A severe disorder known as spinal cord damage causes both motor and sensory impairment in the limbs, significantly reducing the patients' quality of life. After a spinal cord injury, functional recovery and therapy have emerged as critical concerns. Hydrogel microspheres have garnered a lot of interest lately because of their enormous promise in the field of spinal cord injury rehabilitation. The material classification of hydrogel microspheres (natural and synthetic macromolecule polymers) and their synthesis methods are examined in this work. This work also covers the introduction of several kinds of hydrogel microspheres and their use as carriers in the realm of treating spinal cord injuries. Lastly, the study reviews the future prospects for hydrogel microspheres and highlights their limitations and problems. This paper can offer feasible ideas for researchers to advance the application of hydrogel microspheres in the field of spinal cord injury.
The growth plate is a cartilage structure at the end of long bones which mediates growth in children. When fractured, the formation of bony repair tissue known as a “bony bar” can occur and cause limb deformities. There are currently no effective clinical solutions for the prevention of the bony bar formation or regeneration of healthy growth plate cartilage after a fracture. This study employs previously developed alginate/chitosan polyelectrolyte complex (PEC) hydrogels as a sustained release vehicle for the delivery of short-interfering RNA (siRNA). Specifically, the siRNA targets the p38-MAPK pathway in mesenchymal stem cells (MSCs) to prevent their osteogenic differentiation. In vitro experimental findings show sustained release of siRNA from the hydrogels for 6 months. Flow cytometry and confocal imaging indicate that the hydrogels release siRNA to effectively knockdown GFP expression over a sustained period. MAPK-14 targeting siRNA was used to knockdown the expression of MAPK-14 and correspondingly decrease the expression of other osteogenic genes in MSCs in vitro over the span of 21 days. These hydrogels were used in a rat model of growth plate injury to determine whether siMAPK-14 released from the gels could inhibit bony bar formation. No significant reduction of bony bar formation was seen in vivo at the one concentration of siRNA examined. This PEC hydrogel represents a significant advancement for siRNA sustained delivery, and presents an interesting potential therapeutic delivery system for growth plate injuries and other regenerative medicine applications.
Fabrication of engineered thin membranous tissues (TMTs) presents a significant challenge to researchers, as these structures are small in scale, but present complex anatomies containing multiple stratified cell layers. While numerous methodologies exist to fabricate such tissues, many are limited by poor mechanical properties, need for post-fabrication, or lack of cytocompatibility. Extrusion bioprinting can address these issues, but lacks the resolution necessary to generate biomimetic, microscale TMT structures. Therefore, our goal was to develop a strategy that enhances bioprinting resolution below its traditional limit of 150 μm and delivers a viable cell population. We have generated a system to effectively shrink printed gels via electrostatic interactions between anionic and cationic polymers. Base hydrogels are composed of gelatin methacrylate type A (cationic), or B (anionic) treated with anionic alginate, and cationic poly-L-lysine, respectively. Through a complex coacervation-like mechanism, the charges attract, causing compaction of the base GelMA network, leading to reduced sample dimensions. In this work, we evaluate the role of both base hydrogel and shrinking polymer charge on effective print resolution and cell viability. The alginate anion-mediated system demonstrated the ability to reach bioprinting resolutions of 70 μm, while maintaining a viable cell population. To our knowledge, this is the first study that has produced such significant enhancement in extrusion bioprinting capabilities, while also remaining cytocompatible.
Degradable phosphate glasses have shown favorable properties for tissue engineering. By changing the composition of the glasses, the degradation rate, and ion release are controllable. Zinc oxide can function as a glass network modifier and has been shown to play a positive role in bone formation. Also, phosphate glasses can easily be processed into microspheres, which can be used as microcarriers. This study aims to develop zinc phosphate glasses microspheres and explore the optimized size and composition for applications in bone tissue engineering. Zinc–titanium–calcium–sodium phosphate glasses with 0, 1, 3, 5, or 10 mol % zinc oxide were prepared and processed into microspheres. The smaller microspheres ranged in size from 50 to 106 μm, while the larger ones ranged from 106 to 150 μm. The characteristics of glasses were examined. The osteoblastic cell line MC3T3-E1 was cultured on the surface of microspheres and the cell viability was examined. To evaluate osteogenic differentiation, Alizarin Red S staining, quantitative reverse transcription polymerase chain reaction, and western blot analysis were performed after 14 days. Different sizes of zinc phosphate glass microspheres were successfully made. The glass microspheres with <10 mol % zinc oxide were able to support the adhesion and proliferation of MC3T3-E1 cell lines. The relative gene expression of BMP2 was significantly upregulated in the smaller glass microspheres containing 3 mol % zinc oxide (26-fold, p < .001) and both sizes of microspheres containing 5 mol % zinc oxide (smaller: 27-fold, p < .001; larger: 35-fold, p < .001). Additionally, cluster formation was observed in glass microspheres after 14 days, and the mineralization of MC3T3-E1 cell lines was promoted. Based on these findings, the glass microspheres containing 3–5 mol % of zinc oxide can promote osteogenic differentiation for MC3T3-E1 cells.
Over the past few decades, there have been advancements in the development of high-performance tissue adhesives as alternatives to traditional sutures and staples for rapid and effective wound closure post-surgery. While tissue adhesives offer advantages such as ease of use, short application time, and minimal tissue damage, they also face challenges related to biocompatibility, biodegradability, and adhesive strength. In this study, L-lysine diisocyanate (LDI) and trimethylolpropane (TMP) were utilized as the primary raw materials to produce a prepolymer terminated with NCO, resulting in the development of a new biocompatible polyurethane tissue adhesive (TMP-LDI). Additionally, SiO2 nanoparticles were incorporated into the prepolymer, significantly enhancing the adhesive strength of the TMP-LDI tissue adhesive through the “nanobridging effect,” achieving a strength of 170.4 kPa. Furthermore, the SiO2/TMP-LDI tissue adhesive exhibited satisfactory temperature change during curing and degradation performance. In vitro and in vivo studies demonstrated that SiO2/TMP-LDI exhibited good biocompatibility, efficient hemostasis, antimicrobial properties, and the ability to promote wound healing. This research presents a novel approach for the development of tissue adhesives with superior adhesive performance.