Pub Date : 2023-04-01DOI: 10.1177/07487304221143483
María Laura Migliori, María Eugenia Goya, Melisa Luciana Lamberti, Francisco Silva, Rosana Rota, Claire Bénard, Diego Andrés Golombek
Circadian rhythms represent an adaptive feature, ubiquitously found in nature, which grants living beings the ability to anticipate daily variations in their environment. They have been found in a multitude of organisms, ranging from bacteria to fungi, plants, and animals. Circadian rhythms are generated by endogenous clocks that can be entrained daily by environmental cycles such as light and temperature. The molecular machinery of circadian clocks includes a transcriptional-translational feedback loop that takes approximately 24 h to complete. Drosophila melanogaster has been a model organism of choice to understand the molecular basis of circadian clocks. However, alternative animal models are also being adopted, each offering their respective experimental advantages. The nematode Caenorhabditis elegans provides an excellent model for genetics and neuro-behavioral studies, which thanks to its ease of use and manipulation, as well as availability of genetic data and mutant strains, is currently used as a novel model for circadian research. Here, we aim to evaluate C. elegans as a model for chronobiological studies, focusing on its strengths and weaknesses while reviewing the available literature. Possible zeitgebers (including light and temperature) are also discussed. Determining the molecular bases and the neural circuitry involved in the central pacemaker of the C. elegans' clock will contribute to the understanding of its circadian system, becoming a novel model organism for the study of diseases due to alterations of the circadian cycle.
{"title":"<i>Caenorhabditis elegans</i> as a Promising Model Organism in Chronobiology.","authors":"María Laura Migliori, María Eugenia Goya, Melisa Luciana Lamberti, Francisco Silva, Rosana Rota, Claire Bénard, Diego Andrés Golombek","doi":"10.1177/07487304221143483","DOIUrl":"https://doi.org/10.1177/07487304221143483","url":null,"abstract":"<p><p>Circadian rhythms represent an adaptive feature, ubiquitously found in nature, which grants living beings the ability to anticipate daily variations in their environment. They have been found in a multitude of organisms, ranging from bacteria to fungi, plants, and animals. Circadian rhythms are generated by endogenous clocks that can be entrained daily by environmental cycles such as light and temperature. The molecular machinery of circadian clocks includes a transcriptional-translational feedback loop that takes approximately 24 h to complete. <i>Drosophila melanogaster</i> has been a model organism of choice to understand the molecular basis of circadian clocks. However, alternative animal models are also being adopted, each offering their respective experimental advantages. The nematode <i>Caenorhabditis elegans</i> provides an excellent model for genetics and neuro-behavioral studies, which thanks to its ease of use and manipulation, as well as availability of genetic data and mutant strains, is currently used as a novel model for circadian research. Here, we aim to evaluate <i>C. elegans</i> as a model for chronobiological studies, focusing on its strengths and weaknesses while reviewing the available literature. Possible zeitgebers (including light and temperature) are also discussed. Determining the molecular bases and the neural circuitry involved in the central pacemaker of the <i>C. elegans</i>' clock will contribute to the understanding of its circadian system, becoming a novel model organism for the study of diseases due to alterations of the circadian cycle.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":"38 2","pages":"131-147"},"PeriodicalIF":3.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9243613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1177/07487304231152275
Ueli Schibler, Charna Dibner, Jürgen Ripperger
119 What a shock when we learned that Steven A. Brown, 52, succumbed to injuries resulting from a crash landing near the airport in Happy Valley-Goose Bay, Canada, on 14 December 2022. Steve, professor of chronobiology and sleep research at the Faculty of Medicine, University of Zürich, was an excellent scientist, a dear friend, a wonderful collaborator, and an incredibly courageous adventurer. His sudden death immediately reminded us of the Billy Joel song: Only the good die young. Steve owned a Piper PA-46 Malibu aircraft that he had to bring to Florida for an annual control and update. In company with his wife Patrycja Paruch, he then piloted his airplane to Nashua, NH, where they visited Steve’s mother. The trip was to continue to Nuuk, Greenland, with an intermediate stop in Goose Bay, Canada, where the tragic incident occurred. Patrycja, a highly successful physics professor at the University of Geneva and a great friend of ours, survived the crash. We would like to express our wishes of a full and prompt recovery and offer our sincere condolences to Patrycja. Our deepest sympathy goes to family members, friends, and colleagues of Steve.
{"title":"Steve Brown.","authors":"Ueli Schibler, Charna Dibner, Jürgen Ripperger","doi":"10.1177/07487304231152275","DOIUrl":"https://doi.org/10.1177/07487304231152275","url":null,"abstract":"119 What a shock when we learned that Steven A. Brown, 52, succumbed to injuries resulting from a crash landing near the airport in Happy Valley-Goose Bay, Canada, on 14 December 2022. Steve, professor of chronobiology and sleep research at the Faculty of Medicine, University of Zürich, was an excellent scientist, a dear friend, a wonderful collaborator, and an incredibly courageous adventurer. His sudden death immediately reminded us of the Billy Joel song: Only the good die young. Steve owned a Piper PA-46 Malibu aircraft that he had to bring to Florida for an annual control and update. In company with his wife Patrycja Paruch, he then piloted his airplane to Nashua, NH, where they visited Steve’s mother. The trip was to continue to Nuuk, Greenland, with an intermediate stop in Goose Bay, Canada, where the tragic incident occurred. Patrycja, a highly successful physics professor at the University of Geneva and a great friend of ours, survived the crash. We would like to express our wishes of a full and prompt recovery and offer our sincere condolences to Patrycja. Our deepest sympathy goes to family members, friends, and colleagues of Steve.","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":"38 2","pages":"119-124"},"PeriodicalIF":3.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a5/43/10.1177_07487304231152275.PMC10037542.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9255845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Astrocytes are densely present in the suprachiasmatic nucleus (SCN), which is the master circadian oscillator in mammals, and are presumed to play a key role in circadian oscillation. However, specific astrocytic molecules that regulate the circadian clock are not yet well understood. In our study, we found that the water channel aquaporin-4 (AQP4) was abundantly expressed in SCN astrocytes, and we further examined its circadian role using AQP4-knockout mice. There was no prominent difference in circadian behavioral rhythms between Aqp4-/- and Aqp4+/+ mice subjected to light-dark cycles and constant dark conditions. However, exposure to constant light induced a greater decrease in the Aqp4-/- mice rhythmicity. Although the damped rhythm in long-term constant light recovered after transfer to constant dark conditions in both genotypes, the period until the reappearance of original rhythmicity was severely prolonged in Aqp4-/- mice. In conclusion, AQP4 absence exacerbates the prolonged light-induced impairment of circadian oscillations and delays their recovery to normal rhythmicity.
{"title":"Prolonged Light Exposure Induces Circadian Impairment in Aquaporin-4-Knockout Mice.","authors":"Atsumi Murakami, Kouki Tsuji, Minako Isoda, Masahiro Matsuo, Yoichiro Abe, Masato Yasui, Hitoshi Okamura, Keiko Tominaga","doi":"10.1177/07487304221146242","DOIUrl":"https://doi.org/10.1177/07487304221146242","url":null,"abstract":"<p><p>Astrocytes are densely present in the suprachiasmatic nucleus (SCN), which is the master circadian oscillator in mammals, and are presumed to play a key role in circadian oscillation. However, specific astrocytic molecules that regulate the circadian clock are not yet well understood. In our study, we found that the water channel aquaporin-4 (AQP4) was abundantly expressed in SCN astrocytes, and we further examined its circadian role using AQP4-knockout mice. There was no prominent difference in circadian behavioral rhythms between <i>Aqp4</i><sup>-/-</sup> and <i>Aqp4</i><sup>+/+</sup> mice subjected to light-dark cycles and constant dark conditions. However, exposure to constant light induced a greater decrease in the <i>Aqp4</i><sup>-/-</sup> mice rhythmicity. Although the damped rhythm in long-term constant light recovered after transfer to constant dark conditions in both genotypes, the period until the reappearance of original rhythmicity was severely prolonged in <i>Aqp4</i><sup>-/-</sup> mice. In conclusion, AQP4 absence exacerbates the prolonged light-induced impairment of circadian oscillations and delays their recovery to normal rhythmicity.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":"38 2","pages":"208-214"},"PeriodicalIF":3.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9605353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1177/07487304221144340
Simone Bruno, Davide Benedetti, Andrea Bazzani, Francesca Ferri, Iacopo Granieri, Francy Cruz-Sanabria, Simona Fiori, Paola d'Ascanio, Paolo Frumento, Ugo Faraguna
Adolescents' conflict between circadian rhythm and early school start time is more pronounced in evening chronotypes, who tend to reduce sleep duration during school days compensating during the free days by oversleeping (i.e., social jetlag). Cumulative weekly sleep debt may impair sport performance, which relies on physical and cognitive skills modulated by sleep. We hypothesized that chronotype predicts sport performance, and that it may interact with the day of the week. Moreover, given the role sleep plays in motor memory consolidation, we tested the hypothesis that school attendance, and the related chronic sleep deprivation, might be detrimental for participants in a training phase. Ninety-three adolescent male basketball players performed multiple free throw sessions (n = 7880) during both the school and holiday periods. Chronotype and its interaction with the day of the week significantly predicted shooting accuracy when attending school, but not on holidays. Evening types' performance gradually decreased from Monday to Friday. Participants with a more unstable performance (i.e., who did not complete the acquisition of the free throw motor scheme) worsened their accuracy when attending school. Our results suggest that the impact of chronotype and day of the week on sport performance is related to the presence of an externally imposed sleep/wake schedule and is consistent with evening types' increased likelihood of experiencing social jetlag. Possibly due to early school start time, attending school worsened the performance of participants in a training phase. Further investigations are required to assess whether reducing the mismatch between biological and social clocks might improve sport performance, along with other aspects of adolescents' life.
{"title":"School Attendance, Chronotype, and Day-of-the-Week Effect in Adolescent Male Basketball Players.","authors":"Simone Bruno, Davide Benedetti, Andrea Bazzani, Francesca Ferri, Iacopo Granieri, Francy Cruz-Sanabria, Simona Fiori, Paola d'Ascanio, Paolo Frumento, Ugo Faraguna","doi":"10.1177/07487304221144340","DOIUrl":"https://doi.org/10.1177/07487304221144340","url":null,"abstract":"<p><p>Adolescents' conflict between circadian rhythm and early school start time is more pronounced in evening chronotypes, who tend to reduce sleep duration during school days compensating during the free days by oversleeping (i.e., social jetlag). Cumulative weekly sleep debt may impair sport performance, which relies on physical and cognitive skills modulated by sleep. We hypothesized that chronotype predicts sport performance, and that it may interact with the day of the week. Moreover, given the role sleep plays in motor memory consolidation, we tested the hypothesis that school attendance, and the related chronic sleep deprivation, might be detrimental for participants in a training phase. Ninety-three adolescent male basketball players performed multiple free throw sessions (<i>n</i> = 7880) during both the school and holiday periods. Chronotype and its interaction with the day of the week significantly predicted shooting accuracy when attending school, but not on holidays. Evening types' performance gradually decreased from Monday to Friday. Participants with a more unstable performance (i.e., who did not complete the acquisition of the free throw motor scheme) worsened their accuracy when attending school. Our results suggest that the impact of chronotype and day of the week on sport performance is related to the presence of an externally imposed sleep/wake schedule and is consistent with evening types' increased likelihood of experiencing social jetlag. Possibly due to early school start time, attending school worsened the performance of participants in a training phase. Further investigations are required to assess whether reducing the mismatch between biological and social clocks might improve sport performance, along with other aspects of adolescents' life.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":"38 2","pages":"185-196"},"PeriodicalIF":3.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9243611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Many marine organisms synchronously spawn at specific times to ensure the success of external fertilization in the ocean. Corals are famous examples of synchronized spawning at specific lunar phases, and two distinct spawning patterns have been observed in two dominant taxa: merulinid corals spawn at regular lunar phases, several days after the full moon, whereas Acropora corals spawn at more irregular lunar phases around the full moon. Although it has been suggested that the two coral taxa have different responses to moonlight and seawater temperature, their spawning times have never been analyzed by integrating the two environmental factors, resulting in an incomplete understanding of the regulatory mechanisms of spawning. In this study, we developed a new predictive model of coral spawning days by integrating moonlight and temperature effects based on the external coincidence model for the lunar cycle. We performed model fitting using a 10-year monitoring record of coral spawning time in Taiwan. Our model successfully demonstrated the synergistic effects of moonlight and temperature on coral spawning time (days) and provided two testable hypotheses to explain the different spawning patterns regarding the preparation (maturation) process for spawning and the sensitivity to moonlight at different circadian phases: (1) Acropora corals may have an earlier onset and longer period of preparation for spawning than merulinid corals; and (2) merulinid corals may use moonlight signals near sunset, while Acropora corals may have a similar onset at approximately midnight. This is the first study to indicate the difference in circadian phase-dependent moonlight sensitivities between coral taxa, providing a basis for underlying coral spawning mechanisms for rhythmic studies.
{"title":"An External Coincidence Model for the Lunar Cycle Reveals Circadian Phase-Dependent Moonlight Effects on Coral Spawning.","authors":"Hideyuki Komoto, Che-Hung Lin, Yoko Nozawa, Akiko Satake","doi":"10.1177/07487304221135916","DOIUrl":"https://doi.org/10.1177/07487304221135916","url":null,"abstract":"<p><p>Many marine organisms synchronously spawn at specific times to ensure the success of external fertilization in the ocean. Corals are famous examples of synchronized spawning at specific lunar phases, and two distinct spawning patterns have been observed in two dominant taxa: merulinid corals spawn at regular lunar phases, several days after the full moon, whereas <i>Acropora</i> corals spawn at more irregular lunar phases around the full moon. Although it has been suggested that the two coral taxa have different responses to moonlight and seawater temperature, their spawning times have never been analyzed by integrating the two environmental factors, resulting in an incomplete understanding of the regulatory mechanisms of spawning. In this study, we developed a new predictive model of coral spawning days by integrating moonlight and temperature effects based on the external coincidence model for the lunar cycle. We performed model fitting using a 10-year monitoring record of coral spawning time in Taiwan. Our model successfully demonstrated the synergistic effects of moonlight and temperature on coral spawning time (days) and provided two testable hypotheses to explain the different spawning patterns regarding the preparation (maturation) process for spawning and the sensitivity to moonlight at different circadian phases: (1) <i>Acropora</i> corals may have an earlier onset and longer period of preparation for spawning than merulinid corals; and (2) merulinid corals may use moonlight signals near sunset, while <i>Acropora</i> corals may have a similar onset at approximately midnight. This is the first study to indicate the difference in circadian phase-dependent moonlight sensitivities between coral taxa, providing a basis for underlying coral spawning mechanisms for rhythmic studies.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":"38 2","pages":"148-158"},"PeriodicalIF":3.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9249324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1177/07487304221142743
Elizabeth B Klerman, Achim Kramer, Phyllis C Zee
125 Clinicians, scientists, industry, occupational health and public health professionals, and patients are excited about the promising health and safety implications of circadian medicine. The award of the 2017 Nobel Prize in Physiology or Medicine to three scientists (Hall, Rosbash, and Young) for their work in elucidating the mechanisms of circadian rhythmicity introduced many people to the field. Now we and others are frequently asked when the results of basic research will be available for diagnosis, monitoring, and/or treatment of individual patients. Overwhelming evidence indicates that the circadian clock is essential for health and its disruption causes pathologies (Figure 1). A triad of circadian medicine approaches was recently proposed (Kramer et al., 2022): (a) detecting the clock (e.g. new diagnostic tools), (b) targeting the clock (e.g. improving or resynchronizing disrupted rhythms), and (c) exploiting the clock (e.g. using time-of-day adapted treatment regimens). Examples of each of these approaches already in use include the dim light melatonin onset (DLMO) for detecting circadian phase, light treatment for circadian and other disorders, and time-of-day recommendations for statin-type medications. These and other encouraging past and recent successes in circadian medicine suggest that greater and more comprehensive translation of basic chronobiological findings into medical practice is possible. We therefore recognize a need to provide for the circadian rhythms research community an outline of the steps, processes and time frame required to translate basic science findings to evidence based clinical care and/or public health and safety recommendations (Figure 2): how does a discovery become an approved approach, and then a guideline, a clinical care recommendation, and finally a policy? Each step along the way is performed with specific questions, protocols, variables, and analyses within a specific population, and each step should consider whether the target is etiology, health/disease balance, and/or recovery (Roenneberg et al., 2022). Each step applies to diagnosis/monitoring tests, interventions (e.g. drug, device), and/or analysis methods [biochemical or algorithmic (e.g. to calculate circadian phase or the optimal timing and/ or dose of an intervention)]. Most of the following steps apply to interventions, but the underlying principles are the same. Before efficacy and effectiveness conclusions/clinical guidelines can be drawn, data from multiple experiments and studies will have to be compiled in a stepwise approach.
{"title":"From Bench to Bedside and Back Again: Translating Circadian Science to Medicine.","authors":"Elizabeth B Klerman, Achim Kramer, Phyllis C Zee","doi":"10.1177/07487304221142743","DOIUrl":"https://doi.org/10.1177/07487304221142743","url":null,"abstract":"125 Clinicians, scientists, industry, occupational health and public health professionals, and patients are excited about the promising health and safety implications of circadian medicine. The award of the 2017 Nobel Prize in Physiology or Medicine to three scientists (Hall, Rosbash, and Young) for their work in elucidating the mechanisms of circadian rhythmicity introduced many people to the field. Now we and others are frequently asked when the results of basic research will be available for diagnosis, monitoring, and/or treatment of individual patients. Overwhelming evidence indicates that the circadian clock is essential for health and its disruption causes pathologies (Figure 1). A triad of circadian medicine approaches was recently proposed (Kramer et al., 2022): (a) detecting the clock (e.g. new diagnostic tools), (b) targeting the clock (e.g. improving or resynchronizing disrupted rhythms), and (c) exploiting the clock (e.g. using time-of-day adapted treatment regimens). Examples of each of these approaches already in use include the dim light melatonin onset (DLMO) for detecting circadian phase, light treatment for circadian and other disorders, and time-of-day recommendations for statin-type medications. These and other encouraging past and recent successes in circadian medicine suggest that greater and more comprehensive translation of basic chronobiological findings into medical practice is possible. We therefore recognize a need to provide for the circadian rhythms research community an outline of the steps, processes and time frame required to translate basic science findings to evidence based clinical care and/or public health and safety recommendations (Figure 2): how does a discovery become an approved approach, and then a guideline, a clinical care recommendation, and finally a policy? Each step along the way is performed with specific questions, protocols, variables, and analyses within a specific population, and each step should consider whether the target is etiology, health/disease balance, and/or recovery (Roenneberg et al., 2022). Each step applies to diagnosis/monitoring tests, interventions (e.g. drug, device), and/or analysis methods [biochemical or algorithmic (e.g. to calculate circadian phase or the optimal timing and/ or dose of an intervention)]. Most of the following steps apply to interventions, but the underlying principles are the same. Before efficacy and effectiveness conclusions/clinical guidelines can be drawn, data from multiple experiments and studies will have to be compiled in a stepwise approach.","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":"38 2","pages":"125-130"},"PeriodicalIF":3.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038822/pdf/nihms-1851162.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9250616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01Epub Date: 2022-11-22DOI: 10.1177/07487304221134330
Lauren E Hartstein, Cecilia Diniz Behn, Kenneth P Wright, Lameese D Akacem, Shelby R Stowe, Monique K LeBourgeois
Late sleep timing is prevalent in early childhood and a risk factor for poor behavioral and health outcomes. Sleep timing is influenced by the phase of the circadian clock, with later circadian timing linked to delayed sleep onset in young children. Light is the strongest zeitgeber of circadian timing and, in adults, evening light produces circadian phase delay in an intensity-dependent manner. The intensity-dependent circadian phase-shifting response to evening light in children, however, is currently unknown. In the present study, 33 healthy, good-sleeping children aged 3.0 to 4.9 years (M = 4.14 years, 39% male) completed a 10-day between-subjects protocol. Following 7 days of a stable sleep schedule, an in-home dim-light circadian assessment was performed. Children remained in dim-light across 3 days (55 h), with salivary melatonin collected in regular intervals throughout each evening. Phase-shifting effects of light exposure were determined via changes in the timing of the dim-light melatonin onset (DLMO) prior to (Day 8) and following (Day 10) a light exposure stimulus. On Day 9, children were exposed to a 1 h light stimulus in the hour before their habitual bedtime. Each child was randomly assigned to one intensity between 5 and 5000 lux (4.5-3276 melanopic EDI). Across light intensities, children showed significant circadian phase delays, with an average phase delay of 56.1 min (SD = 33.6 min), and large inter-individual variability. No relationship between light intensity and magnitude of the phase shift was observed. However, a greater percentage of melatonin suppression during the light exposure was associated with a greater phase delay (r = -0.73, p < 0.01). These findings demonstrate that some young children may be highly sensitive to light exposure in the hour before bedtime and suggest that the home lighting environment and its impact on circadian timing should be considered a possible contributor to behavioral sleep difficulties.
{"title":"Evening Light Intensity and Phase Delay of the Circadian Clock in Early Childhood.","authors":"Lauren E Hartstein, Cecilia Diniz Behn, Kenneth P Wright, Lameese D Akacem, Shelby R Stowe, Monique K LeBourgeois","doi":"10.1177/07487304221134330","DOIUrl":"10.1177/07487304221134330","url":null,"abstract":"<p><p>Late sleep timing is prevalent in early childhood and a risk factor for poor behavioral and health outcomes. Sleep timing is influenced by the phase of the circadian clock, with later circadian timing linked to delayed sleep onset in young children. Light is the strongest zeitgeber of circadian timing and, in adults, evening light produces circadian phase delay in an intensity-dependent manner. The intensity-dependent circadian phase-shifting response to evening light in children, however, is currently unknown. In the present study, 33 healthy, good-sleeping children aged 3.0 to 4.9 years (M = 4.14 years, 39% male) completed a 10-day between-subjects protocol. Following 7 days of a stable sleep schedule, an in-home dim-light circadian assessment was performed. Children remained in dim-light across 3 days (55 h), with salivary melatonin collected in regular intervals throughout each evening. Phase-shifting effects of light exposure were determined via changes in the timing of the dim-light melatonin onset (DLMO) prior to (Day 8) and following (Day 10) a light exposure stimulus. On Day 9, children were exposed to a 1 h light stimulus in the hour before their habitual bedtime. Each child was randomly assigned to one intensity between 5 and 5000 lux (4.5-3276 melanopic EDI). Across light intensities, children showed significant circadian phase delays, with an average phase delay of 56.1 min (SD = 33.6 min), and large inter-individual variability. No relationship between light intensity and magnitude of the phase shift was observed. However, a greater percentage of melatonin suppression during the light exposure was associated with a greater phase delay (<i>r</i> = -0.73, <i>p</i> < 0.01). These findings demonstrate that some young children may be highly sensitive to light exposure in the hour before bedtime and suggest that the home lighting environment and its impact on circadian timing should be considered a possible contributor to behavioral sleep difficulties.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":"38 1","pages":"77-86"},"PeriodicalIF":2.9,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9174765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1177/07487304221138946
Lilyan M Mather, Meghan E Cholak, Connor M Morfoot, Katherine C Curro, Jacob Love, Daniel J Cavanaugh
Organisms track time of day through the function of cell-autonomous molecular clocks. In addition to a central clock located in the brain, molecular clocks are present in most peripheral tissues. Circadian clocks are coordinated within and across tissues, but the manner through which this coordination is achieved is not well understood. We reasoned that the ability to track in vivo molecular clock activity in specific tissues of the fruit fly, Drosophila melanogaster, would facilitate an investigation into the relationship between different clock-containing tissues. Previous efforts to monitor clock gene expression in single flies in vivo have used regulatory elements of several different clock genes to dictate expression of a luciferase reporter enzyme, the activity of which can be monitored using a luminometer. Although these reporter lines have been instrumental in our understanding of the circadian system, they generally lack cell specificity, making it difficult to compare molecular clock oscillations between different tissues. Here, we report the generation of several novel lines of flies that allow for inducible expression of a luciferase reporter construct for clock gene transcriptional activity. We find that these lines faithfully report circadian transcription, as they exhibit rhythmic luciferase activity that is dependent on a functional molecular clock. Furthermore, we take advantage of our reporter lines' tissue specificity to demonstrate that peripheral molecular clocks are able to retain rhythmicity for multiple days under constant environmental conditions.
{"title":"Inducible Reporter Lines for Tissue-specific Monitoring of <i>Drosophila</i> Circadian Clock Transcriptional Activity.","authors":"Lilyan M Mather, Meghan E Cholak, Connor M Morfoot, Katherine C Curro, Jacob Love, Daniel J Cavanaugh","doi":"10.1177/07487304221138946","DOIUrl":"https://doi.org/10.1177/07487304221138946","url":null,"abstract":"<p><p>Organisms track time of day through the function of cell-autonomous molecular clocks. In addition to a central clock located in the brain, molecular clocks are present in most peripheral tissues. Circadian clocks are coordinated within and across tissues, but the manner through which this coordination is achieved is not well understood. We reasoned that the ability to track in vivo molecular clock activity in specific tissues of the fruit fly, <i>Drosophila melanogaster</i>, would facilitate an investigation into the relationship between different clock-containing tissues. Previous efforts to monitor clock gene expression in single flies in vivo have used regulatory elements of several different clock genes to dictate expression of a luciferase reporter enzyme, the activity of which can be monitored using a luminometer. Although these reporter lines have been instrumental in our understanding of the circadian system, they generally lack cell specificity, making it difficult to compare molecular clock oscillations between different tissues. Here, we report the generation of several novel lines of flies that allow for inducible expression of a luciferase reporter construct for clock gene transcriptional activity. We find that these lines faithfully report circadian transcription, as they exhibit rhythmic luciferase activity that is dependent on a functional molecular clock. Furthermore, we take advantage of our reporter lines' tissue specificity to demonstrate that peripheral molecular clocks are able to retain rhythmicity for multiple days under constant environmental conditions.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":"38 1","pages":"44-63"},"PeriodicalIF":3.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10612062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1177/07487304221132088
Laura Kervezee, Anna Koshy, Nicolas Cermakian, Diane B Boivin
Shift workers face an increased risk of metabolic health problems, but the direct metabolic response to working nights is not fully understood. The aim of this study was to investigate the effect of night shifts on the 24-h urinary metabolome of shift workers. Eleven police officers working rotating shifts completed two 24-h laboratory visits that took place before and after they worked 7 consecutive nights. Sleep and meals were scheduled on a day schedule in the first visit and then on a night schedule (i.e., sleep and meals shifted by approximately 12 h) in the second visit. Targeted metabolomic analysis was performed on urine samples collected throughout these laboratory visits. Differential rhythmicity analysis was used to compare 24-h rhythms in urinary metabolites in both conditions. Our results show that on the day schedule, 24-h rhythms are present in the urinary levels of the majority of metabolites, but that this is significantly reduced on the night schedule, partly due to loss of organic acid rhythmicity. Furthermore, misalignment of 24-h metabolite rhythms with the shifted behavioral cycles in the night schedule was observed in more than half of the metabolites that were rhythmic in both conditions (all acylcarnitines). These results show that working nights alters the daily rhythms of the urinary metabolome in rotating shift workers, with the most notable impact observed for acylcarnitines and organic acids, 2 metabolite classes involved in mitochondrial function. Further research is warranted to study how these changes relate to the increased metabolic risks associated with shift work.
{"title":"The Effect of Night Shifts on 24-h Rhythms in the Urinary Metabolome of Police Officers on a Rotating Work Schedule.","authors":"Laura Kervezee, Anna Koshy, Nicolas Cermakian, Diane B Boivin","doi":"10.1177/07487304221132088","DOIUrl":"https://doi.org/10.1177/07487304221132088","url":null,"abstract":"<p><p>Shift workers face an increased risk of metabolic health problems, but the direct metabolic response to working nights is not fully understood. The aim of this study was to investigate the effect of night shifts on the 24-h urinary metabolome of shift workers. Eleven police officers working rotating shifts completed two 24-h laboratory visits that took place before and after they worked 7 consecutive nights. Sleep and meals were scheduled on a day schedule in the first visit and then on a night schedule (i.e., sleep and meals shifted by approximately 12 h) in the second visit. Targeted metabolomic analysis was performed on urine samples collected throughout these laboratory visits. Differential rhythmicity analysis was used to compare 24-h rhythms in urinary metabolites in both conditions. Our results show that on the day schedule, 24-h rhythms are present in the urinary levels of the majority of metabolites, but that this is significantly reduced on the night schedule, partly due to loss of organic acid rhythmicity. Furthermore, misalignment of 24-h metabolite rhythms with the shifted behavioral cycles in the night schedule was observed in more than half of the metabolites that were rhythmic in both conditions (all acylcarnitines). These results show that working nights alters the daily rhythms of the urinary metabolome in rotating shift workers, with the most notable impact observed for acylcarnitines and organic acids, 2 metabolite classes involved in mitochondrial function. Further research is warranted to study how these changes relate to the increased metabolic risks associated with shift work.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":"38 1","pages":"64-76"},"PeriodicalIF":3.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10669601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1177/07487304221134160
Dora Obodo, Elliot H Outland, Jacob J Hughey
Biomedical research on mammals has traditionally neglected females, raising the concern that some scientific findings may generalize poorly to half the population. Although this lack of sex inclusion has been broadly documented, its extent within circadian genomics remains undescribed. To address this gap, we examined sex inclusion practices in a comprehensive collection of publicly available transcriptome studies on daily rhythms. Among 148 studies having samples from mammals in vivo, we found strong underrepresentation of females across organisms and tissues. Overall, only 23 of 123 studies in mice, 0 of 10 studies in rats, and 9 of 15 studies in humans included samples from females. In addition, studies having samples from both sexes tended to have more samples from males than from females. These trends appear to have changed little over time, including since 2016, when the US National Institutes of Health began requiring investigators to consider sex as a biological variable. Our findings highlight an opportunity to dramatically improve representation of females in circadian research and to explore sex differences in daily rhythms at the genome level.
传统上,哺乳动物的生物医学研究忽略了女性,这引起了人们的担忧,即一些科学发现可能不适用于一半的人口。尽管这种性别缺失已被广泛记载,但其在昼夜节律基因组学中的程度仍未得到描述。为了解决这一差距,我们在日常节律的公开转录组研究的综合收集中检查了性别包容实践。在148项有哺乳动物活体样本的研究中,我们发现雌性在生物体和组织中的代表性严重不足。总的来说,123项小鼠研究中只有23项,10项大鼠研究中的0项,以及15项人类研究中的9项包括女性样本。此外,有两性样本的研究往往有更多的样本来自男性而不是女性。随着时间的推移,这些趋势似乎几乎没有改变,包括自2016年以来,美国国立卫生研究院(National Institutes of Health)开始要求调查人员将性别视为一个生物学变量。我们的发现强调了在昼夜节律研究中显著提高女性代表性的机会,并在基因组水平上探索日常节律的性别差异。
{"title":"Sex Inclusion in Transcriptome Studies of Daily Rhythms.","authors":"Dora Obodo, Elliot H Outland, Jacob J Hughey","doi":"10.1177/07487304221134160","DOIUrl":"https://doi.org/10.1177/07487304221134160","url":null,"abstract":"<p><p>Biomedical research on mammals has traditionally neglected females, raising the concern that some scientific findings may generalize poorly to half the population. Although this lack of sex inclusion has been broadly documented, its extent within circadian genomics remains undescribed. To address this gap, we examined sex inclusion practices in a comprehensive collection of publicly available transcriptome studies on daily rhythms. Among 148 studies having samples from mammals in vivo, we found strong underrepresentation of females across organisms and tissues. Overall, only 23 of 123 studies in mice, 0 of 10 studies in rats, and 9 of 15 studies in humans included samples from females. In addition, studies having samples from both sexes tended to have more samples from males than from females. These trends appear to have changed little over time, including since 2016, when the US National Institutes of Health began requiring investigators to consider sex as a biological variable. Our findings highlight an opportunity to dramatically improve representation of females in circadian research and to explore sex differences in daily rhythms at the genome level.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":"38 1","pages":"3-14"},"PeriodicalIF":3.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/92/bd/10.1177_07487304221134160.PMC9903005.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9594688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}