RETRACTION: M. Du, Y. Zhuang, P. Tan, Z. Yu, X. Zhang, A. Wang, “MicroRNA-95 Knockdown Inhibits Epithelial–mesenchymal Transition and Cancer Stem Cell Phenotype in Gastric Cancer Cells through MAPK Pathway by Upregulating DUSP5,” Journal of Cellular Physiology 235, no. 2 (2020): 944-956, https://doi.org/10.1002/jcp.29010.
The above article, published online on 15 July 2019 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor-in-Chief, Robert Heath; and Wiley Periodicals LLC. The retraction has been agreed due to concerns raised by third parties on the data presented in the article. Specifically, the article makes use of unverifiable/unknown and/or contaminated cell lines. Additionally, the description of experimental methods is insufficient and relevant supporting data is unavailable, making the foundation of the study not comprehensible and/or reproducible to readers. Accordingly, the conclusions of this article are considered invalid by the editors. The authors have been informed of the decision of retraction but unavailable for a final confirmation.
撤回:M. Du, Y. Zhuang, P. Tan, Z. Yu, X. Zhang, A. Wang, "MicroRNA-95 Knockdown Inhibits Epithelial-mesenchymal Transition and Cancer Stem Cell Phenotype in Gastric Cancer Cells through MAPK Pathway by Upregulating DUSP5," Journal of Cellular Physiology 235, no. 2 (2020): 944-956, https://doi.org/10.1002/jcp.29010.上述文章于 2019 年 7 月 15 日在线发表于 Wiley Online Library (wileyonlinelibrary.com),经期刊主编 Robert Heath 和 Wiley Periodicals LLC 协议,该文章已被撤回。同意撤稿的原因是第三方对文章中提供的数据表示担忧。具体来说,文章使用了无法验证/未知和/或受污染的细胞系。此外,文章对实验方法的描述不够充分,也没有提供相关的支持数据,使得读者无法理解和/或复制该研究的基础。因此,编辑认为这篇文章的结论无效。作者已被告知撤稿决定,但无法得到最终确认。
{"title":"RETRACTION","authors":"","doi":"10.1002/jcp.31392","DOIUrl":"10.1002/jcp.31392","url":null,"abstract":"<p><b>RETRACTION</b>: M. Du, Y. Zhuang, P. Tan, Z. Yu, X. Zhang, A. Wang, “MicroRNA-95 Knockdown Inhibits Epithelial–mesenchymal Transition and Cancer Stem Cell Phenotype in Gastric Cancer Cells through MAPK Pathway by Upregulating DUSP5,” <i>Journal of Cellular Physiology</i> 235, no. 2 (2020): 944-956, https://doi.org/10.1002/jcp.29010.</p><p>The above article, published online on 15 July 2019 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor-in-Chief, Robert Heath; and Wiley Periodicals LLC. The retraction has been agreed due to concerns raised by third parties on the data presented in the article. Specifically, the article makes use of unverifiable/unknown and/or contaminated cell lines. Additionally, the description of experimental methods is insufficient and relevant supporting data is unavailable, making the foundation of the study not comprehensible and/or reproducible to readers. Accordingly, the conclusions of this article are considered invalid by the editors. The authors have been informed of the decision of retraction but unavailable for a final confirmation.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"239 11","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcp.31392","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RETRACTION: Ling Liu, Tan-Tan Yu, Chen-Chen Ren, Li Yang, Shi-Hong Cui, Xiao-An Zhang, “CP-31398 inhibits the progression of cervical cancer through reversing the epithelial mesenchymal transition via the downregulation of PAX2s,” Journal of Cellular Physiology 234, no. 3 (2019): 2929-2942, https://doi.org/10.1002/jcp.27109.
The above article, published online on 21 August 2018 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors; the journal Editor-in-Chief, Alexander Hutchison; and Wiley Periodicals LLC. The retraction has been agreed due to concerns related to the data presented in the article. Several flaws and inconsistencies between results presented and experimental methods described were found. Additionally, duplications affecting Figures 5a and 5c, and Figure 8a and 8c have been detected. Accordingly, the conclusions of this article are considered invalid by the editors.
撤稿:Ling Liu, Tan-Tan Yu, Chen-Chen Ren, Li Yang, Shi-Hong Cui, Xiao-An Zhang, "CP-31398 inhibits progression of cervical cancer through the reversing the epithelial mesenchymal transition via the downregulation of PAX2s," Journal of Cellular Physiology 234, no.3 (2019): 2929-2942, https://doi.org/10.1002/jcp.27109。上述文章于2018年8月21日在线发表于威利在线图书馆(wileyonlinelibrary.com),经作者、期刊主编亚历山大-哈奇森(Alexander Hutchison)和威利期刊有限责任公司(Wiley Periodicals LLC)同意,已被撤回。之所以同意撤稿,是因为文章中提供的数据令人担忧。我们发现文章中介绍的结果与实验方法之间存在若干缺陷和不一致之处。此外,还发现了影响图 5a 和 5c 以及图 8a 和 8c 的重复内容。因此,编辑认为这篇文章的结论无效。
{"title":"RETRACTION: CP-31398 inhibits the progression of cervical cancer through reversing the epithelial mesenchymal transition via the downregulation of PAX2s","authors":"","doi":"10.1002/jcp.31353","DOIUrl":"10.1002/jcp.31353","url":null,"abstract":"<p><b>RETRACTION:</b> Ling Liu, Tan-Tan Yu, Chen-Chen Ren, Li Yang, Shi-Hong Cui, Xiao-An Zhang, “CP-31398 inhibits the progression of cervical cancer through reversing the epithelial mesenchymal transition via the downregulation of PAX2s,” <i>Journal of Cellular Physiology</i> 234, no. 3 (2019): 2929-2942, https://doi.org/10.1002/jcp.27109.</p><p>The above article, published online on 21 August 2018 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors; the journal Editor-in-Chief, Alexander Hutchison; and Wiley Periodicals LLC. The retraction has been agreed due to concerns related to the data presented in the article. Several flaws and inconsistencies between results presented and experimental methods described were found. Additionally, duplications affecting Figures 5a and 5c, and Figure 8a and 8c have been detected. Accordingly, the conclusions of this article are considered invalid by the editors.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"239 11","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcp.31353","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Septic cardiomyopathy (SCM) is an acute cardiac dysfunction involving myocardial cell pyroptosis. TREM-1 is a known receptor on cell membrane that can amplify the inflammatory response. Our previous studies have shown that TREM-1 in cardiomyocytes is involved in the activation of NLRP3 through the SMC4/NEMO pathway. Here, we aimed to use Trem-1 and Nlrp3 knockout mice to verify the effect of TREM-1 through NLRP3 on cardiac function in septic mice. The results showed that TREM-1 knockout resulted in a decrease in the release of downstream cell signals, including SMC4 and NLRP3, resulting in a decrease in cytokine release and improvement of cardiac dysfunction. Knockout of NLRP3 also reduced cardiomyocyte pyroptosis and increased survival rate. The therapeutic targeting of TREM-1 activation of NLRP3 and its pathway may contribute to the treatment or prevention of SCM.
{"title":"The role of TREM-1 in septic myocardial pyroptosis and septic cardiomyopathy in vitro and in vivo","authors":"Yongxia Chen, Lixia Mao, Songtao Liu, Shunyi Huang, Qiuyun Lin, Man Zeng, Huiyi Huang, Xiaocong Sun, Hongpeng Chen, Jiahao Huang, Gaosheng Zhou, Liehua Deng","doi":"10.1002/jcp.31445","DOIUrl":"10.1002/jcp.31445","url":null,"abstract":"<p>Septic cardiomyopathy (SCM) is an acute cardiac dysfunction involving myocardial cell pyroptosis. TREM-1 is a known receptor on cell membrane that can amplify the inflammatory response. Our previous studies have shown that TREM-1 in cardiomyocytes is involved in the activation of NLRP3 through the SMC4/NEMO pathway. Here, we aimed to use <i>Trem-1</i> and <i>Nlrp3</i> knockout mice to verify the effect of TREM-1 through NLRP3 on cardiac function in septic mice. The results showed that TREM-1 knockout resulted in a decrease in the release of downstream cell signals, including SMC4 and NLRP3, resulting in a decrease in cytokine release and improvement of cardiac dysfunction. Knockout of NLRP3 also reduced cardiomyocyte pyroptosis and increased survival rate. The therapeutic targeting of TREM-1 activation of NLRP3 and its pathway may contribute to the treatment or prevention of SCM.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"239 12","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kannan Govindaraj, Sakshi Kannan, Rodrigo Coutinho de Almeida, Lucas Jansen Klomp, Marcel Karperien, Ingrid Meulenbelt, Janine N. Post
The transcription factor SOX9 is integral to tissue homeostasis and is implicated in skeletal malformation, campomelic dysplasia, and osteoarthritis (OA). Despite extensive research, the complete regulatory landscape of SOX9 transcriptional activity, interconnected with signaling pathways (TGFβ, WNT, BMP, IHH, NFκB, and HIF), remains challenging to decipher. This study focuses on elucidating SOX9 signaling in OA pathology using Fluorescence Recovery After Photobleaching (FRAP) to assess SOX9 activity directly in live human primary chondrocytes (hPCs). Single cell FRAP data revealed two distinct subpopulations with differential SOX9 dynamics, showing varied distribution between healthy and OA hPCs. Moreover, inherently elevated SOX9-DNA binding was observed in healthy hPCs compared to preserved and OA counterparts. Anabolic factors (BMP7 and GREM1) and catabolic inhibitors (DKK1 and FRZb) were found to modulate SOX9 transcriptional activity in OA-hPCs. These findings provide valuable insights into the intricate regulation of SOX9 signaling in OA, suggesting potential therapeutic avenues for modulating SOX9 activity in diseased states.
转录因子SOX9是组织稳态不可或缺的因子,与骨骼畸形、颌骨发育不良和骨关节炎(OA)有关。尽管进行了广泛的研究,但SOX9转录活性与信号通路(TGFβ、WNT、BMP、IHH、NFκB和HIF)相互关联的完整调控图谱仍难以破解。本研究利用光漂白后荧光恢复(FRAP)技术直接评估活体原代人类软骨细胞(hPCs)中的SOX9活性,重点阐明OA病理学中的SOX9信号传导。单细胞 FRAP 数据揭示了具有不同 SOX9 活性的两个不同亚群,它们在健康和 OA hPCs 中的分布各不相同。此外,在健康的 hPCs 中观察到 SOX9 与 DNA 的结合高于保存下来的 hPCs 和 OA hPCs。研究发现,同化因子(BMP7 和 GREM1)和分解抑制因子(DKK1 和 FRZb)可调节 OA-hPCs 中 SOX9 的转录活性。这些发现为深入了解OA中SOX9信号的复杂调控提供了宝贵的见解,为调节疾病状态下的SOX9活性提供了潜在的治疗途径。
{"title":"Dissecting SOX9 dynamics reveals its differential regulation in osteoarthritis","authors":"Kannan Govindaraj, Sakshi Kannan, Rodrigo Coutinho de Almeida, Lucas Jansen Klomp, Marcel Karperien, Ingrid Meulenbelt, Janine N. Post","doi":"10.1002/jcp.31443","DOIUrl":"10.1002/jcp.31443","url":null,"abstract":"<p>The transcription factor SOX9 is integral to tissue homeostasis and is implicated in skeletal malformation, campomelic dysplasia, and osteoarthritis (OA). Despite extensive research, the complete regulatory landscape of SOX9 transcriptional activity, interconnected with signaling pathways (TGFβ, WNT, BMP, IHH, NFκB, and HIF), remains challenging to decipher. This study focuses on elucidating SOX9 signaling in OA pathology using Fluorescence Recovery After Photobleaching (FRAP) to assess SOX9 activity directly in live human primary chondrocytes (hPCs). Single cell FRAP data revealed two distinct subpopulations with differential SOX9 dynamics, showing varied distribution between healthy and OA hPCs. Moreover, inherently elevated SOX9-DNA binding was observed in healthy hPCs compared to preserved and OA counterparts. Anabolic factors (BMP7 and GREM1) and catabolic inhibitors (DKK1 and FRZb) were found to modulate SOX9 transcriptional activity in OA-hPCs. These findings provide valuable insights into the intricate regulation of SOX9 signaling in OA, suggesting potential therapeutic avenues for modulating SOX9 activity in diseased states.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"239 12","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcp.31443","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mitochondria are pivotal contributors to cancer mechanisms due to their homeostatic and pathological roles in cellular bioenergetics, biosynthesis, metabolism, signaling, and survival. During transformation and tumor initiation, mitochondrial function is often disrupted by oncogenic mutations, leading to a metabolic profile distinct from precursor cells. In this review, we focus on hepatocellular carcinoma, a cancer arising from metabolically robust and nutrient rich hepatocytes, and discuss the mechanistic impact of altered metabolism in this setting. We provide distinctions between normal mitochondrial activity versus disease-related function which yielded therapeutic opportunities, along with highlighting recent preclinical and clinical efforts focused on targeting mitochondrial metabolism. Finally, several novel strategies for exploiting mitochondrial programs to eliminate hepatocellular carcinoma cells in metabolism-specific contexts are presented to integrate these concepts and gain foresight into the future of mitochondria-focused therapeutics.
{"title":"Mitochondrial metabolism: A moving target in hepatocellular carcinoma therapy","authors":"Monika Komza, Jerry Edward Chipuk","doi":"10.1002/jcp.31441","DOIUrl":"10.1002/jcp.31441","url":null,"abstract":"<p>Mitochondria are pivotal contributors to cancer mechanisms due to their homeostatic and pathological roles in cellular bioenergetics, biosynthesis, metabolism, signaling, and survival. During transformation and tumor initiation, mitochondrial function is often disrupted by oncogenic mutations, leading to a metabolic profile distinct from precursor cells. In this review, we focus on hepatocellular carcinoma, a cancer arising from metabolically robust and nutrient rich hepatocytes, and discuss the mechanistic impact of altered metabolism in this setting. We provide distinctions between normal mitochondrial activity versus disease-related function which yielded therapeutic opportunities, along with highlighting recent preclinical and clinical efforts focused on targeting mitochondrial metabolism. Finally, several novel strategies for exploiting mitochondrial programs to eliminate hepatocellular carcinoma cells in metabolism-specific contexts are presented to integrate these concepts and gain foresight into the future of mitochondria-focused therapeutics.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
João C. Ribeiro, Bernardo C. Rodrigues, Raquel L. Bernardino, Marco G. Alves, Pedro F. Oliveira
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic adenosine monophosphate (cAMP)-regulated chloride and bicarbonate ion channel found in many human cells. Its unique biochemical characteristics and role as a member of the adenosine triphosphate (ATP)-binding cassette transporters superfamily are pivotal for the transport of several substrates across cellular membranes. CFTR is known to interact, physically and functionally, with several other cellular proteins. Hence, its properties are essential for moving various substances across cell membranes and ensuring correct cell functioning. Genetic mutations or environmental factors may disrupt CFTR's function resulting in different possible phenotypes due to gene variations that affect not only CFTR's function, localization, and processing within cells, but also those of its interactors. This has been reported as an underlying cause of various diseases, including cystic fibrosis. The severe clinical implications of cystic fibrosis have driven intense research into the role of CFTR in lung function but its significance to fertility, particularly in men, has been comparatively understudied. However, ongoing and more recent research into CFTR and its interacting proteins in the testis or specific testicular cells is beginning to shed light on this field. Herein, we provide a comprehensive and up-to-date overview of the CFTR, its interactome, and its crucial role in male reproduction, highlighting recent discoveries and advancements in understanding the molecular mechanisms involved. The comprehension of these complex interactions may pave the way for potential therapeutic approaches to improve fertility of men suffering from alterations in the function of CFTR.
{"title":"The interactome of cystic fibrosis transmembrane conductance regulator and its role in male fertility: A critical review","authors":"João C. Ribeiro, Bernardo C. Rodrigues, Raquel L. Bernardino, Marco G. Alves, Pedro F. Oliveira","doi":"10.1002/jcp.31422","DOIUrl":"10.1002/jcp.31422","url":null,"abstract":"<p>The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic adenosine monophosphate (cAMP)-regulated chloride and bicarbonate ion channel found in many human cells. Its unique biochemical characteristics and role as a member of the adenosine triphosphate (ATP)-binding cassette transporters superfamily are pivotal for the transport of several substrates across cellular membranes. CFTR is known to interact, physically and functionally, with several other cellular proteins. Hence, its properties are essential for moving various substances across cell membranes and ensuring correct cell functioning. Genetic mutations or environmental factors may disrupt CFTR's function resulting in different possible phenotypes due to gene variations that affect not only CFTR's function, localization, and processing within cells, but also those of its interactors. This has been reported as an underlying cause of various diseases, including cystic fibrosis. The severe clinical implications of cystic fibrosis have driven intense research into the role of CFTR in lung function but its significance to fertility, particularly in men, has been comparatively understudied. However, ongoing and more recent research into CFTR and its interacting proteins in the testis or specific testicular cells is beginning to shed light on this field. Herein, we provide a comprehensive and up-to-date overview of the CFTR, its interactome, and its crucial role in male reproduction, highlighting recent discoveries and advancements in understanding the molecular mechanisms involved. The comprehension of these complex interactions may pave the way for potential therapeutic approaches to improve fertility of men suffering from alterations in the function of CFTR.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"239 12","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tjessa Bondue, Francesca Cervellini, Bart Smeets, Sergei V. Strelkov, Flore Horuz-Engels, Koenraad Veys, Rosa Vargas-Poussou, Maria Antonietta De Matteis, Leopoldo Staiano, Lambertus van den Heuvel, Elena Levtchenko
Renal proximal tubular reabsorption of proteins and polypeptides is tightly regulated by a concerted action of the multi-ligand receptors with subsequent processing from the clathrin-coated pits to early/recycling and late endosomes and towards lysosomes. We performed whole exome-sequencing in a male patient from a consanguineous family, who presented with low- and intermediate molecular weight proteinuria, nephrocalcinosis and oligospermia. We identified a new potential player in tubular endocytosis, coiled-coil domain containing 158 (CCDC158). The variant in CCDC158 segregated with the phenotype and was also detected in a female sibling with a similar clinical kidney phenotype. We demonstrated the expression of this protein in kidney tubules and modeled its structure in silico. We hypothesized that the protein played a role in the tubular endocytosis by interacting with other endocytosis regulators, and used mass spectrometry to identify potential interactors. The role of CCDC158 in receptor-mediated endocytosis was further confirmed by transferrin and GST-RAP trafficking analyses in patient-derived proximal tubular epithelial cells. Finally, as CCDC158 is known to be expressed in the testis, the presence of oligospermia in the male sibling further substantiated the pathogenic role of the detected missense variant in the observed phenotype. In this study, we provide data that demonstrate the potential role of CCDC158 in receptor-mediated endocytosis, most likely by interaction with other endocytosis-related proteins that strongly correlate with the proximal tubular dysfunction phenotype as observed in the patients. However, more studies are needed to fully unravel the molecular mechanism(s) in which CCDC158 is involved.
{"title":"CCDC158: A novel regulator in renal proximal tubular endocytosis unveiled through exome sequencing and interactome analysis","authors":"Tjessa Bondue, Francesca Cervellini, Bart Smeets, Sergei V. Strelkov, Flore Horuz-Engels, Koenraad Veys, Rosa Vargas-Poussou, Maria Antonietta De Matteis, Leopoldo Staiano, Lambertus van den Heuvel, Elena Levtchenko","doi":"10.1002/jcp.31447","DOIUrl":"10.1002/jcp.31447","url":null,"abstract":"<p>Renal proximal tubular reabsorption of proteins and polypeptides is tightly regulated by a concerted action of the multi-ligand receptors with subsequent processing from the clathrin-coated pits to early/recycling and late endosomes and towards lysosomes. We performed whole exome-sequencing in a male patient from a consanguineous family, who presented with low- and intermediate molecular weight proteinuria, nephrocalcinosis and oligospermia. We identified a new potential player in tubular endocytosis, coiled-coil domain containing 158 (CCDC158). The variant in <i>CCDC158</i> segregated with the phenotype and was also detected in a female sibling with a similar clinical kidney phenotype. We demonstrated the expression of this protein in kidney tubules and modeled its structure <i>in silico</i>. We hypothesized that the protein played a role in the tubular endocytosis by interacting with other endocytosis regulators, and used mass spectrometry to identify potential interactors. The role of CCDC158 in receptor-mediated endocytosis was further confirmed by transferrin and GST-RAP trafficking analyses in patient-derived proximal tubular epithelial cells. Finally, as CCDC158 is known to be expressed in the testis, the presence of oligospermia in the male sibling further substantiated the pathogenic role of the detected missense variant in the observed phenotype. In this study, we provide data that demonstrate the potential role of CCDC158 in receptor-mediated endocytosis, most likely by interaction with other endocytosis-related proteins that strongly correlate with the proximal tubular dysfunction phenotype as observed in the patients. However, more studies are needed to fully unravel the molecular mechanism(s) in which CCDC158 is involved.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"239 12","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irene Bottillo, Andrea D'Alessandro, Maria Pia Ciccone, Gianluca Cestra, Gianluca Di Giacomo, Evelina Silvestri, Marco Castori, Francesco Brancati, Andrea Lenzi, Alessandro Paiardini, Silvia Majore, Giovanni Cenci, Paola Grammatico
Ulnar mammary syndrome (UMS) results from heterozygous variants in the TBX3 gene and impacts limb, tooth, hair, apocrine gland, and genitalia development. The expressivity of UMS is highly variable with no established genotype–phenotype correlations. TBX3 belongs to the Tbx gene family, which encodes transcription factors characterized by the presence of a T-box DNA-binding domain. We describe a fetus exhibiting severe upper limb defects and harboring the novel TBX3:c.400 C > T (p.P134S) variant inherited from the mother who remained clinically misdiagnosed until prenatal diagnosis. Literature revision was conducted to uncover the TBX3 clinical and mutational spectrum. Moreover, we generated a Drosophila humanized model for TBX3 to study the developmental consequences of the p.P134S as well as of other variants targeting different regions of the protein.
Phenotypic analysis in flies, coupled with in silico modeling on the TBX3 variants, suggested that the c.400 C > T is UMS-causing and impacts TBX3 localization. Comparative analyses of the fly phenotypes caused by the expression of all variants, demonstrated that missense changes in the T-box domain affect more significantly TBX3 activity than variants outside this domain. To improve the clinicians' recognition of UMS, we estimated the frequency of the main clinical features of the disease. Core features often present pre-pubertally include defects of the ulna and/or of ulnar ray, hypoplastic nipples and/or areolas and, less frequently, genitalia anomalies in young males. These results enhance our understanding of the molecular basis and the clinical spectrum of UMS, shedding light on the functional consequences of TBX3 variants in a developmental context.
{"title":"An inherited TBX3 alteration in a prenatal case of ulnar-mammary syndrome: Clinical assessment and functional characterization in Drosophila melanogaster","authors":"Irene Bottillo, Andrea D'Alessandro, Maria Pia Ciccone, Gianluca Cestra, Gianluca Di Giacomo, Evelina Silvestri, Marco Castori, Francesco Brancati, Andrea Lenzi, Alessandro Paiardini, Silvia Majore, Giovanni Cenci, Paola Grammatico","doi":"10.1002/jcp.31440","DOIUrl":"10.1002/jcp.31440","url":null,"abstract":"<p>Ulnar mammary syndrome (UMS) results from heterozygous variants in the <i>TBX3</i> gene and impacts limb, tooth, hair, apocrine gland, and genitalia development. The expressivity of UMS is highly variable with no established genotype–phenotype correlations. <i>TBX3</i> belongs to the <i>Tbx</i> gene family, which encodes transcription factors characterized by the presence of a T-box DNA-binding domain. We describe a fetus exhibiting severe upper limb defects and harboring the novel <i>TBX3</i>:c.400 C > T (p.P134S) variant inherited from the mother who remained clinically misdiagnosed until prenatal diagnosis. Literature revision was conducted to uncover the <i>TBX3</i> clinical and mutational spectrum. Moreover, we generated a <i>Drosophila</i> humanized model for <i>TBX3</i> to study the developmental consequences of the p.P134S as well as of other variants targeting different regions of the protein.</p><p>Phenotypic analysis in flies, coupled with <i>in silico</i> modeling on the <i>TBX3</i> variants, suggested that the c.400 C > T is UMS-causing and impacts TBX3 localization. Comparative analyses of the fly phenotypes caused by the expression of all variants, demonstrated that missense changes in the T-box domain affect more significantly TBX3 activity than variants outside this domain. To improve the clinicians' recognition of UMS, we estimated the frequency of the main clinical features of the disease. Core features often present pre-pubertally include defects of the ulna and/or of ulnar ray, hypoplastic nipples and/or areolas and, less frequently, genitalia anomalies in young males. These results enhance our understanding of the molecular basis and the clinical spectrum of UMS, shedding light on the functional consequences of <i>TBX3</i> variants in a developmental context.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"239 12","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcp.31440","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The apoptosis resistance of myofibroblasts is a hallmark in the irreversible progression of pulmonary fibrosis (PF). While the underlying molecular mechanism remains elusive. In this study, we unveiled a previously unrecognized mechanism underlying myofibroblast apoptosis resistance during PF. Our investigation revealed heightened expression of mesenchyme homeobox 1 (MEOX1) in the lungs of idiopathic pulmonary fibrosis (IPF) patients and bleomycin-induced PF mice. Silencing MEOX1 significantly attenuated PF progression in mice. In vitro, we found a notable increase in MEOX1 expression in transforming growth factor-β1 (TGF-β1)-induced myofibroblasts. Silencing MEOX1 enhanced apoptosis of myofibroblasts. Mechanistically, we identified G-protein signaling pathway regulatory factor 4 (RGS4) as a critical downstream target of MEOX1, as predicted by bioinformatics analysis. MEOX1 enhanced apoptosis resistance by upregulating RGS4 expression in myofibroblasts. In conclusion, our study highlights MEOX1 as a promising therapeutic target for protecting against PF by modulating myofibroblast apoptosis resistance.
{"title":"MEOX1 triggers myofibroblast apoptosis resistance, contributing to pulmonary fibrosis in mice","authors":"Ling Jin, Bo Bao, Xiao-Ting Huang, Jia-Hao Tao, Jia-Xi Duan, Wen-Jin Zhong, Chen-Yu Zhang, Yu-Biao Liu, Hui Chen, Nan-Shi-Yu Yang, Cha-Xiang Guan, Yong Zhou","doi":"10.1002/jcp.31442","DOIUrl":"10.1002/jcp.31442","url":null,"abstract":"<p>The apoptosis resistance of myofibroblasts is a hallmark in the irreversible progression of pulmonary fibrosis (PF). While the underlying molecular mechanism remains elusive. In this study, we unveiled a previously unrecognized mechanism underlying myofibroblast apoptosis resistance during PF. Our investigation revealed heightened expression of mesenchyme homeobox 1 (MEOX1) in the lungs of idiopathic pulmonary fibrosis (IPF) patients and bleomycin-induced PF mice. Silencing MEOX1 significantly attenuated PF progression in mice. <i>In vitro</i>, we found a notable increase in MEOX1 expression in transforming growth factor-β1 (TGF-β1)-induced myofibroblasts. Silencing MEOX1 enhanced apoptosis of myofibroblasts. Mechanistically, we identified G-protein signaling pathway regulatory factor 4 (RGS4) as a critical downstream target of MEOX1, as predicted by bioinformatics analysis. MEOX1 enhanced apoptosis resistance by upregulating RGS4 expression in myofibroblasts. In conclusion, our study highlights MEOX1 as a promising therapeutic target for protecting against PF by modulating myofibroblast apoptosis resistance.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"239 12","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osteoarthritis (OA) is defined by articular cartilage degeneration, synovial membrane inflammation, and abnormal bone remodeling. Recent study has discovered that OA development is linked to an aberrant epigenetic modification of OA-related genes. Our previous research showed that DNA demethylation in ADAMTS-5 promoter region had a substantial impact on ADAMTS-5 expression in the mouse OA model. This process facilitated the binding of Spi-1 to ADAMTS-5 promoter. While alterations in histone methylation have been documented during embryonic development and cancer development, there is a paucity of data on the change in OA pathogenesis. Even no data have been reported on the role of histone modifications in ADAMTS-5 activation in OA. Following our previous study on the role of DNA methylation, we aimed to examine the contribution of histone H3K9 dimethylation in ADAMTS-5 activation in OA. Additionally, we aimed to elucidate the molecular mechanisms underlying the cooperative interaction between DNA methylation and histone H3K9 dimethylation. The potential for anti-OA intervention therapy which is based on modulating histone H3K9 dimethylation is also explored. We demonstrated that a reduction in histone H3K9 dimethylation, along with DNA demethylation of the Spi-1 binding site, had a role in ADAMTS-5 activation in the articular cartilage of OA mice. Significantly, the conditional deletion of histone demethylase to be identified as lysine-specific demethylase 1 (LSD1) in articular cartilage could alleviate the degenerative features of OA mice. Our study demonstrates the direct impact of histone H3K9 dimethylation on gene expression, which in turn contributes to OA development. This research enhances our understanding of the underlying causes of OA.
骨关节炎(OA)的定义是关节软骨退化、滑膜炎症和异常骨重塑。最近的研究发现,OA 的发生与 OA 相关基因的异常表观遗传修饰有关。我们之前的研究表明,在小鼠 OA 模型中,ADAMTS-5 启动子区域的 DNA 去甲基化对 ADAMTS-5 的表达有很大影响。这一过程促进了 Spi-1 与 ADAMTS-5 启动子的结合。虽然组蛋白甲基化的改变在胚胎发育和癌症发展过程中都有记录,但有关 OA 发病机制变化的数据却很少。甚至还没有关于组蛋白修饰在 OA 中 ADAMTS-5 激活中的作用的数据报道。继之前关于DNA甲基化作用的研究之后,我们旨在研究组蛋白H3K9二甲基化在OA中ADAMTS-5激活中的作用。此外,我们还旨在阐明 DNA 甲基化和组蛋白 H3K9 二甲基化之间合作互动的分子机制。我们还探索了基于调节组蛋白 H3K9 二甲基化的抗 OA 干预疗法的潜力。我们证实,组蛋白 H3K9 二甲基化的减少以及 Spi-1 结合位点的 DNA 去甲基化在 OA 小鼠关节软骨的 ADAMTS-5 激活过程中发挥了作用。值得注意的是,有条件地缺失关节软骨中的组蛋白去甲基化酶,即赖氨酸特异性去甲基化酶1(LSD1),可以减轻OA小鼠的退行性特征。我们的研究证明了组蛋白H3K9二甲基化对基因表达的直接影响,而基因表达反过来又促进了OA的发展。这项研究加深了我们对 OA 根本原因的理解。
{"title":"Decreased histone H3K9 dimethylation in synergy with DNA demethylation of Spi-1 binding site contributes to ADAMTS-5 expression in articular cartilage of osteoarthritis mice","authors":"Shuaichen Yan, Tongxin Lu, Huapu Yang, Liang Ma, Yuankai Zhang, Deqiang Li","doi":"10.1002/jcp.31444","DOIUrl":"10.1002/jcp.31444","url":null,"abstract":"<p>Osteoarthritis (OA) is defined by articular cartilage degeneration, synovial membrane inflammation, and abnormal bone remodeling. Recent study has discovered that OA development is linked to an aberrant epigenetic modification of OA-related genes. Our previous research showed that DNA demethylation in ADAMTS-5 promoter region had a substantial impact on ADAMTS-5 expression in the mouse OA model. This process facilitated the binding of Spi-1 to ADAMTS-5 promoter. While alterations in histone methylation have been documented during embryonic development and cancer development, there is a paucity of data on the change in OA pathogenesis. Even no data have been reported on the role of histone modifications in ADAMTS-5 activation in OA. Following our previous study on the role of DNA methylation, we aimed to examine the contribution of histone H3K9 dimethylation in ADAMTS-5 activation in OA. Additionally, we aimed to elucidate the molecular mechanisms underlying the cooperative interaction between DNA methylation and histone H3K9 dimethylation. The potential for anti-OA intervention therapy which is based on modulating histone H3K9 dimethylation is also explored. We demonstrated that a reduction in histone H3K9 dimethylation, along with DNA demethylation of the Spi-1 binding site, had a role in ADAMTS-5 activation in the articular cartilage of OA mice. Significantly, the conditional deletion of histone demethylase to be identified as lysine-specific demethylase 1 (LSD1) in articular cartilage could alleviate the degenerative features of OA mice. Our study demonstrates the direct impact of histone H3K9 dimethylation on gene expression, which in turn contributes to OA development. This research enhances our understanding of the underlying causes of OA.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"239 12","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}