Dectin-1, a C-type lectin, plays important roles in the induction of antifungal immunity. Caspase recruitment domain-containing protein 9 (CARD9) is essential for the dectin-1-induced production of cytokines through the activation of NF-κB. However, the molecular mechanisms underlying the dectin-1-mediated activation of CARD9 have not been fully elucidated. Recently, we reported that the adaptor protein SH3 domain-binding protein 2 (3BP2) is required for the dectin-1-induced production of cytokines and activation of NF-κB, although the relationship between 3BP2 and CARD9 in dectin-1-mediated signaling remains unclear. Here, we report that 3BP2 is required for dectin-1-induced expression of several genes that may contribute to antifungal immunity in bone marrow-derived dendritic cells (BMDCs). The results of reporter assays using HEK-293T cells indicate that 3BP2 induces CARD9-mediated activation of NF-κB through B-cell leukemia/lymphoma 10, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), and TNF receptor-associated factor 6-dependent mechanisms. In addition, we show that 3BP2 induces CARD9-mediated ubiquitination of cellular proteins and that MALT1 cleaves 3BP2 in a CARD9-dependent manner. Furthermore, we show that 3BP2 is required for the ubiquitination, in addition to the activation, of MALT1, which leads to MALT1-depenedent cleavage of 3BP2 in dectin-1-stimulated BMDCs. Finally, we identified hematopoietic cell-specific Lyn substrate 1 as a target of 3BP2, which is essential for dectin-1-induced expression of interleukin 10 in BMDCs. These results indicate that 3BP2 regulates gene expression and functions of MALT1 in dectin-1-stimulated cells and that 3BP2 plays an important role in the dectin-1-mediated antifungal immunity.
{"title":"Adaptor protein 3BP2 regulates gene expression in addition to the ubiquitination and proteolytic activity of MALT1 in dectin-1-stimulated cells.","authors":"Ayumi Tsubokawa, Kazuyasu Chihara, Yuri Chihara, Kenji Takeuchi, Shigeharu Fujieda, Kiyonao Sada","doi":"10.1016/j.jbc.2024.107980","DOIUrl":"https://doi.org/10.1016/j.jbc.2024.107980","url":null,"abstract":"<p><p>Dectin-1, a C-type lectin, plays important roles in the induction of antifungal immunity. Caspase recruitment domain-containing protein 9 (CARD9) is essential for the dectin-1-induced production of cytokines through the activation of NF-κB. However, the molecular mechanisms underlying the dectin-1-mediated activation of CARD9 have not been fully elucidated. Recently, we reported that the adaptor protein SH3 domain-binding protein 2 (3BP2) is required for the dectin-1-induced production of cytokines and activation of NF-κB, although the relationship between 3BP2 and CARD9 in dectin-1-mediated signaling remains unclear. Here, we report that 3BP2 is required for dectin-1-induced expression of several genes that may contribute to antifungal immunity in bone marrow-derived dendritic cells (BMDCs). The results of reporter assays using HEK-293T cells indicate that 3BP2 induces CARD9-mediated activation of NF-κB through B-cell leukemia/lymphoma 10, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), and TNF receptor-associated factor 6-dependent mechanisms. In addition, we show that 3BP2 induces CARD9-mediated ubiquitination of cellular proteins and that MALT1 cleaves 3BP2 in a CARD9-dependent manner. Furthermore, we show that 3BP2 is required for the ubiquitination, in addition to the activation, of MALT1, which leads to MALT1-depenedent cleavage of 3BP2 in dectin-1-stimulated BMDCs. Finally, we identified hematopoietic cell-specific Lyn substrate 1 as a target of 3BP2, which is essential for dectin-1-induced expression of interleukin 10 in BMDCs. These results indicate that 3BP2 regulates gene expression and functions of MALT1 in dectin-1-stimulated cells and that 3BP2 plays an important role in the dectin-1-mediated antifungal immunity.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107980"},"PeriodicalIF":4.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.jbc.2024.107976
Chang Xu, Pengbo Yao, Jie Cheng, Peng Jiang
Inosine-5´-monophosphate dehydrogenase (IMPDH) catalyzes the rate limiting step of de novo purine synthesis. Currently, it remains still largely unknown how this metabolic event is regulated in tumor cells. Here, we report that a deacetylase sirtuin 5 (SIRT5) may possess a regulatory effect on GMP anabolism by desuccinylating IMPDH1. We found that SIRT5 can directly interacts with IMPDH1 and promotes desuccinylation on the N terminal of IMPDH1, thereby leading to increased IMPDH enzymatic activity, enhanced purine biosynthesis and promoted cell proliferation. Consistently, down-regulation of SIRT5 expression results in decreased IMPDH1 activity and impaired tumor cell proliferation. Therefore, our results reveal that SIRT5-mediated IMPDH1 desuccinylation adapts purine metabolism for rapid cell growth, and could be a potential therapeutic target for tumor cell proliferation inhibition.
{"title":"Desuccinylation of Inosine-5´-monophosphate Dehydrogenase 1 by SIRT5 Promotes Tumor Cell Proliferation.","authors":"Chang Xu, Pengbo Yao, Jie Cheng, Peng Jiang","doi":"10.1016/j.jbc.2024.107976","DOIUrl":"https://doi.org/10.1016/j.jbc.2024.107976","url":null,"abstract":"<p><p>Inosine-5´-monophosphate dehydrogenase (IMPDH) catalyzes the rate limiting step of de novo purine synthesis. Currently, it remains still largely unknown how this metabolic event is regulated in tumor cells. Here, we report that a deacetylase sirtuin 5 (SIRT5) may possess a regulatory effect on GMP anabolism by desuccinylating IMPDH1. We found that SIRT5 can directly interacts with IMPDH1 and promotes desuccinylation on the N terminal of IMPDH1, thereby leading to increased IMPDH enzymatic activity, enhanced purine biosynthesis and promoted cell proliferation. Consistently, down-regulation of SIRT5 expression results in decreased IMPDH1 activity and impaired tumor cell proliferation. Therefore, our results reveal that SIRT5-mediated IMPDH1 desuccinylation adapts purine metabolism for rapid cell growth, and could be a potential therapeutic target for tumor cell proliferation inhibition.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107976"},"PeriodicalIF":4.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.jbc.2024.107977
Long Duy Duong, James D West, Kevin A Morano
Oxidants produced through endogenous metabolism or encountered in the environment react directly with reactive sites in biological macromolecules. Many proteins, in particular, are susceptible to oxidative damage, which can lead their altered structure and function. Such structural and functional changes trigger a cascade of events that influence key components of the proteostasis network. Here, we highlight recent advances in our understanding of how cells respond to the challenges of protein folding and metabolic alterations that occur during oxidative stress. Immediately after an oxidative insult, cells selectively block the translation of most new proteins and shift molecular chaperones from a folding to a holding role to prevent wholesale protein aggregation. At the same time, adaptive responses in gene expression are induced, allowing for increased expression of antioxidant enzymes, enzymes that carry out reduction of oxidized proteins, and molecular chaperones, all of which serve to mitigate oxidative damage and rebalance proteostasis. Likewise, concomitant activation of protein clearance mechanisms, namely proteasomal degradation and particular autophagic pathways, promotes degradation of irreparably damaged proteins. As oxidative stress is associated with inflammation, aging, and numerous age-related disorders, the molecular events described herein are therefore major determinants of health and disease.
{"title":"Redox Regulation of Proteostasis.","authors":"Long Duy Duong, James D West, Kevin A Morano","doi":"10.1016/j.jbc.2024.107977","DOIUrl":"https://doi.org/10.1016/j.jbc.2024.107977","url":null,"abstract":"<p><p>Oxidants produced through endogenous metabolism or encountered in the environment react directly with reactive sites in biological macromolecules. Many proteins, in particular, are susceptible to oxidative damage, which can lead their altered structure and function. Such structural and functional changes trigger a cascade of events that influence key components of the proteostasis network. Here, we highlight recent advances in our understanding of how cells respond to the challenges of protein folding and metabolic alterations that occur during oxidative stress. Immediately after an oxidative insult, cells selectively block the translation of most new proteins and shift molecular chaperones from a folding to a holding role to prevent wholesale protein aggregation. At the same time, adaptive responses in gene expression are induced, allowing for increased expression of antioxidant enzymes, enzymes that carry out reduction of oxidized proteins, and molecular chaperones, all of which serve to mitigate oxidative damage and rebalance proteostasis. Likewise, concomitant activation of protein clearance mechanisms, namely proteasomal degradation and particular autophagic pathways, promotes degradation of irreparably damaged proteins. As oxidative stress is associated with inflammation, aging, and numerous age-related disorders, the molecular events described herein are therefore major determinants of health and disease.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107977"},"PeriodicalIF":4.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.jbc.2024.107970
Zhong-Shan Shen, Jun Gan, Bing Xu, Ya-Lin Chen, Fei-Fei Zhang, Jun-Wei Ji, Dan-Hua Chen, Yuehua Qiao, Qiong-Yao Tang, Zhe Zhang
BK channels are expressed in mouse cochlear inner hair cells (IHCs) and exhibit Ca2+-independent activation at negative potentials. However, the mechanism underlying Ca2+-independent activation of the BK channels in mouse IHCs remains unknown. In this study, we found the BK channel expressed in IHCs contains both the STREX-2 (stress axis regulated exon) variant and an alternative splice of exon9 (alt9), which significantly shift the voltage dependence of the BK channels when co-expressed with LRRC52 in 0 [Ca2+]i. Furthermore, we discovered that mechanical force also induces negative shifts in the voltage dependence of IHC-expressed BK channels. Thus, we propose that the additive effects of mechanical force, special isoforms, and LRRC52 co-expression on voltage dependence shifts may account for the Ca2+-independent activation of the BK channel in IHC. Additionally, we found that the IHCs-specific deletion of the BK channels causes hearing damage in mice. Our study suggests a mechanism for Ca2+-independent activation in IHCs and highlights the crucial role of the BK channel in auditory perception.
BK 通道在小鼠耳蜗内毛细胞(IHC)中表达,并在负电位时表现出不依赖 Ca2+ 的激活。然而,小鼠耳蜗内毛细胞中 BK 通道不依赖 Ca2+ 激活的机制仍不清楚。在这项研究中,我们发现在 IHCs 中表达的 BK 通道含有 STREX-2(应力轴调控外显子)变体和外显子 9 的替代剪接(alt9),当它们与 LRRC52 共同表达于 0 [Ca2+]i 时,会显著改变 BK 通道的电压依赖性。此外,我们还发现机械力也会诱导 IHC 表达的 BK 通道的电压依赖性发生负移。因此,我们认为机械力、特殊同工酶和 LRRC52 共同表达对电压依赖性转变的叠加效应可能是 IHC 中 BK 通道不依赖 Ca2+ 激活的原因。此外,我们还发现,IHC 特异性地缺失 BK 通道会导致小鼠听力受损。我们的研究提出了 IHC 中 Ca2+ 非依赖性激活的机制,并强调了 BK 通道在听觉感知中的关键作用。
{"title":"The mechanism of Ca<sup>2+</sup> independent activation of BKCa channels in mouse inner hair cells and the crucial role of the BK channels in auditory perception.","authors":"Zhong-Shan Shen, Jun Gan, Bing Xu, Ya-Lin Chen, Fei-Fei Zhang, Jun-Wei Ji, Dan-Hua Chen, Yuehua Qiao, Qiong-Yao Tang, Zhe Zhang","doi":"10.1016/j.jbc.2024.107970","DOIUrl":"https://doi.org/10.1016/j.jbc.2024.107970","url":null,"abstract":"<p><p>BK channels are expressed in mouse cochlear inner hair cells (IHCs) and exhibit Ca<sup>2+</sup>-independent activation at negative potentials. However, the mechanism underlying Ca<sup>2+</sup>-independent activation of the BK channels in mouse IHCs remains unknown. In this study, we found the BK channel expressed in IHCs contains both the STREX-2 (stress axis regulated exon) variant and an alternative splice of exon9 (alt9), which significantly shift the voltage dependence of the BK channels when co-expressed with LRRC52 in 0 [Ca<sup>2+</sup>]<sub>i</sub>. Furthermore, we discovered that mechanical force also induces negative shifts in the voltage dependence of IHC-expressed BK channels. Thus, we propose that the additive effects of mechanical force, special isoforms, and LRRC52 co-expression on voltage dependence shifts may account for the Ca<sup>2+</sup>-independent activation of the BK channel in IHC. Additionally, we found that the IHCs-specific deletion of the BK channels causes hearing damage in mice. Our study suggests a mechanism for Ca<sup>2+</sup>-independent activation in IHCs and highlights the crucial role of the BK channel in auditory perception.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107970"},"PeriodicalIF":4.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) (EC 3.1.4.3) and phosphatidylethanolamine (PE)-specific PLC (PE-PLC) (EC 3.1.4.62), which generate diacylglycerol (DG) and are tricyclodecan-9-yl-xanthogenate (D609)-sensitive, were detected in detergent-insoluble fractions of mammalian tissues approximately 70 and 35 years ago, respectively. However, the genes and proteins involved in PC-PLC and PE-PLC activities remain unknown. In a recent study, we observed that mammalian sphingomyelin synthase (SMS) 1 and SMS-related protein (SMSr) display PC-PLC and PE-PLC activities in vitro. In the present study, we showed that human SMS2, which is located in detergent-insoluble fractions of the plasma membrane, also possesses PC-PLC activity (approximately 41% of SMS activity), PE-PLC activity (approximately 4%), ceramide phosphoethanolamine synthase (CPES) activity (approximately 46%), and SMS activity in the presence of phospholipid-detergent mixed micelles. Moreover, purified SMS2 reconstituted in detergent-free proteoliposomes (near-native environments) showed PC-PLC, PE-PLC, and CPES activities. Notably, in the presence of approximately 2 mol% ceramide and 4 mol% PC (1:2 ratio), PC-PLC activity was almost equal to SMS activity. SMS2 as PC/PE-PLC showed substrate selectivity for saturated fatty acid- and/or monounsaturated fatty acid-containing PC and PE species. The PC-PLC/SMS inhibitor D609 inhibited all enzyme activities (SMS, PC-PLC, PE-PLC, and CPES) of SMS2. Moreover, Zn2+ strongly inhibited all the enzymatic activities of SMS2. Interestingly, DG inhibited the SMS activity of SMS2 (feedback control). These results indicate that mammalian SMS2 has unique enzymatic properties and is a candidate for a long-sought mammalian PC/PE-PLC.
{"title":"Multiple activities of sphingomyelin synthase 2 generate saturated fatty acid- and/or monounsaturated fatty acid-containing diacylglycerol.","authors":"Chiaki Murakami, Kamila Dilimulati, Kyoko Atsuta-Tsunoda, Takuma Kawai, Sho Inomata, Yasuhisa Hijikata, Hiromichi Sakai, Fumio Sakane","doi":"10.1016/j.jbc.2024.107960","DOIUrl":"https://doi.org/10.1016/j.jbc.2024.107960","url":null,"abstract":"<p><p>Phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) (EC 3.1.4.3) and phosphatidylethanolamine (PE)-specific PLC (PE-PLC) (EC 3.1.4.62), which generate diacylglycerol (DG) and are tricyclodecan-9-yl-xanthogenate (D609)-sensitive, were detected in detergent-insoluble fractions of mammalian tissues approximately 70 and 35 years ago, respectively. However, the genes and proteins involved in PC-PLC and PE-PLC activities remain unknown. In a recent study, we observed that mammalian sphingomyelin synthase (SMS) 1 and SMS-related protein (SMSr) display PC-PLC and PE-PLC activities in vitro. In the present study, we showed that human SMS2, which is located in detergent-insoluble fractions of the plasma membrane, also possesses PC-PLC activity (approximately 41% of SMS activity), PE-PLC activity (approximately 4%), ceramide phosphoethanolamine synthase (CPES) activity (approximately 46%), and SMS activity in the presence of phospholipid-detergent mixed micelles. Moreover, purified SMS2 reconstituted in detergent-free proteoliposomes (near-native environments) showed PC-PLC, PE-PLC, and CPES activities. Notably, in the presence of approximately 2 mol% ceramide and 4 mol% PC (1:2 ratio), PC-PLC activity was almost equal to SMS activity. SMS2 as PC/PE-PLC showed substrate selectivity for saturated fatty acid- and/or monounsaturated fatty acid-containing PC and PE species. The PC-PLC/SMS inhibitor D609 inhibited all enzyme activities (SMS, PC-PLC, PE-PLC, and CPES) of SMS2. Moreover, Zn<sup>2+</sup> strongly inhibited all the enzymatic activities of SMS2. Interestingly, DG inhibited the SMS activity of SMS2 (feedback control). These results indicate that mammalian SMS2 has unique enzymatic properties and is a candidate for a long-sought mammalian PC/PE-PLC.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107960"},"PeriodicalIF":4.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.jbc.2024.107952
Michelle Warren Millar, Rauf A Najar, Spencer A Slavin, Mohammad Shadab, Imran Tahir, Zahra Mahamed, Xin Lin, Jun-Ichi Abe, Terry W Wright, David A Dean, Fabeha Fazal, Arshad Rahman
The functional and structural integrity of the endothelium is essential for vascular homeostasis. Loss of barrier function in quiescent and migratory capacity in proliferative endothelium causes exuberant vascular permeability, a cardinal feature of many inflammatory diseases including acute lung injury (ALI). However, the signals governing these fundamental endothelial cell (EC) functions are poorly understood. Here, we identify Mechanistic Target of Rapamycin (MTOR) as an important link in preserving the barrier integrity and migratory/angiogenic responses in EC and preventing lung vascular injury and mortality in mice. Knockdown of MTOR in EC altered cell morphology, impaired proliferation and migration, and increased endocytosis of cell surface VE-Cadherin leading to disrupted barrier function. MTOR-depleted EC also exhibited reduced VE-Cadherin and VEGFR2 levels mediated in part by autophagy. Similarly, lungs from mice with EC-specific MTOR deficiency displayed spontaneous vascular leakage marked by decreased VE-Cadherin and VEGFR2 levels, indicating that MTOR deficiency in EC is sufficient to disrupt lung vascular integrity and may be a key pathogenic mechanism of ALI. Indeed, MTOR as well as VEGFR2 and VE-Cadherin levels were markedly reduced in injured mouse lungs or EC. Importantly, EC-targeted gene transfer of MTOR cDNA, either prophylactically or therapeutically, mitigated inflammatory lung injury, and improved lung function and survival in mouse models of ALI. These findings reveal an essential role of MTOR in maintaining EC function, identify loss of endothelial MTOR as a key mechanism of lung vascular injury, and show the therapeutic potential of EC-targeted MTOR expression in combating ALI and mortality in mice.
{"title":"MTOR maintains endothelial cell integrity to limit lung vascular injury.","authors":"Michelle Warren Millar, Rauf A Najar, Spencer A Slavin, Mohammad Shadab, Imran Tahir, Zahra Mahamed, Xin Lin, Jun-Ichi Abe, Terry W Wright, David A Dean, Fabeha Fazal, Arshad Rahman","doi":"10.1016/j.jbc.2024.107952","DOIUrl":"https://doi.org/10.1016/j.jbc.2024.107952","url":null,"abstract":"<p><p>The functional and structural integrity of the endothelium is essential for vascular homeostasis. Loss of barrier function in quiescent and migratory capacity in proliferative endothelium causes exuberant vascular permeability, a cardinal feature of many inflammatory diseases including acute lung injury (ALI). However, the signals governing these fundamental endothelial cell (EC) functions are poorly understood. Here, we identify Mechanistic Target of Rapamycin (MTOR) as an important link in preserving the barrier integrity and migratory/angiogenic responses in EC and preventing lung vascular injury and mortality in mice. Knockdown of MTOR in EC altered cell morphology, impaired proliferation and migration, and increased endocytosis of cell surface VE-Cadherin leading to disrupted barrier function. MTOR-depleted EC also exhibited reduced VE-Cadherin and VEGFR2 levels mediated in part by autophagy. Similarly, lungs from mice with EC-specific MTOR deficiency displayed spontaneous vascular leakage marked by decreased VE-Cadherin and VEGFR2 levels, indicating that MTOR deficiency in EC is sufficient to disrupt lung vascular integrity and may be a key pathogenic mechanism of ALI. Indeed, MTOR as well as VEGFR2 and VE-Cadherin levels were markedly reduced in injured mouse lungs or EC. Importantly, EC-targeted gene transfer of MTOR cDNA, either prophylactically or therapeutically, mitigated inflammatory lung injury, and improved lung function and survival in mouse models of ALI. These findings reveal an essential role of MTOR in maintaining EC function, identify loss of endothelial MTOR as a key mechanism of lung vascular injury, and show the therapeutic potential of EC-targeted MTOR expression in combating ALI and mortality in mice.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107952"},"PeriodicalIF":4.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mouse embryonic stem cells (mESCs) exist in two distinct pluripotent states: the naive and the primed. Mainly by inducing differentiation of mESCs in vitro, conducting RNA sequencing analyses, and specifying expression of the regulatory genes, we explored the regulatory mechanisms underlying the transition between the naive and primed states. We found that, under the defined differentiation-inducing conditions, the naive state of mESCs shifted to the primed state within two days of differentiation induction, during which the cell cycle- and differentiation-related proteins changes significantly. Specifically, we uncovered that the expression of STAG2, a subunit of the Cohesin complex, was upregulated. We further revealed that knockout of STAG2 resulted in upregulation of the naive gene sets and downregulation of the primed gene sets, indicating importance of STAG2 in regulating the naive-primed transition. More importantly, STAG2 knockout led to a reduction in number of the bivalent genes, a decrease in Lin28a transcription, and a reduced cytoplasmic localization of Lin28a. Overexpressing Lin28a or a Lin28a variant lacking the nucleolar localization signal (Lin28aΔNoLS) in STAG2 knockout cells rescued the downregulation of the primed marker genes Dnmt3a/3b. Collectively, we conclude that STAG2 facilitates the naive-primed transition of mESCs by activating Lin28a transcription and that this work may offer a new insight into the regulation of pluripotency in mESCs.
{"title":"STAG2 promotes naive-primed transition via activating Lin28a transcription in mouse embryonic stem cells.","authors":"Bo Chen, Mingkang Jia, Gan Zhao, Yumin Liu, Yihong Song, Mengjie Sun, Wangfei Chi, Xiangyang Wang, Qing Jiang, Guangwei Xin, Chuanmao Zhang","doi":"10.1016/j.jbc.2024.107958","DOIUrl":"https://doi.org/10.1016/j.jbc.2024.107958","url":null,"abstract":"<p><p>Mouse embryonic stem cells (mESCs) exist in two distinct pluripotent states: the naive and the primed. Mainly by inducing differentiation of mESCs in vitro, conducting RNA sequencing analyses, and specifying expression of the regulatory genes, we explored the regulatory mechanisms underlying the transition between the naive and primed states. We found that, under the defined differentiation-inducing conditions, the naive state of mESCs shifted to the primed state within two days of differentiation induction, during which the cell cycle- and differentiation-related proteins changes significantly. Specifically, we uncovered that the expression of STAG2, a subunit of the Cohesin complex, was upregulated. We further revealed that knockout of STAG2 resulted in upregulation of the naive gene sets and downregulation of the primed gene sets, indicating importance of STAG2 in regulating the naive-primed transition. More importantly, STAG2 knockout led to a reduction in number of the bivalent genes, a decrease in Lin28a transcription, and a reduced cytoplasmic localization of Lin28a. Overexpressing Lin28a or a Lin28a variant lacking the nucleolar localization signal (Lin28aΔNoLS) in STAG2 knockout cells rescued the downregulation of the primed marker genes Dnmt3a/3b. Collectively, we conclude that STAG2 facilitates the naive-primed transition of mESCs by activating Lin28a transcription and that this work may offer a new insight into the regulation of pluripotency in mESCs.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107958"},"PeriodicalIF":4.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glycerophosphocholine (GPC) is an intracellular metabolite in phosphatidylcholine metabolism and has been studied for endogenous choline supply in cells. GPC, as a water-soluble supplement, has been expected to play a role in preventing brain disorders; however, recent studies have shown that intake of high levels of choline-containing compounds is related to trimethylamine N-oxide (TMAO) production in the liver, which is reportedly associated with the progression of atherosclerosis. In this study, we aimed to explore the mechanisms underlying the intestinal absorption and metabolism of GPC. Caco-2 cell monolayer experiments showed that exogenously added GPC was hydrolyzed to choline in the apical medium, and the resulting choline was transported into the Caco-2 cells and further to the basolateral medium. Subsequently, we focused on glycerophosphodiesterase 1 (Gpcpd1/GDE5), which hydrolyzes GPC to choline in vitro and is widely expressed in the gastrointestinal epithelium. Our results revealed that the Gpcpd1 protein was located not only in cells but also in the medium in which Caco-2 cells were cultured. Gpcpd1 siRNA decreased the GPC-hydrolyzing activity both inside Caco-2 cells and in conditioned medium, suggesting the involvement of Gpcpd1 in luminal GPC metabolism. Finally, we generated intestinal epithelial-specific Gpcpd1-deficient mice and found that Gpcpd1 deletion in intestinal epithelial cells affected GPC metabolism in intestinal tissues and partially abolished the increase in blood TMAO levels induced by GPC administration. These observations demonstrate that Gpcpd1 triggers choline production from GPC in the intestinal lumen and is a key endogenous enzyme that regulates TMAO levels following GPC supplementation.
{"title":"Role of Gpcpd1 in intestinal alpha-glycerophosphocholine metabolism and trimethylamine N-oxide production.","authors":"Siyi Chen, Shiho Inui, Rahmawati Aisyah, Ryoko Nakashima, Tatsuya Kawaguchi, Minori Hinomoto, Yoshiko Nakagawa, Tetsushi Sakuma, Yusuke Sotomaru, Noriyasu Ohshima, Thanutchaporn Kumrungsee, Takeshi Ohkubo, Takashi Yamamoto, Yutaka Miura, Takuya Suzuki, Noriyuki Yanaka","doi":"10.1016/j.jbc.2024.107965","DOIUrl":"https://doi.org/10.1016/j.jbc.2024.107965","url":null,"abstract":"<p><p>Glycerophosphocholine (GPC) is an intracellular metabolite in phosphatidylcholine metabolism and has been studied for endogenous choline supply in cells. GPC, as a water-soluble supplement, has been expected to play a role in preventing brain disorders; however, recent studies have shown that intake of high levels of choline-containing compounds is related to trimethylamine N-oxide (TMAO) production in the liver, which is reportedly associated with the progression of atherosclerosis. In this study, we aimed to explore the mechanisms underlying the intestinal absorption and metabolism of GPC. Caco-2 cell monolayer experiments showed that exogenously added GPC was hydrolyzed to choline in the apical medium, and the resulting choline was transported into the Caco-2 cells and further to the basolateral medium. Subsequently, we focused on glycerophosphodiesterase 1 (Gpcpd1/GDE5), which hydrolyzes GPC to choline in vitro and is widely expressed in the gastrointestinal epithelium. Our results revealed that the Gpcpd1 protein was located not only in cells but also in the medium in which Caco-2 cells were cultured. Gpcpd1 siRNA decreased the GPC-hydrolyzing activity both inside Caco-2 cells and in conditioned medium, suggesting the involvement of Gpcpd1 in luminal GPC metabolism. Finally, we generated intestinal epithelial-specific Gpcpd1-deficient mice and found that Gpcpd1 deletion in intestinal epithelial cells affected GPC metabolism in intestinal tissues and partially abolished the increase in blood TMAO levels induced by GPC administration. These observations demonstrate that Gpcpd1 triggers choline production from GPC in the intestinal lumen and is a key endogenous enzyme that regulates TMAO levels following GPC supplementation.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107965"},"PeriodicalIF":4.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.jbc.2024.107962
Shuze Lu, Mengqi Jin, Zhijiang Yu, Wenhua Zhang
The universal N6-threonylcarbamoyladenosine (t6A) at position 37 of tRNAs is one of core post-transcriptional modifications that are needed for promoting translational fidelity. In bacteria, TsaC utilizes L-threonine, bicarbonate and ATP to generate an intermediate threonylcarbamoyladenylate (TC-AMP), of which the TC-moiety is transferred to N6 atom of tRNA A37 to generate t6A by TsaD with support of TsaB and TsaE. TsaD and TsaB form a TsaDB dimer to which tRNA and TsaE are competitively bound. The catalytic mechanism of TsaD and auxiliary roles of TsaB and TsaE remain to be fully elucidated. In this study, we reconstituted tRNA t6A biosynthesis using recombinant TsaC, TsaD-TsaB and TsaE from thermophilic Aquifex aeolicus and determined crystal structures of apo-form and ADP-bound form of TsaD2B2 tetramer. Our TsaD2B2-TsaE-tRNA model coupled functional validations reveal that the binding of tRNA or TsaE to TsaDB is regulated by C-terminal tail of TsaB and a helical hairpin α1-α2 of TsaD. A. aeolicus TsaD2B2 or TsaDB possesses a basal divalent ion-dependent t6A-catalytic activity that is stimulated by TsaE at the cost of ATP consumption. Our data suggest that binding of TsaE to TsaDB induces conformational changes of α1, α2, α6, α7 and α8 of TsaD and C-terminal tail of TsaB, leading to release of tRNA t6A and AMP. ATP hydrolysis-driven dissociation of TsaE from TsaDB resets an active conformation of TsaDB. Dimerization of thermophilic TsaDB enhances thermostability and promotes t6A-catalytic activity of TsaD2B2-tRNA, of which GC base pairs in anticodon stem are needed for correct folding of thermophilic tRNA at higher temperatures.
{"title":"Structure-function analysis of tRNA t6A-catalysis, assembly and thermostability of Aquifex aeolicus TsaD2B2 tetramer in complex with TsaE.","authors":"Shuze Lu, Mengqi Jin, Zhijiang Yu, Wenhua Zhang","doi":"10.1016/j.jbc.2024.107962","DOIUrl":"https://doi.org/10.1016/j.jbc.2024.107962","url":null,"abstract":"<p><p>The universal N<sup>6</sup>-threonylcarbamoyladenosine (t<sup>6</sup>A) at position 37 of tRNAs is one of core post-transcriptional modifications that are needed for promoting translational fidelity. In bacteria, TsaC utilizes L-threonine, bicarbonate and ATP to generate an intermediate threonylcarbamoyladenylate (TC-AMP), of which the TC-moiety is transferred to N6 atom of tRNA A37 to generate t<sup>6</sup>A by TsaD with support of TsaB and TsaE. TsaD and TsaB form a TsaDB dimer to which tRNA and TsaE are competitively bound. The catalytic mechanism of TsaD and auxiliary roles of TsaB and TsaE remain to be fully elucidated. In this study, we reconstituted tRNA t<sup>6</sup>A biosynthesis using recombinant TsaC, TsaD-TsaB and TsaE from thermophilic Aquifex aeolicus and determined crystal structures of apo-form and ADP-bound form of TsaD<sub>2</sub>B<sub>2</sub> tetramer. Our TsaD<sub>2</sub>B<sub>2</sub>-TsaE-tRNA model coupled functional validations reveal that the binding of tRNA or TsaE to TsaDB is regulated by C-terminal tail of TsaB and a helical hairpin α1-α2 of TsaD. A. aeolicus TsaD<sub>2</sub>B<sub>2</sub> or TsaDB possesses a basal divalent ion-dependent t<sup>6</sup>A-catalytic activity that is stimulated by TsaE at the cost of ATP consumption. Our data suggest that binding of TsaE to TsaDB induces conformational changes of α1, α2, α6, α7 and α8 of TsaD and C-terminal tail of TsaB, leading to release of tRNA t<sup>6</sup>A and AMP. ATP hydrolysis-driven dissociation of TsaE from TsaDB resets an active conformation of TsaDB. Dimerization of thermophilic TsaDB enhances thermostability and promotes t<sup>6</sup>A-catalytic activity of TsaD<sub>2</sub>B<sub>2</sub>-tRNA, of which GC base pairs in anticodon stem are needed for correct folding of thermophilic tRNA at higher temperatures.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107962"},"PeriodicalIF":4.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.jbc.2024.107957
Jenna H Veenstra, Alexandria Chabez, Terrance J Haanen, Austin Keranen, Charlotte Cunningham-Rundles, Patrick J O'Brien
Human DNA ligase 1 (LIG1) performs the final step in DNA repair and recombination pathways by sealing DNA breaks, and it functions as the main replicative ligase. Hypomorphic LIG1 variants R771W and R641L cause immune deficiencies in LIG1 Syndrome patients. In vitro these LIG1 variants have decreased catalytic efficiency and increased abortive ligation and it is not known if either biochemical defect is sufficient on its own to cause immune deficiency. We investigated the enzymatic activity of several new candidate LIG1 Syndrome variants chosen based on their structural proximity to known clinical variants, low minor allele frequency (MAF), high level of conservation, and concurrence in patients with similar symptoms as LIG1 Syndrome patients. The R305Q substitution is in the DNA binding domain, R768W is in the OB-fold domain, and R641S is in the nucleotidyltransferase domain. Biochemical characterization confirmed deficiencies in ligase activity for all three variants, but also revealed marked differences in comparison to the known LIG1 Syndrome variants. Both the R305Q and R768W substitutions increase the KM for DNA and decrease the catalytic efficiency, however, neither exhibit elevated levels of abortive ligation. In contrast, the R641S variant exhibits a greater impairment of activity as well as a more pronounced level of abortive ligation compared to the known LIG1 Syndrome variant, R641L. This work expands the number of LIG1 alleles that are likely candidates for LIG1 Syndrome, and it raises the question of whether distinct enzymatic deficiencies in LIG1 cause unique clinical impacts in patients harboring these alleles.
人类 DNA 连接酶 1(LIG1)在 DNA 修复和重组途径中通过封闭 DNA 断裂执行最后一步,是主要的复制连接酶。LIG1 的低形变体 R771W 和 R641L 会导致 LIG1 综合征患者出现免疫缺陷。在体外,这些 LIG1 变体的催化效率降低,终止连接的情况增加,目前尚不清楚这两种生化缺陷本身是否足以导致免疫缺陷。我们研究了几种新的候选 LIG1 综合征变异体的酶活性,这些变异体是根据它们与已知临床变异体的结构接近性、低小等位基因频率(MAF)、高度保守性以及在症状与 LIG1 综合征患者相似的患者中的一致性而选择的。R305Q 位于 DNA 结合结构域,R768W 位于 OB 折叠结构域,R641S 位于核苷酸转移酶结构域。生化鉴定证实了这三种变体在连接酶活性方面的缺陷,但也发现了它们与已知的 LIG1 综合征变体之间的明显差异。R305Q 和 R768W 取代都增加了 DNA 的 KM 值,降低了催化效率,但都没有表现出更高的终止连接水平。相反,与已知的 LIG1 综合征变体 R641L 相比,R641S 变体表现出更大的活性损伤以及更明显的终止连接水平。这项研究扩大了可能是 LIG1 综合征候选基因的 LIG1 等位基因的数量,并提出了一个问题:LIG1 中不同的酶缺陷是否会对携带这些等位基因的患者造成独特的临床影响。
{"title":"Rare Variants of DNA Ligase 1 Show Distinct Mechanisms of Deficiency.","authors":"Jenna H Veenstra, Alexandria Chabez, Terrance J Haanen, Austin Keranen, Charlotte Cunningham-Rundles, Patrick J O'Brien","doi":"10.1016/j.jbc.2024.107957","DOIUrl":"10.1016/j.jbc.2024.107957","url":null,"abstract":"<p><p>Human DNA ligase 1 (LIG1) performs the final step in DNA repair and recombination pathways by sealing DNA breaks, and it functions as the main replicative ligase. Hypomorphic LIG1 variants R771W and R641L cause immune deficiencies in LIG1 Syndrome patients. In vitro these LIG1 variants have decreased catalytic efficiency and increased abortive ligation and it is not known if either biochemical defect is sufficient on its own to cause immune deficiency. We investigated the enzymatic activity of several new candidate LIG1 Syndrome variants chosen based on their structural proximity to known clinical variants, low minor allele frequency (MAF), high level of conservation, and concurrence in patients with similar symptoms as LIG1 Syndrome patients. The R305Q substitution is in the DNA binding domain, R768W is in the OB-fold domain, and R641S is in the nucleotidyltransferase domain. Biochemical characterization confirmed deficiencies in ligase activity for all three variants, but also revealed marked differences in comparison to the known LIG1 Syndrome variants. Both the R305Q and R768W substitutions increase the K<sub>M</sub> for DNA and decrease the catalytic efficiency, however, neither exhibit elevated levels of abortive ligation. In contrast, the R641S variant exhibits a greater impairment of activity as well as a more pronounced level of abortive ligation compared to the known LIG1 Syndrome variant, R641L. This work expands the number of LIG1 alleles that are likely candidates for LIG1 Syndrome, and it raises the question of whether distinct enzymatic deficiencies in LIG1 cause unique clinical impacts in patients harboring these alleles.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107957"},"PeriodicalIF":4.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}