This paper demonstrates experimental and numerical studies to investigate in perforation pipes with a phasing 180° and perforation densities 9 spm in a horizontal wellbore. The experimental study was conducted to investigate the phasing angle 180° in a horizontal wellbore. The wellbore has an inner diameter of 44 mm, as well as the length of the pipe is 2 m. For this purpose, a simulation model was created in the wellbore using the ANSYS FLUENT simulation software by using the standard k-𝜖 model and applied to the (CFD) with changing the axial flow from (40 - 160) lit/min and constant inflow through perforations from range (20 - 80) lit/min. Concerning the findings of this study, it was noticed that the total pressure drop (friction, acceleration, mixing) goes high as the total flow rate ratio increases. As well as, an increase of the inflow concerning the main flow rate ratio leads to an increase in the total pressure drop and a decrease in the productivity index. Furthermore, the percentage error of the total pressure drop between the numerical and experimental results in test 4 is about 5.4 %. Also, the average velocity goes high with increasing the total flow rates and the velocity keeps increasing along the length of the pipe until it reaches its maximum value at the end of the pipe due to the effect of the perforations. It was concluded that there are the numerical and experimental results reflected a good agreement concerning the study of the flow-through perforations at 180° angle in terms of pressure drop and apparent friction factor, etc.
{"title":"Experimental and Numerical Study of Flow Through Horizontal Wellbore of the 180 Perforation Phasing","authors":"M. Mustafa, Q. Rishack, M. Abdulwahid","doi":"10.33971/bjes.22.1.2","DOIUrl":"https://doi.org/10.33971/bjes.22.1.2","url":null,"abstract":"This paper demonstrates experimental and numerical studies to investigate in perforation pipes with a phasing 180° and perforation densities 9 spm in a horizontal wellbore. The experimental study was conducted to investigate the phasing angle 180° in a horizontal wellbore. The wellbore has an inner diameter of 44 mm, as well as the length of the pipe is 2 m. For this purpose, a simulation model was created in the wellbore using the ANSYS FLUENT simulation software by using the standard k-𝜖 model and applied to the (CFD) with changing the axial flow from (40 - 160) lit/min and constant inflow through perforations from range (20 - 80) lit/min. Concerning the findings of this study, it was noticed that the total pressure drop (friction, acceleration, mixing) goes high as the total flow rate ratio increases. As well as, an increase of the inflow concerning the main flow rate ratio leads to an increase in the total pressure drop and a decrease in the productivity index. Furthermore, the percentage error of the total pressure drop between the numerical and experimental results in test 4 is about 5.4 %. Also, the average velocity goes high with increasing the total flow rates and the velocity keeps increasing along the length of the pipe until it reaches its maximum value at the end of the pipe due to the effect of the perforations. It was concluded that there are the numerical and experimental results reflected a good agreement concerning the study of the flow-through perforations at 180° angle in terms of pressure drop and apparent friction factor, etc.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134264929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents the effect of fiber orientation angle on the stress intensity factor SIF for carbon epoxy composite plates with single-edge, center, and inclined cracks of varying lengths under tensile load. The stress intensity factor and shape factor were calculated individually for each case, with nine different fiber orientation angles computed using the extended finite element method XFEM concepts. It is found the stress intensity factor increases with increasing crack lengths while the shape factor decreases. In the case of single edge cracks, the SIF increases in the average value reached (173 %) for composite plates with different fiber orientation angles, while in the case of the center crack, the average value of SIF reaches (81 %). It was observed in this study that the increases in stress intensity factor and the decreases in the shape factor with different crack lengths were more stable in the composite plate with a fiber orientation angle of 75°. The higher values of SIF at an angle of 75° are because of the high probability of fiber slippage at 75° due to induced shear stresses in addition to the tensile stresses at the fiber-matrix interface. As a result, the crack tip has a high-stress intensity factor.
{"title":"Effect of Fiber Orientation Angle on Stress Intensity Factor of Composite Plate Using Extended Finite Element Method (XFEM)","authors":"Maha Kahyoosh, R. Laftah, A. Nassar","doi":"10.33971/bjes.22.1.7","DOIUrl":"https://doi.org/10.33971/bjes.22.1.7","url":null,"abstract":"This paper presents the effect of fiber orientation angle on the stress intensity factor SIF for carbon epoxy composite plates with single-edge, center, and inclined cracks of varying lengths under tensile load. The stress intensity factor and shape factor were calculated individually for each case, with nine different fiber orientation angles computed using the extended finite element method XFEM concepts. It is found the stress intensity factor increases with increasing crack lengths while the shape factor decreases. In the case of single edge cracks, the SIF increases in the average value reached (173 %) for composite plates with different fiber orientation angles, while in the case of the center crack, the average value of SIF reaches (81 %). It was observed in this study that the increases in stress intensity factor and the decreases in the shape factor with different crack lengths were more stable in the composite plate with a fiber orientation angle of 75°. The higher values of SIF at an angle of 75° are because of the high probability of fiber slippage at 75° due to induced shear stresses in addition to the tensile stresses at the fiber-matrix interface. As a result, the crack tip has a high-stress intensity factor.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121551795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Concerning commercial and residential buildings, one of the major parts related to water supply systems is the water storage tanks. For gravity-fed buildings, the tanks must be installed on the roof. In Iraqi summer, the temperature of water in storage tanks reaches above 50 °C due to high solar intensity, which makes it inappropriate for domestic usage. One of the proposed solutions to overcome this problem is feeding the hot water into an earth-water heat exchanger (EWHE) which consists of a set of buried pipes installed underground level to reduce its temperature. The storage tank and the earth-water heat exchanger were studied experimentally and theoretically by using ANSYS 20/FLUENT software to estimating the water temperature in the storage tank and the temperature of the water leaving the EWHE. The most important results obtained theoretically and experimentally that when using pipe length, pipe diameter, and mass flow rate of 100 m, 0.016 m, 0.7 LPM respectively, at a depth of 3 m, the water temperature decreases by about 15 °C. Also, the results have shown a good agreement between the experimental and theoretical works. One can conclude that an earth-water heat exchanger is an effective way to decrease the temperature of the storage water to an acceptable level for domestic usages.
{"title":"Theoretical and Experimental Study of Water Storage Tank with Earth Water Heat Exchanger in Hot Climates Regions","authors":"Amer A. Dakhil, Salman H. Hammadi","doi":"10.33971/bjes.22.1.4","DOIUrl":"https://doi.org/10.33971/bjes.22.1.4","url":null,"abstract":"Concerning commercial and residential buildings, one of the major parts related to water supply systems is the water storage tanks. For gravity-fed buildings, the tanks must be installed on the roof. In Iraqi summer, the temperature of water in storage tanks reaches above 50 °C due to high solar intensity, which makes it inappropriate for domestic usage. One of the proposed solutions to overcome this problem is feeding the hot water into an earth-water heat exchanger (EWHE) which consists of a set of buried pipes installed underground level to reduce its temperature. The storage tank and the earth-water heat exchanger were studied experimentally and theoretically by using ANSYS 20/FLUENT software to estimating the water temperature in the storage tank and the temperature of the water leaving the EWHE. The most important results obtained theoretically and experimentally that when using pipe length, pipe diameter, and mass flow rate of 100 m, 0.016 m, 0.7 LPM respectively, at a depth of 3 m, the water temperature decreases by about 15 °C. Also, the results have shown a good agreement between the experimental and theoretical works. One can conclude that an earth-water heat exchanger is an effective way to decrease the temperature of the storage water to an acceptable level for domestic usages.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115199465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The functionally graded beam is a wide field of research, which attracts great interest today in the field of engineering, science, and medicine society. This type of beam is made from functionally graded material that is characterized by several properties one of them is the high strength to weight ratio. In the current years, this beam has witnessed great developments in the mechanism of its composition and the materials used in its manufacture. This research provides an overview of the properties, types, advantages and challenges, and applications of the functionally graded materials. In addition, this paper review provides a summary of the analysis of bending and buckling that occurs on the functionally graded beam with and without crack effect from (2008-2021) year. Through this review, the following was noted: Firstly, a small number of researchers have worked experimentally, and the properties of a beam in most of the research are gradual towards thickness using the mixing rule. Secondly, the crack has a very severe effect on the behavior of both bending and buckling for the graded beam. This critical review can be considered a milestone in future analyzes of the graded beam and is also beneficial to designers and researchers working in this field.
{"title":"Review on Buckling and Bending Analysis of Functionally Graded Beam with and without Crack","authors":"R. Neamah, A. Nassar, L. Alansari","doi":"10.33971/bjes.22.1.8","DOIUrl":"https://doi.org/10.33971/bjes.22.1.8","url":null,"abstract":"The functionally graded beam is a wide field of research, which attracts great interest today in the field of engineering, science, and medicine society. This type of beam is made from functionally graded material that is characterized by several properties one of them is the high strength to weight ratio. In the current years, this beam has witnessed great developments in the mechanism of its composition and the materials used in its manufacture. This research provides an overview of the properties, types, advantages and challenges, and applications of the functionally graded materials. In addition, this paper review provides a summary of the analysis of bending and buckling that occurs on the functionally graded beam with and without crack effect from (2008-2021) year. Through this review, the following was noted: Firstly, a small number of researchers have worked experimentally, and the properties of a beam in most of the research are gradual towards thickness using the mixing rule. Secondly, the crack has a very severe effect on the behavior of both bending and buckling for the graded beam. This critical review can be considered a milestone in future analyzes of the graded beam and is also beneficial to designers and researchers working in this field.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"90 10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128514821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The reason for the widespread use of steel box girders is that they have high structural efficiency due to the high bending, high torsional stiffness and rapid erection. For bottom flange of the girders, the buckling behavior during production and erection due to compression strength can be a problem. The compression plate with longitudinal stiffeners typically renders an economic. The optimal design of longitudinal stiffeners is discussed. The results are based on 3-D FEA (ANSYS19.2) of many stiffened compression bottom flange models, the moment of inertia requirement of bottom flange longitudinal stiffener is investigated by studying the effect of many parameters as longitudinal stiffeners numbers, stiffener sections, plate aspect ratio and compression flange thickness. Also, the stiffeners effect on the compression panel plate stresses were studied by modeling girder with and without longitudinal stiffeners. The finite element method is useful as they can be used to study the plate with stiffeners in an economical way, and we don’t need experimental and laboratory tests.
{"title":"Stiffness Requirements for Longitudinal Stiffeners of Trapezoidal Box Girder Bottom Flanges","authors":"Hawraa S. Malik, D. Jawad","doi":"10.33971/bjes.22.1.12","DOIUrl":"https://doi.org/10.33971/bjes.22.1.12","url":null,"abstract":"The reason for the widespread use of steel box girders is that they have high structural efficiency due to the high bending, high torsional stiffness and rapid erection. For bottom flange of the girders, the buckling behavior during production and erection due to compression strength can be a problem. The compression plate with longitudinal stiffeners typically renders an economic. The optimal design of longitudinal stiffeners is discussed. The results are based on 3-D FEA (ANSYS19.2) of many stiffened compression bottom flange models, the moment of inertia requirement of bottom flange longitudinal stiffener is investigated by studying the effect of many parameters as longitudinal stiffeners numbers, stiffener sections, plate aspect ratio and compression flange thickness. Also, the stiffeners effect on the compression panel plate stresses were studied by modeling girder with and without longitudinal stiffeners. The finite element method is useful as they can be used to study the plate with stiffeners in an economical way, and we don’t need experimental and laboratory tests.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127808867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An energy-harvesting hydraulic regeneration suspension system is described in this article, which includes a hydraulic motor, a spool valves, and a hydraulic cylinder. Regenerative actuators are built using a hydraulic transmission system as their inspiration. The proposed regenerative actuator is implemented in the vehicle's non-linear suspension system for a complete model. MATLAB Simulink is utilized to generate and simulate the entire vehicle's regenerative suspension system, which has force properties which are nonlinear with hydraulic actuators equations with energy harvesting from regenerative actuators. During the mathematical simulation, the effect of pressure differential on the spool valve's operation is also taken into account. The quantity of captured energy is compared to the energy expended on the active actuator and the energy generated with the electromagnetic actuator at three distinct input signals at three different pressure level (10, 30 and 50 bars) (random, sinusoidal, and square). The energy generated in the regenerative hydraulic actuator at three pressure levels behaves the same as the active actuator in terms of response, plus the highest pressure of 50 bar is closely comparable to the active system in terms of energy harvest and gradually decreases as the output pressure drops in addition to the behavior of the electromagnetic and its comparison with the wasted energy of the active system.
{"title":"Comparison the Hydraulic Harvested Energy with the Electromagnetic Systems and the Spent Energy on the Active System","authors":"Murtadha Dinar, H. Abid, Hassanein I Khalaf","doi":"10.33971/bjes.22.1.6","DOIUrl":"https://doi.org/10.33971/bjes.22.1.6","url":null,"abstract":"An energy-harvesting hydraulic regeneration suspension system is described in this article, which includes a hydraulic motor, a spool valves, and a hydraulic cylinder. Regenerative actuators are built using a hydraulic transmission system as their inspiration. The proposed regenerative actuator is implemented in the vehicle's non-linear suspension system for a complete model. MATLAB Simulink is utilized to generate and simulate the entire vehicle's regenerative suspension system, which has force properties which are nonlinear with hydraulic actuators equations with energy harvesting from regenerative actuators. During the mathematical simulation, the effect of pressure differential on the spool valve's operation is also taken into account. The quantity of captured energy is compared to the energy expended on the active actuator and the energy generated with the electromagnetic actuator at three distinct input signals at three different pressure level (10, 30 and 50 bars) (random, sinusoidal, and square). The energy generated in the regenerative hydraulic actuator at three pressure levels behaves the same as the active actuator in terms of response, plus the highest pressure of 50 bar is closely comparable to the active system in terms of energy harvest and gradually decreases as the output pressure drops in addition to the behavior of the electromagnetic and its comparison with the wasted energy of the active system.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122718322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this research work, the influence of cutting parameters and drill point angle on the temperature distribution in dry drilling of stainless steel AISI 304 was numerically investigated by using FE method based on DEFORM-3D V.11 commercial software. Two cutting tools of 10 mm diameter but different in point angles, one is 110° and the other is 118°. These tools were imported from specific website in a format of STL and inserted in the program during modeling of cutting tools. The material of the cutting tools is selected as high-speed steel. The workpiece model is created as cylindrical shape with 50 mm diameter and 5 mm thickness. The cutting parameters are selected as three cutting speeds (100, 200, and 300) rpm, with three feed rates (0.15, 0.25, and 0.35) mm/rev. The depth of hole is fixed for all simulations (3 mm). The percentage of increase or decrease in the resulted temperature according to the various cutting parameter was also calculated and discussed. The best cutting performance of tools according to the change of point angles was also investigated. The results provided a significant influence of cutting speed and tool point angle on the temperature generated in the machined models and very small influence of feed speed on the workpiece temperature.
{"title":"The Effect of Machining Parameters and Drill Point Angle on the Temperature Distribution in AISI 304 Stainless Steel During Dry Drilling Operation","authors":"Amjed A. Kadhim, AbdulKareemF Hassan, Q. Rishack","doi":"10.33971/bjes.21.3.3","DOIUrl":"https://doi.org/10.33971/bjes.21.3.3","url":null,"abstract":"In this research work, the influence of cutting parameters and drill point angle on the temperature distribution in dry drilling of stainless steel AISI 304 was numerically investigated by using FE method based on DEFORM-3D V.11 commercial software. Two cutting tools of 10 mm diameter but different in point angles, one is 110° and the other is 118°. These tools were imported from specific website in a format of STL and inserted in the program during modeling of cutting tools. The material of the cutting tools is selected as high-speed steel. The workpiece model is created as cylindrical shape with 50 mm diameter and 5 mm thickness. The cutting parameters are selected as three cutting speeds (100, 200, and 300) rpm, with three feed rates (0.15, 0.25, and 0.35) mm/rev. The depth of hole is fixed for all simulations (3 mm). The percentage of increase or decrease in the resulted temperature according to the various cutting parameter was also calculated and discussed. The best cutting performance of tools according to the change of point angles was also investigated. The results provided a significant influence of cutting speed and tool point angle on the temperature generated in the machined models and very small influence of feed speed on the workpiece temperature.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128776898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This numerical study aimed to investigate the torsional behaviour of hollow cross section reinforced concrete members strengthened with steel fibers (end hooked and corrugated), subjected to pure torsion. The numerical results were compared with experimental results and show good agreement. The experimental study was conducted on ten steel fiber reinforced concrete specimens with low longitudinal reinforcement ratio to investigate the torsional behavior under pure torsion. For this analysis, a computer program (ANSYS 18.2) was used. The brick elements 8-nodes (SOLID65) were used to concrete simulation, while the steel bars simulated as axial members (link 180). The steel fibre was represented theoretically by the stress-strain relationship. The theoretical results indicated that the adopted smeared crack model is capable of making relatively acceptable estimations of cracking and ultimate torsional capacity of the members.
{"title":"Numerical Analysis of Hollow Cross Section Reinforced Concrete Beams Strengthened by Steel Fibers Under Pure Torsion","authors":"J. Mures, A. Chkheiwer, Mazin A. Ahmed","doi":"10.33971/bjes.21.3.6","DOIUrl":"https://doi.org/10.33971/bjes.21.3.6","url":null,"abstract":"This numerical study aimed to investigate the torsional behaviour of hollow cross section reinforced concrete members strengthened with steel fibers (end hooked and corrugated), subjected to pure torsion. The numerical results were compared with experimental results and show good agreement. The experimental study was conducted on ten steel fiber reinforced concrete specimens with low longitudinal reinforcement ratio to investigate the torsional behavior under pure torsion. For this analysis, a computer program (ANSYS 18.2) was used. The brick elements 8-nodes (SOLID65) were used to concrete simulation, while the steel bars simulated as axial members (link 180). The steel fibre was represented theoretically by the stress-strain relationship. The theoretical results indicated that the adopted smeared crack model is capable of making relatively acceptable estimations of cracking and ultimate torsional capacity of the members.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123522698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a new model of beam was built to study and simulate the buckling behavior of function graded beam. All equations of motion are derived using the principal of the minimum total potential energy and based on Euler-Bernoulli, first and high order shear deformation Timoshenko beam theory. The Navier solution is used for simply supported beam, and exact formulas found for buckling load. The properties of material of FG beam are assumed to change in thickness direction by using the power law formula. The dimensionless critical buckling load is calculated analytically by the FORTRAN program and numerically by ANSYS software. In the beginning, the analytical and numerical results are validated with results available in previous works and it is also has very good agreement in comparison with and some researchers. In the present study, the lower layer of the graded beam is made up of aluminum metal. As for the properties of the rest of the layers, they are calculated based on the modulus ratios studied. The effect of length to thickness ratio, modulus ratio, and power law index on the dimensionless critical buckling load of function graded beam calculating by FORTRAN and ANSYS programs are discussed. The numerical analysis of function graded beam offers accurate results and very close to the analytical solution using Timoshenko Beam theory.
{"title":"Buckling Simulation of Simply Support FG Beam Based on Different beam Theories","authors":"R. Neamah, A. Nassar, L. Alansari","doi":"10.33971/bjes.21.3.2","DOIUrl":"https://doi.org/10.33971/bjes.21.3.2","url":null,"abstract":"In this paper, a new model of beam was built to study and simulate the buckling behavior of function graded beam. All equations of motion are derived using the principal of the minimum total potential energy and based on Euler-Bernoulli, first and high order shear deformation Timoshenko beam theory. The Navier solution is used for simply supported beam, and exact formulas found for buckling load. The properties of material of FG beam are assumed to change in thickness direction by using the power law formula. The dimensionless critical buckling load is calculated analytically by the FORTRAN program and numerically by ANSYS software. In the beginning, the analytical and numerical results are validated with results available in previous works and it is also has very good agreement in comparison with and some researchers. In the present study, the lower layer of the graded beam is made up of aluminum metal. As for the properties of the rest of the layers, they are calculated based on the modulus ratios studied. The effect of length to thickness ratio, modulus ratio, and power law index on the dimensionless critical buckling load of function graded beam calculating by FORTRAN and ANSYS programs are discussed. The numerical analysis of function graded beam offers accurate results and very close to the analytical solution using Timoshenko Beam theory.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124726333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Al-Robat and Al-Jubyla creeks, which composes the study area, are two of the main six creeks branched from Shatt Al- Arab river in Basrah province, south of Iraq. They are used as open drains for discharging untreated sanitary sewage which caused the depletion of their dissolved oxygen and subsequently the deterioration of their water quality. To study the impact of discharging untreated sanitary sewage on study area water quality, measured in terms of dissolved oxygen concentration, it is necessary to determine the values of deoxygenation coefficient (K1). The aim of this study is to find K1 values for the study area using laboratory results of BOD time series analyses. For this purpose, water samples were collected from eight locations distributed along the study area. Thomas graphical method was applied to calculate K1. The results showed that the K1 values for Al-Robat and Al-Jubyla creeks ranged from 0.279 to 0.488 day ˗ 1 at 20 °C with ultimate BOD values varied over the range (40.5-258.6) mg/l. These results revealed that the water in Al-Robat and Al-Jubyla creeks has the characteristics of raw sewage.
{"title":"Determination of Deoxygenation Coefficient for Al-Robat and Al-Jubyla Creeks in Basrah City/ South of Iraq","authors":"H. Hadi, Kifah M. Khudhair","doi":"10.33971/bjes.21.3.8","DOIUrl":"https://doi.org/10.33971/bjes.21.3.8","url":null,"abstract":"Al-Robat and Al-Jubyla creeks, which composes the study area, are two of the main six creeks branched from Shatt Al- Arab river in Basrah province, south of Iraq. They are used as open drains for discharging untreated sanitary sewage which caused the depletion of their dissolved oxygen and subsequently the deterioration of their water quality. To study the impact of discharging untreated sanitary sewage on study area water quality, measured in terms of dissolved oxygen concentration, it is necessary to determine the values of deoxygenation coefficient (K1). The aim of this study is to find K1 values for the study area using laboratory results of BOD time series analyses. For this purpose, water samples were collected from eight locations distributed along the study area. Thomas graphical method was applied to calculate K1. The results showed that the K1 values for Al-Robat and Al-Jubyla creeks ranged from 0.279 to 0.488 day ˗ 1 at 20 °C with ultimate BOD values varied over the range (40.5-258.6) mg/l. These results revealed that the water in Al-Robat and Al-Jubyla creeks has the characteristics of raw sewage.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131899275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}