Small nucleolar RNAs (snoRNAs) are among the most evolutionarily ancient classes of small RNA. Two experimental screens published in BMC Genomics expand the eukaryotic snoRNA catalog, but many more snoRNAs remain to be found.
Small nucleolar RNAs (snoRNAs) are among the most evolutionarily ancient classes of small RNA. Two experimental screens published in BMC Genomics expand the eukaryotic snoRNA catalog, but many more snoRNAs remain to be found.
A recent study in BMC Evolutionary Biology has reconstructed the molecular phylogeny of a large Mediterranean cave-dwelling beetle clade, revealing an ancient origin and strong geographic structuring. It seems likely that diversification of this clade in the Oligocene was seeded by an ancestor already adapted to subterranean life.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of numerous target genes. Yet, while hundreds of miRNAs have been identified, little is known about their functions. In a recent report published in Silence, Zheng and colleagues demonstrate a technique for robust and specific knockdown of miRNA expression in Caenorhabditis elegans using modified antisense oligonucleotides, which could be utilized as a powerful tool for the study of regulation and function of miRNAs in vivo.
As the tumor vasculature is a key element of the tumor stroma, angiogenesis is the target of many cancer therapies. Recent work published in BMC Cell Biology describes a fusion protein that combines a peptide previously shown to home in on the gastric cancer vasculature with the anti-tumor cytokine TNF-alpha, and assesses its potential for gastric cancer therapy.
Transposable elements (TEs) have contributed a wide range of functional sequences to their host genomes. A recent paper in BMC Molecular Biology discusses the creation of new transcripts by transposable element insertion upstream of retrocopies and the involvement of such insertions in tissue-specific post-transcriptional regulation.
Signaling complexes typically consist of highly dynamic molecular ensembles that are challenging to study and to describe accurately. Conventional mechanical descriptions misrepresent this reality and can be actively counterproductive by misdirecting us away from investigating critical issues.
Recently in BMC Medical Genomics, Tozeren and colleagues have uncovered virus-host interactions by searching for conserved peptide motifs in HIV and human proteins. Their computational model provides a novel perspective in the interpretation of high-throughput data on the HIV-host interactome.
Both selective and random processes can affect the outcome of natural hybridization. A recent analysis in BMC Evolutionary Biology of natural hybridization between an introduced and a native salamander reveals the mosaic nature of introgression, which is probably caused by a combination of selection and demography.