Pingping Qi, Wei Zhang, Yang Gao, Shengkui Chen, Minghe Jiang, Rong He, Wenzhong Chen, Xiawei Wei, Bingquan Hu, Hao Xu, Minsheng Wu, Rong Tang
N6-methyladenosine (m6A) is known to be crucial in various biological processes, but its role in sepsis-induced circulatory and cardiac dysfunction is not well understood. Specifically, mitophagy, a specialized form of autophagy, is excessively activated during lipopolysaccharide (LPS)-induced myocardial injury. This study aimed to investigate the impact of LPS-induced endotoxemia on m6A-RNA methylation and its role in regulating mitophagy in sepsis-induced myocardial dysfunction. Our research demonstrated that FTO (fat mass and obesity-associated protein), an m6A demethylase, significantly affects abnormal m6A modification in the myocardium and cardiomyocytes following LPS treatment. In mice, cardiac dysfunction and cardiomyocyte apoptosis worsened after adeno-associated virus serotype 9 (AAV9)-mediated FTO knockdown. Further analyses to uncover the cellular mechanisms improving cardiac function showed that FTO reduced mitochondrial reactive oxygen species, restored both basal and maximal respiration, and preserved mitochondrial membrane potential. We revealed that FTO plays a critical role in activating mitophagy by targeting BNIP3. Additionally, the cardioprotective effects of AAV-FTO were significantly compromised by mdivi-1, a mitophagy inhibitor. Mechanistically, FTO interacted with BNIP3 transcripts and regulated their expression in an m6A-dependent manner. Following FTO silencing, BNIP3 transcripts with elevated m6A modification levels in their coding regions were bound by YTHDF2 (YT521-B homology m6A RNA-binding protein 2), leading to mRNA destabilization and decreased BNIP3 protein levels. These findings highlight the importance of FTO-dependent cardiac m6A methylation in regulating mitophagy and enhance our understanding of this critical interplay, which is essential for developing therapeutic strategies to protect cardiac mitochondrial function, alleviate cardiac dysfunction, and improve survival during sepsis.
{"title":"N6-methyladenosine demethyltransferase FTO alleviates sepsis by upregulating BNIP3 to induce mitophagy.","authors":"Pingping Qi, Wei Zhang, Yang Gao, Shengkui Chen, Minghe Jiang, Rong He, Wenzhong Chen, Xiawei Wei, Bingquan Hu, Hao Xu, Minsheng Wu, Rong Tang","doi":"10.1002/jcp.31448","DOIUrl":"https://doi.org/10.1002/jcp.31448","url":null,"abstract":"<p><p>N6-methyladenosine (m6A) is known to be crucial in various biological processes, but its role in sepsis-induced circulatory and cardiac dysfunction is not well understood. Specifically, mitophagy, a specialized form of autophagy, is excessively activated during lipopolysaccharide (LPS)-induced myocardial injury. This study aimed to investigate the impact of LPS-induced endotoxemia on m6A-RNA methylation and its role in regulating mitophagy in sepsis-induced myocardial dysfunction. Our research demonstrated that FTO (fat mass and obesity-associated protein), an m6A demethylase, significantly affects abnormal m6A modification in the myocardium and cardiomyocytes following LPS treatment. In mice, cardiac dysfunction and cardiomyocyte apoptosis worsened after adeno-associated virus serotype 9 (AAV9)-mediated FTO knockdown. Further analyses to uncover the cellular mechanisms improving cardiac function showed that FTO reduced mitochondrial reactive oxygen species, restored both basal and maximal respiration, and preserved mitochondrial membrane potential. We revealed that FTO plays a critical role in activating mitophagy by targeting BNIP3. Additionally, the cardioprotective effects of AAV-FTO were significantly compromised by mdivi-1, a mitophagy inhibitor. Mechanistically, FTO interacted with BNIP3 transcripts and regulated their expression in an m6A-dependent manner. Following FTO silencing, BNIP3 transcripts with elevated m6A modification levels in their coding regions were bound by YTHDF2 (YT521-B homology m6A RNA-binding protein 2), leading to mRNA destabilization and decreased BNIP3 protein levels. These findings highlight the importance of FTO-dependent cardiac m6A methylation in regulating mitophagy and enhance our understanding of this critical interplay, which is essential for developing therapeutic strategies to protect cardiac mitochondrial function, alleviate cardiac dysfunction, and improve survival during sepsis.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hangbo Liu, Miao Yu, Kai Sun, Jinglei Zheng, Jiayu Wang, Haochen Liu, Hailan Feng, Yang Liu, Dong Han
Enamel protects teeth from external irritation and its formation involves sequential differentiation of ameloblasts, a dental epithelial cell. Keratinocyte differentiation factor 1 (KDF1) is important in the development of epithelial tissues and organs. However, the specific role of KDF1 in enamel formation and corresponding regulatory mechanisms are unclear. This study demonstrated that KDF1 was persistently expressed in all stages of ameloblast differentiation, through RNAscope in situ hybridization. KDF1 expression in the mouse ameloblast cell line LS8 was demonstrated via immunofluorescence assay. KDF1 was knocked out in LS8 cells using the CRISPR/Cas-9 system or overexpressed in LS8 cells through lentiviral infection. In vitro ameloblast differentiation induction, quantitative reverse transcription PCR, western blot analysis, and alkaline phosphatase (ALP) assay indicated that knockout or overexpression of KDF1 in LS8 cells decreased or increased the mRNA and protein levels of several key amelogenesis markers, as well as ALP activity. Furthermore, liquid chromatography-mass spectrometry and co-immunoprecipitation analyses revealed that KDF1 can interact with the IKK complex, thereby inhibiting the NF-κB pathway. Suppressing NF-κB activity partially recovered the decreased ameloblast differentiation in LS8 cells induced by KDF1-knockout. This study demonstrated that KDF1 can promote ameloblast differentiation of LS8 cells by inhibiting the IKK/IκB/NF-κB axis, and is a potential target for functional enamel regeneration.
{"title":"KDF1 promotes ameloblast differentiation by inhibiting the IKK/IκB/NF-κB axis.","authors":"Hangbo Liu, Miao Yu, Kai Sun, Jinglei Zheng, Jiayu Wang, Haochen Liu, Hailan Feng, Yang Liu, Dong Han","doi":"10.1002/jcp.31437","DOIUrl":"https://doi.org/10.1002/jcp.31437","url":null,"abstract":"<p><p>Enamel protects teeth from external irritation and its formation involves sequential differentiation of ameloblasts, a dental epithelial cell. Keratinocyte differentiation factor 1 (KDF1) is important in the development of epithelial tissues and organs. However, the specific role of KDF1 in enamel formation and corresponding regulatory mechanisms are unclear. This study demonstrated that KDF1 was persistently expressed in all stages of ameloblast differentiation, through RNAscope in situ hybridization. KDF1 expression in the mouse ameloblast cell line LS8 was demonstrated via immunofluorescence assay. KDF1 was knocked out in LS8 cells using the CRISPR/Cas-9 system or overexpressed in LS8 cells through lentiviral infection. In vitro ameloblast differentiation induction, quantitative reverse transcription PCR, western blot analysis, and alkaline phosphatase (ALP) assay indicated that knockout or overexpression of KDF1 in LS8 cells decreased or increased the mRNA and protein levels of several key amelogenesis markers, as well as ALP activity. Furthermore, liquid chromatography-mass spectrometry and co-immunoprecipitation analyses revealed that KDF1 can interact with the IKK complex, thereby inhibiting the NF-κB pathway. Suppressing NF-κB activity partially recovered the decreased ameloblast differentiation in LS8 cells induced by KDF1-knockout. This study demonstrated that KDF1 can promote ameloblast differentiation of LS8 cells by inhibiting the IKK/IκB/NF-κB axis, and is a potential target for functional enamel regeneration.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During skeletal muscle adaptation to physiological or pathophysiological signals, contractile apparatus and mitochondrial function are coordinated to alter muscle fiber type. Although recent studies have identified various factors involved in modifying contractile proteins and mitochondrial function, the molecular mechanisms coordinating contractile and metabolic functions during muscle fiber transition are not fully understood. Using a gene‐deficient mouse approach, our previous studies uncovered that vestigial‐like family member 2 (Vgll2), a skeletal muscle‐specific transcription cofactor activated by exercise, is essential for fast‐to‐slow adaptation of skeletal muscle. The current study provides evidence that Vgll2 plays a role in increasing muscle mitochondrial mass and oxidative capacity. Transgenic Vgll2 overexpression in mice altered muscle fiber composition toward the slow type and enhanced exercise endurance, which contradicted the outcomes observed with Vgll2 deficiency. Vgll2 expression was positively correlated with the expression of genes related to mitochondrial function in skeletal muscle, mitochondrial DNA content, and protein abundance of oxidative phosphorylation complexes. Additionally, Vgll2 overexpression significantly increased the maximal respiration of isolated muscle fibers and enhanced the suppressive effects of endurance training on weight gain. Notably, no additional alteration in expression of myosin heavy chain genes was observed after exercise, suggesting that Vgll2 plays a direct role in regulating mitochondrial function, independent of its effect on contractile components. The observed increase in exercise endurance and metabolic efficiency may be attributed to the acute upregulation of genes promoting fatty acid utilization as a direct consequence of Vgll2 activation facilitated by endurance exercise. Thus, the current study establishes that Vgll2 is an integrative regulator of mitochondrial function and contractility in skeletal muscle.
{"title":"Vgll2 as an integrative regulator of mitochondrial function and contractility specific to skeletal muscle","authors":"Masahiko Honda, Ryota Inoue, Kuniyuki Nishiyama, Takeshi Ueda, Akiyoshi Komuro, Hisayuki Amano, Ryoichi Sugisawa, Suman Dash, Jun Shirakawa, Hitoshi Okada","doi":"10.1002/jcp.31436","DOIUrl":"https://doi.org/10.1002/jcp.31436","url":null,"abstract":"During skeletal muscle adaptation to physiological or pathophysiological signals, contractile apparatus and mitochondrial function are coordinated to alter muscle fiber type. Although recent studies have identified various factors involved in modifying contractile proteins and mitochondrial function, the molecular mechanisms coordinating contractile and metabolic functions during muscle fiber transition are not fully understood. Using a gene‐deficient mouse approach, our previous studies uncovered that vestigial‐like family member 2 (Vgll2), a skeletal muscle‐specific transcription cofactor activated by exercise, is essential for fast‐to‐slow adaptation of skeletal muscle. The current study provides evidence that Vgll2 plays a role in increasing muscle mitochondrial mass and oxidative capacity. Transgenic Vgll2 overexpression in mice altered muscle fiber composition toward the slow type and enhanced exercise endurance, which contradicted the outcomes observed with Vgll2 deficiency. Vgll2 expression was positively correlated with the expression of genes related to mitochondrial function in skeletal muscle, mitochondrial DNA content, and protein abundance of oxidative phosphorylation complexes. Additionally, Vgll2 overexpression significantly increased the maximal respiration of isolated muscle fibers and enhanced the suppressive effects of endurance training on weight gain. Notably, no additional alteration in expression of myosin heavy chain genes was observed after exercise, suggesting that Vgll2 plays a direct role in regulating mitochondrial function, independent of its effect on contractile components. The observed increase in exercise endurance and metabolic efficiency may be attributed to the acute upregulation of genes promoting fatty acid utilization as a direct consequence of Vgll2 activation facilitated by endurance exercise. Thus, the current study establishes that Vgll2 is an integrative regulator of mitochondrial function and contractility in skeletal muscle.","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone marrow adipose tissue (BMAT) accrues in osteoporosis, whereas its contribution to the progression of bone resorption remains insufficiently understood. To understand the mechanisms that promote BMAT expansion in osteoporosis, in the present study, we performed extensive analysis of the spatiotemporal pattern of BMAT expansion during the progression of bone resorption in TgRANKL transgenic mouse models of osteoporosis expressing human RANKL (receptor activator of nuclear factor-κB ligand). Our results showed that TgRANKL mice of both sexes developed dramatically increased BMAT expansion compared to wild-type (WT) littermates, that was analogous to the levels of RANKL expression and the severity of the bone loss phenotype. BMAT was formed at close proximity to areas undergoing active bone remodelling and bone resorption, whereas bone resorption preceded BMAT development. Expression analysis in bone fractions demonstrated that BMAT constitutes a major source for RANKL production. Ex vivo analysis of isolated bone marrow stromal cells from TgRANKL mice showed an increased adipogenic differentiation capacity compared to WT, while osteoclast supernatants further exaggerated adipogenesis, supporting a critical role of the osteoclast-derived secretome in the differentiation of bone marrow adipocytes. Furthermore, the effectiveness of an antiosteoporosis treatment in BMAT development was investigated upon treatment of TgRANKL models with the bisphosphonate alendronate. Notably, alendronate effectively improved bone mass and attenuated BMAT expansion, indicating a possible involvement of osteoclasts and bone resorption in BMAT development. On the contrary, inhibition of BMAT with PPARγ antagonists (GW9662 or BADGE) effectively ameliorated BMAT expansion but failed to reverse the osteoporotic phenotype of TgRANKL mice. Overall, our data demonstrate that TgRANKL mice constitute unique genetic mouse models for investigating the pathogenic mechanisms that regulate the development and expansion of BMAT in osteolytic diseases.
{"title":"Interplay between bone marrow adiposity and bone resorption in RANKL-mediated modelled osteoporosis.","authors":"Vagelis Rinotas, Evi Gkikopoulou, Efthymiοs Tzortzis, Konstantinos Kritikos, Panagiota Siatra, Apostolos Papadopoulos, Vasiliki-Iris Perivolidi, Eleni Douni","doi":"10.1002/jcp.31434","DOIUrl":"https://doi.org/10.1002/jcp.31434","url":null,"abstract":"<p><p>Bone marrow adipose tissue (BMAT) accrues in osteoporosis, whereas its contribution to the progression of bone resorption remains insufficiently understood. To understand the mechanisms that promote BMAT expansion in osteoporosis, in the present study, we performed extensive analysis of the spatiotemporal pattern of BMAT expansion during the progression of bone resorption in TgRANKL transgenic mouse models of osteoporosis expressing human RANKL (receptor activator of nuclear factor-κB ligand). Our results showed that TgRANKL mice of both sexes developed dramatically increased BMAT expansion compared to wild-type (WT) littermates, that was analogous to the levels of RANKL expression and the severity of the bone loss phenotype. BMAT was formed at close proximity to areas undergoing active bone remodelling and bone resorption, whereas bone resorption preceded BMAT development. Expression analysis in bone fractions demonstrated that BMAT constitutes a major source for RANKL production. Ex vivo analysis of isolated bone marrow stromal cells from TgRANKL mice showed an increased adipogenic differentiation capacity compared to WT, while osteoclast supernatants further exaggerated adipogenesis, supporting a critical role of the osteoclast-derived secretome in the differentiation of bone marrow adipocytes. Furthermore, the effectiveness of an antiosteoporosis treatment in BMAT development was investigated upon treatment of TgRANKL models with the bisphosphonate alendronate. Notably, alendronate effectively improved bone mass and attenuated BMAT expansion, indicating a possible involvement of osteoclasts and bone resorption in BMAT development. On the contrary, inhibition of BMAT with PPARγ antagonists (GW9662 or BADGE) effectively ameliorated BMAT expansion but failed to reverse the osteoporotic phenotype of TgRANKL mice. Overall, our data demonstrate that TgRANKL mice constitute unique genetic mouse models for investigating the pathogenic mechanisms that regulate the development and expansion of BMAT in osteolytic diseases.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laventa M. Obare, Stephen Priest, Anas Ismail, Mona Mashayekhi, Xiuqi Zhang, Lindsey K. Stolze, Quanhu Sheng, Kisyua Nthenge, Zer Vue, Kit Neikirk, Heather K. Beasley, Curtis Gabriel, Tecla Temu, Sara Gianella, Simon A. Mallal, John R. Koethe, Antentor Hinton, Samuel S. Bailin, Celestine N. Wanjalla
Chronic systemic inflammation significantly increases myocardial infarction risk in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis, contributing to cardiovascular disease. We aimed to characterize endothelial cell (EC) chemokines, cytokine, and chemokine receptors of PLWH, hypothesizing that in our cohort, glucose intolerance contributes to their differential expression implicated in endothelial dysfunction. Using single‐cell transcriptomic analysis, we phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in subcutaneous adipose tissue of 59 PLWH with and without glucose intolerance. Our results show that arterial and capillary ECs express significantly higher interferon and tumor necrosis factor (TNF) receptors than venous ECs and VSMCs. Venous ECs exhibited more interleukin (IL)1R1 and ACKR1 receptors, and VSMCs showed significant IL6R expression than arterial and capillary ECs. When stratified by group, arterial ECs from PLWH with glucose intolerance expressed significantly higher IL1R1, IL6R, CXCL12, CCL14, and ICAM2 transcripts than arterial ECs from PLWH without diabetes. Of the different vascular cell types studied, arterial ECs as a proportion of all ECs in adipose tissue were positively correlated with plasma fasting blood glucose. In contrast, venous ECs and VSMCs were positively correlated with plasma IL6. To directly assess the effect of plasma from PLWH on endothelial function, we cultured human arterial ECs (HAECs) in plasma‐conditioned media from PLWH and performed bulk RNA sequencing. Plasma from PLWH stimulated ECs with the upregulation of genes that enrich for the oxidative phosphorylation and the TNF‐α via NFK‐β pathways. In conclusion, ECs in PLWH show heterogeneous cytokine and chemokine receptor expression, and arterial ECs were the most influenced by glucose intolerance. Further research must explicate cytokine and chemokine roles in EC dysfunction and identify biomarkers for disease progression and therapeutic response.
{"title":"Cytokine and chemokine receptor profiles in adipose tissue vasculature unravel endothelial cell responses in HIV","authors":"Laventa M. Obare, Stephen Priest, Anas Ismail, Mona Mashayekhi, Xiuqi Zhang, Lindsey K. Stolze, Quanhu Sheng, Kisyua Nthenge, Zer Vue, Kit Neikirk, Heather K. Beasley, Curtis Gabriel, Tecla Temu, Sara Gianella, Simon A. Mallal, John R. Koethe, Antentor Hinton, Samuel S. Bailin, Celestine N. Wanjalla","doi":"10.1002/jcp.31415","DOIUrl":"https://doi.org/10.1002/jcp.31415","url":null,"abstract":"Chronic systemic inflammation significantly increases myocardial infarction risk in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis, contributing to cardiovascular disease. We aimed to characterize endothelial cell (EC) chemokines, cytokine, and chemokine receptors of PLWH, hypothesizing that in our cohort, glucose intolerance contributes to their differential expression implicated in endothelial dysfunction. Using single‐cell transcriptomic analysis, we phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in subcutaneous adipose tissue of 59 PLWH with and without glucose intolerance. Our results show that arterial and capillary ECs express significantly higher interferon and tumor necrosis factor (TNF) receptors than venous ECs and VSMCs. Venous ECs exhibited more interleukin (IL)1R1 and ACKR1 receptors, and VSMCs showed significant IL6R expression than arterial and capillary ECs. When stratified by group, arterial ECs from PLWH with glucose intolerance expressed significantly higher IL1R1, IL6R, CXCL12, CCL14, and ICAM2 transcripts than arterial ECs from PLWH without diabetes. Of the different vascular cell types studied, arterial ECs as a proportion of all ECs in adipose tissue were positively correlated with plasma fasting blood glucose. In contrast, venous ECs and VSMCs were positively correlated with plasma IL6. To directly assess the effect of plasma from PLWH on endothelial function, we cultured human arterial ECs (HAECs) in plasma‐conditioned media from PLWH and performed bulk RNA sequencing. Plasma from PLWH stimulated ECs with the upregulation of genes that enrich for the oxidative phosphorylation and the TNF‐α via NFK‐β pathways. In conclusion, ECs in PLWH show heterogeneous cytokine and chemokine receptor expression, and arterial ECs were the most influenced by glucose intolerance. Further research must explicate cytokine and chemokine roles in EC dysfunction and identify biomarkers for disease progression and therapeutic response.","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone is a dynamic organ which continuously undergoes remodeling throughout one's lifetime. Cellular production of reactive oxygen species (ROS) is essential for regulating bone homeostasis. Osteoclasts, multinucleated giant cells differentiated from macrophage lineage, are responsible for osteolytic bone conditions which are closely linked to ROS signaling pathways. In this study, an anti‐ROS enzyme, peroxiredoxin 1 (Prdx1) was found to be expressed both in bone marrow macrophages and osteoclasts. Recombinant Prdx1 protein was found to dose‐dependently inhibit ROS production and osteoclast differentiation. Mechanistically, Prdx1 protein also attenuated NFATc1 activation as well as the expression of C‐Fos, V‐ATPase‐d2, Cathepsin K, and Integrin αV. Collectively, Prdx1 is a negative regulator on osteoclast formation via inhibiting RANKL‐mediated ROS activity, thus suggesting its potential application for treating osteoclast related disorders.
{"title":"Antioxidant enzyme Prdx1 inhibits osteoclastogenesis via suppressing ROS and NFATc1 signaling pathways","authors":"Chao Wang, Gang Wang, Fangming Song, Jinmin Zhao, Qian Liu, Jiake Xu","doi":"10.1002/jcp.31431","DOIUrl":"https://doi.org/10.1002/jcp.31431","url":null,"abstract":"Bone is a dynamic organ which continuously undergoes remodeling throughout one's lifetime. Cellular production of reactive oxygen species (ROS) is essential for regulating bone homeostasis. Osteoclasts, multinucleated giant cells differentiated from macrophage lineage, are responsible for osteolytic bone conditions which are closely linked to ROS signaling pathways. In this study, an anti‐ROS enzyme, peroxiredoxin 1 (Prdx1) was found to be expressed both in bone marrow macrophages and osteoclasts. Recombinant Prdx1 protein was found to dose‐dependently inhibit ROS production and osteoclast differentiation. Mechanistically, Prdx1 protein also attenuated NFATc1 activation as well as the expression of C‐Fos, V‐ATPase‐d2, Cathepsin K, and Integrin αV. Collectively, Prdx1 is a negative regulator on osteoclast formation via inhibiting RANKL‐mediated ROS activity, thus suggesting its potential application for treating osteoclast related disorders.","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amber Crabtree, Kit Neikirk, Julia A. Pinette, Aaron Whiteside, Bryanna Shao, Jessica Bedenbaugh, Zer Vue, Larry Vang, Han Le, Mert Demirci, Taseer Ahmad, Trinity Celeste Owens, Ashton Oliver, Faben Zeleke, Heather K. Beasley, Edgar Garza Lopez, Estevão Scudese, Taylor Rodman, Kinuthia Kabugi, Alice Koh, Suzanne Navarro, Jacob Lam, Ben Kirk, Margaret Mungai, Mariya Sweetwyne, Ho-Jin Koh, Elma Zaganjor, Steven M. Damo, Jennifer A. Gaddy, Annet Kirabo, Sandra A. Murray, Anthonya Cooper, Clintoria Williams, Melanie R. McReynolds, Andrea G. Marshall, Antentor Hinton Jr.
Front Cover Caption: The cover image is based on the article Quantitative assessment of morphological changes in lipid droplets and lipid-mito interactions with aging in brown adipose by Amber Crabtree et al., https://doi.org/10.1002/jcp.31340.