黑斑扩大的性质:为了确定 Tomba degli Scudi 中庭黑斑的来源,使用了多种技术对真菌群落进行了取样:纤维素盘、拭子和尼龙膜,并采用多种分析方法进行了研究。研究结果表明,鉴定出的真菌菌株(如 Gliomastix murorum 和 Pseudogymnoascus pannorum)在世界各地的许多地下环境中都很常见,如拉斯科洞穴:连续和长期的监测使我们能够在早期发现变化,并评估不同真菌菌株的危害性。这项工作证明了在这些脆弱而宝贵的环境中采取预防和监测行动的有效性。
{"title":"Long-term monitoring of the hypogeal Etruscan Tomba degli Scudi, Tarquinia, Italy. Early detection of black spots, investigation of fungal community, and evaluation of their biodeterioration potential.","authors":"Matilde Kratter, Marzia Beccaccioli, Ylenia Vassallo, Francesca Benedetti, Giancarlo La Penna, Anacleto Proietti, Gianluca Zanellato, Luigi Faino, Angela Cirigliano, Fiona Neisje de Kruif, Maria Cristina Tomassetti, Marco Rossi, Massimo Reverberi, Andrea Quagliariello, Teresa Rinaldi","doi":"10.1093/jambio/lxae258","DOIUrl":"10.1093/jambio/lxae258","url":null,"abstract":"<p><strong>Aims: </strong>Hypogeal environments with cultural heritage interest pose a real challenge for their preservation and conservation. The ancient Etruscan Necropolis of Tarquinia, Italy, consists of 200 tombs decorated with extraordinary mural paintings, of great artistic and historical value. Since the beginning of the restoration campaign in 2016, a regular microbiological survey has been performed in the Tomba degli Scudi. The aim of this study was to investigate the nature of an expansion of black spots on the pictorial layers recently observed.</p><p><strong>Methods and results: </strong>To determine the origin of the black spots in the atrium chamber of the Tomba degli Scudi, the fungal community was sampled using various techniques: cellulose discs, swabs, and nylon membranes and investigated by a multi-analytical approach. The obtained results suggest that the identified fungal strains (e.g. Gliomastix murorum and Pseudogymnoascus pannorum) are common to many subterranean environments around the world, such as Lascaux cave.</p><p><strong>Conclusions: </strong>The continuous and long-term monitoring made it possible to detect alterations at an early stage and assess the harmfulness of different fungal strains. This work is a demonstration of the effectiveness of prevention and monitoring actions within these fragile and valuable environments.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aims: Plant-based alternatives to meat and dairy products have become increasingly popular in the UK. Despite a public perception that they have a relatively low microbiological risk, outbreaks of illness have been linked with these foods. This study aimed to assess the microbiological safety and quality of vegan alternatives to dairy and meat products available in England.
Methods and results: Samples were collected between September 2022 and March 2023 from retail, production, and catering premises, and tested for a range of bacterial pathogens and hygiene indicators using standard procedures. A total of 937 samples were tested, of which 92% were of a satisfactory microbiological quality, 3% were borderline, and 5% were unsatisfactory. Those interpreted as unsatisfactory were due to elevated counts of Enterobacteriaceae and Escherichia coli (indicators of poor hygiene) rather than pathogenic microorganisms. Listeria monocytogenes was present in five samples of tofu, all from the same producer (all at counts of <100 CFU g-1), while other Listeria species were detected at counts of <20 CFU g-1 in two burgers and two 'vegan chicken' products. The majority of samples did not have pH and water activity values that would significantly contribute to preventing microbial growth: 62.4% had pH > 5.0 and 82.4% had Aw > 0.94.
Conclusions: The majority of vegan products examined were of a satisfactory quality, but results demonstrate that microbiological control must be maintained using appropriate processing and storage temperatures, and application of a safe length of shelf life.
{"title":"Microbiological quality of vegan alternatives to dairy and meat products in England during 2022-3.","authors":"Caroline Willis, Catherine Startin, Frieda Jorgensen, Lorraine Sadler-Reeves, Heather Aird, Sandra Lai, Corinne Amar","doi":"10.1093/jambio/lxae245","DOIUrl":"10.1093/jambio/lxae245","url":null,"abstract":"<p><strong>Aims: </strong>Plant-based alternatives to meat and dairy products have become increasingly popular in the UK. Despite a public perception that they have a relatively low microbiological risk, outbreaks of illness have been linked with these foods. This study aimed to assess the microbiological safety and quality of vegan alternatives to dairy and meat products available in England.</p><p><strong>Methods and results: </strong>Samples were collected between September 2022 and March 2023 from retail, production, and catering premises, and tested for a range of bacterial pathogens and hygiene indicators using standard procedures. A total of 937 samples were tested, of which 92% were of a satisfactory microbiological quality, 3% were borderline, and 5% were unsatisfactory. Those interpreted as unsatisfactory were due to elevated counts of Enterobacteriaceae and Escherichia coli (indicators of poor hygiene) rather than pathogenic microorganisms. Listeria monocytogenes was present in five samples of tofu, all from the same producer (all at counts of <100 CFU g-1), while other Listeria species were detected at counts of <20 CFU g-1 in two burgers and two 'vegan chicken' products. The majority of samples did not have pH and water activity values that would significantly contribute to preventing microbial growth: 62.4% had pH > 5.0 and 82.4% had Aw > 0.94.</p><p><strong>Conclusions: </strong>The majority of vegan products examined were of a satisfactory quality, but results demonstrate that microbiological control must be maintained using appropriate processing and storage temperatures, and application of a safe length of shelf life.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aims: Extracts of fermented feed obtained via fermentation of marine animal resources with thermophilic Bacillaceae bacteria increase the fecundity of livestock. The intestinal bacterial profiles in response to long-term administration of this extract to pigs were investigated.
Methods and results: Half of a swine farm was supplied with potable water containing an extract of fermented feed for more than 2 years, whereas the other half was supplied with potable water without the extract. Feces from 6-month-old pigs rearing in these two areas were collected. 16S rRNA gene sequencing and isolation of lactic acid bacteria revealed an increase in the D/L-lactate-producing bacterium, Lactobacillus amylovorus, and a decrease in several members of Clostridiales following administration of fermented feed. A lactate-utilizing bacterium, Megasphaera elsdenii, was more abundant in the feces of pigs in the fermented feed group. All representative isolates of M. elsdenii showed rapid utilization of D-lactate relative to L-lactate, and butyrate and valerate were the main products.
Conclusion: The probiotic effect of fermented feed is associated with the modulation of lactate metabolism in the digestive organs of pigs.
目的:通过嗜热芽孢杆菌发酵海洋动物资源获得的发酵饲料提取物可提高家畜的繁殖力。我们对猪长期服用这种提取物后的肠道细菌情况进行了调查:在一个猪场中,一半猪场供应含有发酵饲料提取物的饮用水,为期两年多;另一半猪场供应不含提取物的饮用水。收集了在这两个地区饲养的六个月大的猪的粪便。16S rRNA 基因测序和乳酸菌分离结果显示,使用发酵饲料后,D/L-乳酸菌(淀粉乳杆菌)增加,而梭状芽孢杆菌(Clostridiales)的几种成员减少。发酵饲料组猪粪便中的乳酸利用细菌 Megasphaera elsdenii 数量更多。所有具有代表性的 M. elsdenii 分离物都显示,相对于 L-乳酸盐,D-乳酸盐的利用速度更快,丁酸盐和戊酸盐是主要产物:结论:发酵饲料的益生作用与猪消化器官的乳酸代谢调节有关。
{"title":"Thermophile-fermented feed modulates the gut microbiota related to lactate metabolism in pigs.","authors":"Shota Yoshikawa, Kaede Itaya, Ryo Hoshina, Yukihiro Tashiro, Wataru Suda, Yuichiro Cho, Makiko Matsuura, Chie Shindo, Toshiyuki Ito, Masahira Hattori, Hirokuni Miyamoto, Hiroaki Kodama","doi":"10.1093/jambio/lxae254","DOIUrl":"10.1093/jambio/lxae254","url":null,"abstract":"<p><strong>Aims: </strong>Extracts of fermented feed obtained via fermentation of marine animal resources with thermophilic Bacillaceae bacteria increase the fecundity of livestock. The intestinal bacterial profiles in response to long-term administration of this extract to pigs were investigated.</p><p><strong>Methods and results: </strong>Half of a swine farm was supplied with potable water containing an extract of fermented feed for more than 2 years, whereas the other half was supplied with potable water without the extract. Feces from 6-month-old pigs rearing in these two areas were collected. 16S rRNA gene sequencing and isolation of lactic acid bacteria revealed an increase in the D/L-lactate-producing bacterium, Lactobacillus amylovorus, and a decrease in several members of Clostridiales following administration of fermented feed. A lactate-utilizing bacterium, Megasphaera elsdenii, was more abundant in the feces of pigs in the fermented feed group. All representative isolates of M. elsdenii showed rapid utilization of D-lactate relative to L-lactate, and butyrate and valerate were the main products.</p><p><strong>Conclusion: </strong>The probiotic effect of fermented feed is associated with the modulation of lactate metabolism in the digestive organs of pigs.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jéssyca Freitas-Silva, Roberto Carlos Campos Martins, Carla Monteiro Leal, Simony Carvalho Mendonça, Jefferson Bomfim Silva Cypriano, Walter Martin Roland Oelemann, Fernanda de Avila Abreu, Ana Luisa Andrade-Oliveira, Marcia Giambiagi-deMarval, Marinella Silva Laport
Aims: This study aimed to assess the antimicrobial potential of Bp1-AdE, produced by Bacillus pumilus 64-1, and to investigate its mode of action against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA).
Methods and results: Bp-1AdE, derived from sponge-associated B. pumilus, exhibited bactericidal activity at 1 550 µg ml-1 against S. aureus ATCC29213 and MRSA strains. Light and fluorescence microscopy revealed drastic cell lysis of S. aureus treated with Bp-1AdE. Scanning and transmission electron microscopy suggested that Bp-1AdE disrupts the cytoplasmic membrane. Toxicity assays showed that Bp-1AdE was non-toxic to Tenebrio molitor larvae. Liquid chromatography-mass spectrometry and Global Natural Product Social spectral libraries identified four substances within Bp-1AdE, including aliphatic alcohols [3,4-dipentylhexane-2,5-diol and 1,1'-(4,5-dibutyl-3,6-dimethylcyclohexane-1,2-diyl)bis(ethan-1-one)] and terpenoids (cholic acid and canrenone).
Conclusions: Bp-1AdE demonstrated selective toxicity and bactericidal activity, highlighting its potential for controlling infections caused by multidrug-resistant S. aureus strains.
{"title":"Marine Bacillus pumilus substances exhibit antimicrobial effect on multidrug-resistant Staphylococcus aureus.","authors":"Jéssyca Freitas-Silva, Roberto Carlos Campos Martins, Carla Monteiro Leal, Simony Carvalho Mendonça, Jefferson Bomfim Silva Cypriano, Walter Martin Roland Oelemann, Fernanda de Avila Abreu, Ana Luisa Andrade-Oliveira, Marcia Giambiagi-deMarval, Marinella Silva Laport","doi":"10.1093/jambio/lxae260","DOIUrl":"10.1093/jambio/lxae260","url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to assess the antimicrobial potential of Bp1-AdE, produced by Bacillus pumilus 64-1, and to investigate its mode of action against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA).</p><p><strong>Methods and results: </strong>Bp-1AdE, derived from sponge-associated B. pumilus, exhibited bactericidal activity at 1 550 µg ml-1 against S. aureus ATCC29213 and MRSA strains. Light and fluorescence microscopy revealed drastic cell lysis of S. aureus treated with Bp-1AdE. Scanning and transmission electron microscopy suggested that Bp-1AdE disrupts the cytoplasmic membrane. Toxicity assays showed that Bp-1AdE was non-toxic to Tenebrio molitor larvae. Liquid chromatography-mass spectrometry and Global Natural Product Social spectral libraries identified four substances within Bp-1AdE, including aliphatic alcohols [3,4-dipentylhexane-2,5-diol and 1,1'-(4,5-dibutyl-3,6-dimethylcyclohexane-1,2-diyl)bis(ethan-1-one)] and terpenoids (cholic acid and canrenone).</p><p><strong>Conclusions: </strong>Bp-1AdE demonstrated selective toxicity and bactericidal activity, highlighting its potential for controlling infections caused by multidrug-resistant S. aureus strains.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jordan Shutt-McCabe, Karimunnisa Begum Shaik, Lesley Hoyles, Gareth McVicker
Aims: Klebsiella michiganensis is a medically important bacterium that has been subject to relatively little attention in the literature. Interrogation of sequence data from K. michiganensis strains in our collection has revealed the presence of multiple large plasmids encoding type II toxin-antitoxin (TA) systems. Such TA systems are responsible for mediating a range of phenotypes, including plasmid stability ('addiction') and antibiotic persistence. In this work, we characterize the hipBA TA locus found within the Klebsiella oxytoca species complex (KoSC).
Methods and results: The HipBA TA system is encoded on a plasmid carried by K. michiganensis PS_Koxy4, isolated from an infection outbreak. Employing viability and plasmid stability assays, we demonstrate that PS_Koxy4 HipA is a potent antibacterial toxin and that HipBA is a functional TA module contributing substantially to plasmid maintenance. Further, we provide in silico data comparing HipBA modules across the entire KoSC.
Conclusions: We provide the first evidence of the role of a plasmid-encoded HipBA system in stability of mobile genetic elements and analyse the presence of HipBA across the KoSC. These results expand our knowledge of both a common enterobacterial TA system and a highly medically relevant group of bacteria.
目的:密歇根克雷伯氏菌(Klebsiella michiganensis)是一种在医学上非常重要的细菌,但在文献中受到的关注相对较少。对我们收集的密歇根克雷伯氏菌菌株的序列数据进行分析后发现,其中存在多个编码 II 型毒素-抗毒素(TA)系统的大型质粒。这种 TA 系统负责介导一系列表型,包括质粒稳定性("上瘾")和抗生素持久性。在这项工作中,我们描述了在克雷伯菌种群(KoSC)中发现的 hipBA TA 基因座的特征:HipBA TA 系统编码于从一次感染爆发中分离出的米奇根霍乱克雷伯氏菌 PS_Koxy4 所携带的质粒上。通过活力和质粒稳定性检测,我们证明了 PS_Koxy4 HipA 是一种强效抗菌毒素,HipBA 是一个功能性 TA 模块,对质粒的维持有很大贡献。此外,我们还提供了在整个 KoSC 中比较 HipBA 模块的硅学数据:我们首次证明了质粒编码的 HipBA 系统在移动遗传元件的稳定性中的作用,并分析了整个 KoSC 中 HipBA 的存在。这些结果拓展了我们对常见肠杆菌 TA 系统和高度医学相关细菌群的认识。
{"title":"The plasmid-borne hipBA operon of Klebsiella michiganensis encodes a potent plasmid stabilization system.","authors":"Jordan Shutt-McCabe, Karimunnisa Begum Shaik, Lesley Hoyles, Gareth McVicker","doi":"10.1093/jambio/lxae246","DOIUrl":"10.1093/jambio/lxae246","url":null,"abstract":"<p><strong>Aims: </strong>Klebsiella michiganensis is a medically important bacterium that has been subject to relatively little attention in the literature. Interrogation of sequence data from K. michiganensis strains in our collection has revealed the presence of multiple large plasmids encoding type II toxin-antitoxin (TA) systems. Such TA systems are responsible for mediating a range of phenotypes, including plasmid stability ('addiction') and antibiotic persistence. In this work, we characterize the hipBA TA locus found within the Klebsiella oxytoca species complex (KoSC).</p><p><strong>Methods and results: </strong>The HipBA TA system is encoded on a plasmid carried by K. michiganensis PS_Koxy4, isolated from an infection outbreak. Employing viability and plasmid stability assays, we demonstrate that PS_Koxy4 HipA is a potent antibacterial toxin and that HipBA is a functional TA module contributing substantially to plasmid maintenance. Further, we provide in silico data comparing HipBA modules across the entire KoSC.</p><p><strong>Conclusions: </strong>We provide the first evidence of the role of a plasmid-encoded HipBA system in stability of mobile genetic elements and analyse the presence of HipBA across the KoSC. These results expand our knowledge of both a common enterobacterial TA system and a highly medically relevant group of bacteria.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487325/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim: Fire blight, attributed to the bacterium Erwinia amylovora, significantly damages economically important crops, such as apples and pears. Conventional methods for managing fire blight involve the application of chemical pesticides, such as streptomycin and oxytetracycline. Nevertheless, apprehensions are increasing regarding developing antibiotic and pesticide-resistant strains, compounded by documented instances of plant toxicity. Here, we present that Streptomyces recifensis SN1E1 has exhibited remarkable efficacy in suppressing apple fire blight disease. This study aims to unravel the molecular-level antimicrobial mechanisms employed by the SN1E1 strain.
Methods and results: We identified four antimicrobial-associated biosynthetic gene clusters within the genomics of S. recifensis SN1E1. To validate antimicrobial activity against E. amylovora, knock-out mutants of biosynthetic genes linked to antimicrobial activity were generated using the CRISPR/Cas9 mutagenesis system. Notably, the whiE4 and phzB deficient mutants displayed statistically reduced antibacterial activity against E. amylovora.
Conclusion: This research establishes a foundation for environmental and biological control studies. The potential utilization of environmentally friendly microbial agents derived from the SN1E1 strain holds promise for the biological control of fire blight disease.
{"title":"Genome analysis of Streptomyces recifensis SN1E1 to investigate mechanisms for inhibiting fire blight disease.","authors":"Su In Lee, Da-Ran Kim, Youn-Sig Kwak","doi":"10.1093/jambio/lxae253","DOIUrl":"10.1093/jambio/lxae253","url":null,"abstract":"<p><strong>Aim: </strong>Fire blight, attributed to the bacterium Erwinia amylovora, significantly damages economically important crops, such as apples and pears. Conventional methods for managing fire blight involve the application of chemical pesticides, such as streptomycin and oxytetracycline. Nevertheless, apprehensions are increasing regarding developing antibiotic and pesticide-resistant strains, compounded by documented instances of plant toxicity. Here, we present that Streptomyces recifensis SN1E1 has exhibited remarkable efficacy in suppressing apple fire blight disease. This study aims to unravel the molecular-level antimicrobial mechanisms employed by the SN1E1 strain.</p><p><strong>Methods and results: </strong>We identified four antimicrobial-associated biosynthetic gene clusters within the genomics of S. recifensis SN1E1. To validate antimicrobial activity against E. amylovora, knock-out mutants of biosynthetic genes linked to antimicrobial activity were generated using the CRISPR/Cas9 mutagenesis system. Notably, the whiE4 and phzB deficient mutants displayed statistically reduced antibacterial activity against E. amylovora.</p><p><strong>Conclusion: </strong>This research establishes a foundation for environmental and biological control studies. The potential utilization of environmentally friendly microbial agents derived from the SN1E1 strain holds promise for the biological control of fire blight disease.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johannes B Brandsma, Judith Brinkman, Judith C M Wolkers-Rooijackers, Iris van Swam, Kim van Uitert, Marcel H Zwietering, Eddy J Smid
Aim: To investigate the effect of pyruvate and glucose on leucine transamination and 3-methylbutanal production by Lactococcus lactis, including the comparison with cells possessing glutamate dehydrogenase (GDH) activity.
Methods and results: Lactococcus lactis cells were incubated in chemically defined medium (CDM) with the pH controlled at 5.2 to mimic cheese conditions. Pyruvate supplementation stimulated the production of the key flavour compound 3-methylbutanal by 3-4 times after 72 h of incubation. Concurrently, alanine production increased, demonstrating the involvement of pyruvate in transamination reactions. Glucose-metabolizing cells excreted α-ketoisocaproic acid and produced even 3 times more 3-methylbutanal after 24 h than pyruvate-supplemented cells. Conjugal transfer technique was used to transfer the plasmid pGdh442 carrying the gdh gene encoding for GDH to L. lactis. Introducing GDH did not stimulate the excretion of α-ketoisocaproic acid and the production of 3-methylbutanal.
Conclusions: These results demonstrate that Lactococcus uses pyruvate to transaminate leucine into α-ketoisocaproic acid which supports 3-methylbutanal production. Surprisingly, GDH activity did not stimulate leucine transamination and 3-methylbutanal production.
{"title":"Pyruvate stimulates transamination of leucine into α-ketoisocaproic acid and supports 3-methylbutanal production by Lactococcus lactis.","authors":"Johannes B Brandsma, Judith Brinkman, Judith C M Wolkers-Rooijackers, Iris van Swam, Kim van Uitert, Marcel H Zwietering, Eddy J Smid","doi":"10.1093/jambio/lxae257","DOIUrl":"10.1093/jambio/lxae257","url":null,"abstract":"<p><strong>Aim: </strong>To investigate the effect of pyruvate and glucose on leucine transamination and 3-methylbutanal production by Lactococcus lactis, including the comparison with cells possessing glutamate dehydrogenase (GDH) activity.</p><p><strong>Methods and results: </strong>Lactococcus lactis cells were incubated in chemically defined medium (CDM) with the pH controlled at 5.2 to mimic cheese conditions. Pyruvate supplementation stimulated the production of the key flavour compound 3-methylbutanal by 3-4 times after 72 h of incubation. Concurrently, alanine production increased, demonstrating the involvement of pyruvate in transamination reactions. Glucose-metabolizing cells excreted α-ketoisocaproic acid and produced even 3 times more 3-methylbutanal after 24 h than pyruvate-supplemented cells. Conjugal transfer technique was used to transfer the plasmid pGdh442 carrying the gdh gene encoding for GDH to L. lactis. Introducing GDH did not stimulate the excretion of α-ketoisocaproic acid and the production of 3-methylbutanal.</p><p><strong>Conclusions: </strong>These results demonstrate that Lactococcus uses pyruvate to transaminate leucine into α-ketoisocaproic acid which supports 3-methylbutanal production. Surprisingly, GDH activity did not stimulate leucine transamination and 3-methylbutanal production.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sada M Boyd, Jonathan A Chacon-Barahona, Portia Mira, Debayan Dey, Devyn Chun, Carolyn Xue, Sophia Pulido, Pamela Yeh
Aims: Antibiotic resistance genes (ARGs) in the environment pose significant public health concerns and are influenced by conditions like temperature changes. We previously observed that resistance evolution to gentamicin and colistin affects optimal growth temperatures in Staphylococcus epidermidis isolates. Despite significant phenotype observations, the genetic basis remains unclear. We aim to identify the genetic changes linked to antibiotic resistance evolution that alter optimal growth temperature.
Methods and results: Using whole-genome sequencing, we sequenced the genomes of gentamicin-resistant (GEN-1, GEN-2) and colistin-resistant (COL-4, COL-6) S. epidermidis isolates. Variant analysis with the BV-BRC bioinformatics tool identified genes involved in antibiotic resistance and temperature response. We found 12 genetic variants, including two unique to GEN-2 and one in COL-4. One shared mutation was observed in GEN-1 and GEN-2, and another in COL-4 and COL-6. Five mutations were shared among all isolates related to mobile gene elements, including a transposase IS4 family, two putative transposases, and two transposase-like insertion elements.
Conclusions: Our findings indicate that the same genes involved in gentamicin and colistin resistance, especially those related to mobile genetic elements, may also play a crucial role in temperature response.
{"title":"Genomic characterization of antibiotic-resistant Staphylococcus epidermidis with observed shifts in optimal temperature.","authors":"Sada M Boyd, Jonathan A Chacon-Barahona, Portia Mira, Debayan Dey, Devyn Chun, Carolyn Xue, Sophia Pulido, Pamela Yeh","doi":"10.1093/jambio/lxae252","DOIUrl":"10.1093/jambio/lxae252","url":null,"abstract":"<p><strong>Aims: </strong>Antibiotic resistance genes (ARGs) in the environment pose significant public health concerns and are influenced by conditions like temperature changes. We previously observed that resistance evolution to gentamicin and colistin affects optimal growth temperatures in Staphylococcus epidermidis isolates. Despite significant phenotype observations, the genetic basis remains unclear. We aim to identify the genetic changes linked to antibiotic resistance evolution that alter optimal growth temperature.</p><p><strong>Methods and results: </strong>Using whole-genome sequencing, we sequenced the genomes of gentamicin-resistant (GEN-1, GEN-2) and colistin-resistant (COL-4, COL-6) S. epidermidis isolates. Variant analysis with the BV-BRC bioinformatics tool identified genes involved in antibiotic resistance and temperature response. We found 12 genetic variants, including two unique to GEN-2 and one in COL-4. One shared mutation was observed in GEN-1 and GEN-2, and another in COL-4 and COL-6. Five mutations were shared among all isolates related to mobile gene elements, including a transposase IS4 family, two putative transposases, and two transposase-like insertion elements.</p><p><strong>Conclusions: </strong>Our findings indicate that the same genes involved in gentamicin and colistin resistance, especially those related to mobile genetic elements, may also play a crucial role in temperature response.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}