Implanted polymeric devices, designed to encourage tissue regeneration, require porosity. However, characterizing porosity, which affects many functional device properties, is non-trivial. Computed tomography (CT) is a quick, versatile, and non-destructive way to gain 3D structural information, yet various CT technologies, such as benchtop, preclinical and clinical systems, all have different capabilities. As system capabilities determine the structural information that can be obtained, seamless monitoring of key device features through all stages of clinical translation must be engineered intentionally. Therefore, in this study we tested feasibility of obtaining structural information in pre-clinical systems and high-resolution micro-CT (μCT) under physiological conditions. To overcome the low CT contrast of polymers in hydrated environments, radiopaque nanoparticle contrast agent was incorporated into porous devices. The size of resolved features in porous structures is highly dependent on the resolution (voxel size) of the scan. As the voxel size of the CT scan increased (lower resolution) from 5 to 50 μm, the measured pore size was overestimated, and percentage porosity was underestimated by nearly 50%. With the homogeneous introduction of nanoparticles, changes to device structure could be quantified in the hydrated state, including at high-resolution. Biopolymers had significant structural changes post-hydration, including a mean increase of 130% in pore wall thickness that could potentially impact biological response. By incorporating imaging capabilities into polymeric devices, CT can be a facile way to monitor devices from initial design stages through to clinical translation.
The worldwide health burden of colorectal cancer is still substantial, and traditional chemotherapeutic drugs sometimes have poor selectivity, which can result in systemic toxicity and unfavorable side effects. For colon-specific medication delivery, bioengineered carbohydrate polymers have shown promise as carriers. They may enhance treatment effectiveness while minimizing systemic exposure and associated side effects. The unique properties of these manufactured or naturally occurring biopolymers, such as hyaluronic acid, chitosan, alginate, and pectin, enable targeted medicine release. These qualities can be changed to meet the physiological needs of the colon. In the context of colorectal cancer therapy, this article provides a comprehensive overview of current developments and prospective future directions in the field of bioengineered carbohydrate polymer synthesis for colon-specific drug delivery. We discuss numerous techniques for achieving colon-targeted drug release, including enzyme-sensitive polymers, pH-responsive devices, and microbiota-activated processes. To increase tumor selectivity and cellular uptake, we also examine the inclusion of active targeting approaches, such as conjugating specific ligands. Furthermore, we discuss the potential of combination treatment strategies, which use the coadministration of numerous therapeutic medications to target multiple pathways implicated in cancer growth and address drug resistance mechanisms. We address recent biomimetic advances that potentially improve the biocompatibility, cellular uptake, and tumor penetration of carbohydrate polymer-based nanocarriers. These methods involve protein corona engineering and cell membrane coating. Furthermore, we look at the possibility of intelligent and sensitive systems that may adjust their behaviors in response to certain inputs or feedback loops, allowing for precise and regulated drug distribution.
Tightly sealed peri-implant gingival tissue provides a barrier against oral bacterial invasion, protecting the alveolar bone and maintaining long-term implant survival. To investigate if zinc can enhance the integration between peri-implant gingival tissue and abutment surface, we herein present novel zinc/chitosan/gelatin (Zn/CS/Gel) coatings prepared using the electrophoretic deposition (EPD) technique. The effect of these coatings on human gingival fibroblasts (hGFs) was investigated by culturing these cells on top of the EPD coatings. Surface characterization demonstrated that Zn2+ were released in a sustained and pH-responsive manner. The preclinical cell culture evaluation of these coatings indicated that the zinc-containing coatings enhanced cell migration, adhesion and collagen secretion of hGFs. Moreover, the zinc-containing coatings exhibited antibacterial efficacy by inhibiting the growth of Porphyromonas gingivalis and reducing attachment of Staphylococcus aureus. Notably, zinc-free CS/Gel coatings prevented attachment of P. gingivalis as well. The coatings were also shown to be cytocompatible with epithelial cells and osteoblasts, which are other relevant cell types which surround dental implants after clinical placement. Based on our findings, it can be concluded that Zn-containing coatings hold promise to enhance the adhesion of gingival tissue to the implant surface, which may potentially contribute to the formation of a robust peri-implant soft sealing counteracting bacterial invasion.
Bacteriophage (phage) has been reported to reduce the bacterial infection in delayed-healing wounds and, as a result, aiding in the healing of said wounds. In this study we investigated whether the presence of phage itself could help repair delayed-healing wounds in diabetic mice. Three strains of phage that target Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa were used. To prevent the phage liquid from running off the wound, the mixture of phage (phage-cocktail) was encapsulated in a porous hydrogel dressing made with three-dimensional printing. The phage-cocktail dressing was tested for its phage preservation and release efficacy, bacterial reduction, cytotoxicity with 3T3 fibroblast, and performance in repairing a sterile full-thickness skin wound in diabetic mice. The phage-cocktail dressing released 1.7%–5.7% of the phages embedded in 24 h, and reduced between 37%–79% of the surface bacteria compared with the blank dressing (p <.05). The phage-cocktail dressing exhibited no sign of cytotoxicity after 3 days (p <.05). In vivo studies showed that 14 days after incision, the full-thickness wound treated with a phage-cocktail dressing had a higher wound healing ratio compared with the blank dressing and control (p <.01). Histological analysis showed that the structure of the skin layers in the group treated with phage-cocktail dressing was restored in an orderly fashion. Compared with the blank dressing and control, the repaired tissue in the phage-cocktail dressing group had new capillary vessels and no sign of inflammation in its dermis, and its epidermis had a higher degree of re-epithelialization (p <.05). The slow-released phage has demonstrated positive effects in repairing diabetic skin wounds.
Acute kidney injury (AKI) is a life-threatening disease primarily caused by renal ischemia-reperfusion (I/R) injury, which can result in renal failure. Currently, growth factor therapy is considered a promising and effective approach for AKI treatment. Basic fibroblast growth factor (bFGF), an angiogenic factor with potent activity, efficiently stimulates angiogenesis and facilitates regeneration of renal tissue. However, the unrestricted diffusion of bFGF restricts its clinical application in AKI treatment. Therefore, developing a novel sustained released system for bFGF could enhance its potential in treating AKI. In this study, we genetically engineered a multifunctional recombinant protein by fusing bFGF with a specific peptide (EBP). EBP-bFGF effectively binds to the extracellular matrix in the injured kidney, enabling slow release of bFGF in AKI. Furthermore, following orthotopic injection into I/R rats' ischemic kidneys, EBP-bFGF exhibited stable retention within the tissue. Additionally, EBP-bFGF suppressed apoptosis of renal cells, reduced renal fibrosis, and facilitated recovery of renal function. These findings suggest that EBP-bFGF delivery system represents a promising strategy for treating AKI.
The combination of magnetic resonance and fluorescence imaging in dual-modality imaging not only resolves the limitations of conventional single molecular imaging techniques in terms of specificity, sensitivity, and resolution but also expands the possibilities of molecular imaging techniques in diagnostics and therapeutic monitoring. Herein, a novel pH-responsive magnetic resonance/near-infrared fluorescence (MR/NIRF) nanoprobe (MnO2@BSA-Cy5.5) was successfully prepared by biomineralizing manganese dioxide (MnO2) with bovine serum albumin (BSA) while coupling fluorescent dye Cy5.5 for precise tumor detection and visualization. The synthesized MnO2@BSA-Cy5.5 nanoprobes were spherical particles of approximately 22.62 ± 3.31 nm in size, and their relaxation rates and T1 imaging signals were activated-enhanced in an acidic environment. Cytotoxicity assay and hematoxylin and eosin staining demonstrated that MnO2@BSA-Cy5.5 had low cytotoxicity and good biocompatibility. More importantly, active targeting via solid tumor albumin-binding protein receptor and enhanced permeability and retention effect, the probe can be specifically aggregated to the tumor site of the 8305C tumor model and exhibit excellent MR/NIRF imaging properties. Our results show that MnO2@BSA-Cy5.5 has high resolution and sensitivity in tumor imaging and is expected to be applied as an MR/NIRF contrast agent for accurate diagnosis of thyroid cancer.
Engineering cardiac implants for treating myocardial infarction (MI) has advanced, but challenges persist in mimicking the structural properties and variability of cardiac tissues using traditional bioconstructs and conventional engineering methods. This study introduces a synthetic patch with a bioactive surface designed to swiftly restore functionality to the damaged myocardium. The patch combines a composite, soft, and conductive hydrogel-based on (3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) and polyvinyl alcohol (PVA). This cardiac patch exhibits a reasonably high electrical conductivity (40 S/cm) and a stretchability up to 50% of its original length. Our findings reveal its resilience to 10% cyclic stretching at 1 Hz with no loss of conductivity over time. To mediate a strong cell–scaffold adhesion, we biofunctionalize the hydrogel with a N-cadherin mimic peptide, providing the cardiac patch with a bioactive surface. This modification promote increased adherence and proliferation of cardiac fibroblasts (CFbs) while effectively mitigating the formation of bacterial biofilm, particularly against Staphylococcus aureus, a common pathogen responsible for surgical site infections (SSIs). Our study demonstrates the successful development of a structurally validated cardiac patch possessing the desired mechanical, electrical, and biofunctional attributes for effective cardiac recovery. Consequently, this research holds significant promise in alleviating the burden imposed by myocardial infarctions.
Degenerative spinal pathology is a widespread medical issue, and spine fusion surgeries are frequently performed. In this study, we fabricated an injectable bioactive click chemistry polymer cement for use in spinal fusion and bone regrowth. Taking advantages of the bioorthogonal click reaction, this cement can be crosslinked by itself eliminating the addition of a toxic initiator or catalyst, nor any external energy sources like UV light or heat. Furthermore, nano-hydroxyapatite (nHA) and microspheres carrying recombinant human bone morphogenetic protein-2 (rhBMP-2) and recombinant human vascular endothelial growth factor (rhVEGF) were used to make the cement bioactive for vascular induction and osteointegration. After implantation into a rabbit posterolateral spinal fusion (PLF) model, the cement showed excellent induction of new bone formation and bridging bone, achieving results comparable to autograft control. This is largely due to the osteogenic properties of nano-hydroxyapatite (nHA) and the released rhBMP-2 and rhVEGF growth factors. Since the availability of autograft sources is limited in clinical settings, this injectable bioactive click chemistry cement may be a promising alternative for spine fusion applications in addressing various spinal conditions.
The osseointegration of titanium implants within the host tissue holds crucial importance. The introduction of functional coatings at tissue—implant interface enhances the bioactivity of titanium implants, improves their therapeutic outcomes, and enhances the effectiveness of treatments. In this study, we focused on enhancing the bioactivity of titanium-based implant materials by coating the titanium surfaces with chitosan microspheres, which are loaded with osseointegration-promoting agent dexamethasone (DEX). Initially, chitosan microspheres were successfully produced, followed by DEX loading through diffusion, resulting in a drug loading efficiency of around 50.2 (wt %). The subsequent drug release profile displayed a 24-hour duration, releasing approximately 32.6 (wt %) of the loaded DEX. In cell proliferation assays using human osteosarcoma (SAOS-2) cells, Ti surfaces coated with DEX-loaded chitosan microspheres initially exhibited lower cell numbers compared with DEX-free ones. This observation was attributed to transient osteogenic differentiation effects of DEX, since a notable increase in cell proliferation was observed on the 7th day. Von Kossa staining revealed mineralization beginning on the 14th day, particularly evident in DEX-loaded samples. Moreover, alkaline phosphatase (ALP) activity displayed a pattern of initial increase and subsequent decrease, with DEX release from chitosan microspheres showing a clear influence on the osteogenic differentiation, especially on the 7th day. These findings align with literature, highlighting DEX's potential to enhance osteogenic differentiation and cellular behavior on chitosan microsphere-coated titanium surfaces. This study emphasizes the promising implications for functionalizing surfaces of implant materials with DEX-loaded chitosan microspheres to improve their biocompatibility and bioactivity.