首页 > 最新文献

Journal of Biomedical Optics最新文献

英文 中文
Detection of breast cancer using machine learning on time-series diffuse optical transillumination data. 利用机器学习对时间序列漫反射光学透射数据进行乳腺癌检测。
IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-01 Epub Date: 2024-11-11 DOI: 10.1117/1.JBO.29.11.115001
Nils Harnischmacher, Erik Rodner, Christoph H Schmitz

Significance: Optical mammography as a promising tool for cancer diagnosis has largely fallen behind expectations. Modern machine learning (ML) methods offer ways to improve cancer detection in diffuse optical transmission data.

Aim: We aim to quantitatively evaluate the classification of cancer-positive versus cancer-negative patients using ML methods on raw transmission time series data from bilateral breast scans during subjects' rest.

Approach: We use a support vector machine (SVM) with hyperparameter optimization and cross-validation to systematically explore a range of data preprocessing and feature-generation strategies. We also apply an automated ML (AutoML) framework to validate our findings. We use receiver operating characteristics and the corresponding area under the curve (AUC) to quantify classification performance.

Results: For the sample group available ( N = 63 , 18 cancer patients), we demonstrate an AUC score of up to 93.3% for SVM classification and up to 95.0% for the AutoML classifier.

Conclusions: ML offers a viable strategy for clinically relevant breast cancer diagnosis using diffuse-optical transmission measurements. The diagnostic performance of ML on raw data can outperform traditional statistical biomarkers derived from reconstructed image time series. To achieve clinically relevant performance, our ML approach requires simultaneous bilateral scanning of the breasts with spatially dense channel coverage.

意义重大:光学乳腺 X 射线摄影作为一种很有前途的癌症诊断工具,在很大程度上已经落后于人们的期望。现代机器学习(ML)方法为改进弥散光学透射数据中的癌症检测提供了途径。目的:我们旨在使用 ML 方法对受试者休息时双侧乳腺扫描的原始透射时间序列数据进行癌症阳性与癌症阴性患者的定量评估:我们使用支持向量机(SVM)进行超参数优化和交叉验证,系统地探索了一系列数据预处理和特征生成策略。我们还应用了一个自动 ML(AutoML)框架来验证我们的发现。我们使用接收者操作特征和相应的曲线下面积(AUC)来量化分类性能:对于现有样本组(N = 63,18 名癌症患者),我们证明 SVM 分类的 AUC 得分高达 93.3%,AutoML 分类器的 AUC 得分高达 95.0%:结论:ML 为使用漫射光透射测量进行临床相关的乳腺癌诊断提供了一种可行的策略。ML 对原始数据的诊断性能优于从重建图像时间序列中提取的传统统计生物标记。为了达到临床相关的性能,我们的 ML 方法需要同时对乳房进行双侧扫描,并在空间上进行密集的通道覆盖。
{"title":"Detection of breast cancer using machine learning on time-series diffuse optical transillumination data.","authors":"Nils Harnischmacher, Erik Rodner, Christoph H Schmitz","doi":"10.1117/1.JBO.29.11.115001","DOIUrl":"https://doi.org/10.1117/1.JBO.29.11.115001","url":null,"abstract":"<p><strong>Significance: </strong>Optical mammography as a promising tool for cancer diagnosis has largely fallen behind expectations. Modern machine learning (ML) methods offer ways to improve cancer detection in diffuse optical transmission data.</p><p><strong>Aim: </strong>We aim to quantitatively evaluate the classification of cancer-positive versus cancer-negative patients using ML methods on raw transmission time series data from bilateral breast scans during subjects' rest.</p><p><strong>Approach: </strong>We use a support vector machine (SVM) with hyperparameter optimization and cross-validation to systematically explore a range of data preprocessing and feature-generation strategies. We also apply an automated ML (AutoML) framework to validate our findings. We use receiver operating characteristics and the corresponding area under the curve (AUC) to quantify classification performance.</p><p><strong>Results: </strong>For the sample group available ( <math><mrow><mi>N</mi> <mo>=</mo> <mn>63</mn></mrow> </math> , 18 cancer patients), we demonstrate an AUC score of up to 93.3% for SVM classification and up to 95.0% for the AutoML classifier.</p><p><strong>Conclusions: </strong>ML offers a viable strategy for clinically relevant breast cancer diagnosis using diffuse-optical transmission measurements. The diagnostic performance of ML on raw data can outperform traditional statistical biomarkers derived from reconstructed image time series. To achieve clinically relevant performance, our ML approach requires simultaneous bilateral scanning of the breasts with spatially dense channel coverage.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 11","pages":"115001"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552526/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial correlation-based quadratic cost function for wavefront shaping through scattering media. 基于空间相关性的二次成本函数,用于通过散射介质的波前整形。
IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-01 Epub Date: 2024-11-20 DOI: 10.1117/1.JBO.29.11.115002
Amit Kumar, Ayush Sharma, S K Biswas

Significance: The feedback-based wavefront shaping emerges as a promising method for deep tissue microscopy, energy control in bio-incubation, and re-configurable structural illuminations. The cost function plays a crucial role in the feedback-based wavefront optimization for focusing light through scattering media. However, popularly used cost functions, such as intensity ( η ) and peak-to-background ratio (PBR) struggle to achieve precise intensity control and uniformity across the focus spot.

Aim: We have proposed an 2 -norm-based quadratic cost function (QCF) for establishing both intensity and position correlations between image pixels, which helps to advance the focusing light through scattering media, such as biological tissue and ground glass diffusers.

Approach: The proposed cost function has been integrated into the genetic algorithm, establishing pixel-to-pixel correlations that enable precise and controlled contrast optimization, while maintaining uniformity across the focus spot and effectively suppressing the background intensity.

Results: We have conducted both simulations and experiments using the proposed QCF, comparing its performance with the commonly used η and PBR-based cost functions. The results evidently indicate that the QCF achieves superior performance in terms of precise intensity control, uniformity, and background intensity suppression. By contrast, both the η and PBR cost functions exhibit uncontrolled intensity gain compared with the proposed QCF.

Conclusions: The proposed QCF is most suitable for applications requiring precise intensity control at the focus spot, better uniformity, and effective background intensity suppression. This method holds significant promise for applications where intensity control is critical, such as photolithography, photothermal treatments, dosimetry, and energy modulation within and outside bio-incubation systems.

意义重大:基于反馈的波前整形是一种很有前途的方法,适用于深部组织显微镜、生物培养中的能量控制以及可重新配置的结构照明。成本函数在通过散射介质聚焦光的反馈式波前优化中起着至关重要的作用。目的:我们提出了一种基于ℓ 2 -norm的二次成本函数(QCF),用于建立图像像素之间的强度和位置相关性,这有助于推动聚焦光穿过散射介质,如生物组织和磨玻璃扩散器:方法:提议的成本函数已被集成到遗传算法中,建立像素间的相关性,从而实现精确可控的对比度优化,同时保持聚焦点的均匀性,并有效抑制背景强度:我们使用所提出的 QCF 进行了模拟和实验,并将其性能与常用的基于 η 和 PBR 的成本函数进行了比较。结果表明,QCF 在精确的强度控制、均匀性和背景强度抑制方面都表现出色。相比之下,与提出的 QCF 相比,η 和 PBR 成本函数都表现出不可控的强度增益:结论:所提出的 QCF 最适合需要精确控制聚焦点的强度、更好的均匀性和有效的背景强度抑制的应用。在光刻技术、光热治疗、剂量测定以及生物培养系统内外的能量调制等对强度控制要求极高的应用中,这种方法大有可为。
{"title":"Spatial correlation-based quadratic cost function for wavefront shaping through scattering media.","authors":"Amit Kumar, Ayush Sharma, S K Biswas","doi":"10.1117/1.JBO.29.11.115002","DOIUrl":"10.1117/1.JBO.29.11.115002","url":null,"abstract":"<p><strong>Significance: </strong>The feedback-based wavefront shaping emerges as a promising method for deep tissue microscopy, energy control in bio-incubation, and re-configurable structural illuminations. The cost function plays a crucial role in the feedback-based wavefront optimization for focusing light through scattering media. However, popularly used cost functions, such as intensity ( <math><mrow><mi>η</mi></mrow> </math> ) and peak-to-background ratio (PBR) struggle to achieve precise intensity control and uniformity across the focus spot.</p><p><strong>Aim: </strong>We have proposed an <math> <mrow><msub><mi>ℓ</mi> <mn>2</mn></msub> </mrow> </math> -norm-based quadratic cost function (QCF) for establishing both intensity and position correlations between image pixels, which helps to advance the focusing light through scattering media, such as biological tissue and ground glass diffusers.</p><p><strong>Approach: </strong>The proposed cost function has been integrated into the genetic algorithm, establishing pixel-to-pixel correlations that enable precise and controlled contrast optimization, while maintaining uniformity across the focus spot and effectively suppressing the background intensity.</p><p><strong>Results: </strong>We have conducted both simulations and experiments using the proposed QCF, comparing its performance with the commonly used <math><mrow><mi>η</mi></mrow> </math> and PBR-based cost functions. The results evidently indicate that the QCF achieves superior performance in terms of precise intensity control, uniformity, and background intensity suppression. By contrast, both the <math><mrow><mi>η</mi></mrow> </math> and PBR cost functions exhibit uncontrolled intensity gain compared with the proposed QCF.</p><p><strong>Conclusions: </strong>The proposed QCF is most suitable for applications requiring precise intensity control at the focus spot, better uniformity, and effective background intensity suppression. This method holds significant promise for applications where intensity control is critical, such as photolithography, photothermal treatments, dosimetry, and energy modulation within and outside bio-incubation systems.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 11","pages":"115002"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing dermoscopy through a synthetic hair benchmark dataset and deep learning-based hair removal. 通过合成毛发基准数据集和基于深度学习的脱毛技术推进皮肤镜检查。
IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-01 Epub Date: 2024-11-19 DOI: 10.1117/1.JBO.29.11.116003
Lennart Jütte, Harshkumar Patel, Bernhard Roth

Significance: Early detection of melanoma is crucial for improving patient outcomes, and dermoscopy is a critical tool for this purpose. However, hair presence in dermoscopic images can obscure important features, complicating the diagnostic process. Enhancing image clarity by removing hair without compromising lesion integrity can significantly aid dermatologists in accurate melanoma detection.

Aim: We aim to develop a novel synthetic hair dermoscopic image dataset and a deep learning model specifically designed for hair removal in melanoma dermoscopy images.

Approach: To address the challenge of hair in dermoscopic images, we created a comprehensive synthetic hair dataset that simulates various hair types and dimensions over melanoma lesions. We then designed a convolutional neural network (CNN)-based model that focuses on effective hair removal while preserving the integrity of the melanoma lesions.

Results: The CNN-based model demonstrated significant improvements in the clarity and diagnostic utility of dermoscopic images. The enhanced images provided by our model offer a valuable tool for the dermatological community, aiding in more accurate and efficient melanoma detection.

Conclusions: The introduction of our synthetic hair dermoscopic image dataset and CNN-based model represents a significant advancement in medical image analysis for melanoma detection. By effectively removing hair from dermoscopic images while preserving lesion details, our approach enhances diagnostic accuracy and supports early melanoma detection efforts.

意义重大:早期发现黑色素瘤对改善患者预后至关重要,而皮肤镜检查是实现这一目的的关键工具。然而,皮肤镜图像中毛发的存在会掩盖重要特征,使诊断过程复杂化。在不影响病变完整性的前提下,通过去除毛发来提高图像清晰度,可以极大地帮助皮肤科医生准确检测黑色素瘤。目的:我们旨在开发一种新型合成毛发皮肤镜图像数据集和深度学习模型,该模型专为黑色素瘤皮肤镜图像中的毛发去除而设计:为了应对皮肤镜图像中毛发的挑战,我们创建了一个全面的合成毛发数据集,该数据集模拟了黑色素瘤病变上的各种毛发类型和尺寸。然后,我们设计了一个基于卷积神经网络(CNN)的模型,该模型侧重于有效去除毛发,同时保持黑色素瘤病变的完整性:结果:基于卷积神经网络的模型显著提高了皮肤镜图像的清晰度和诊断效用。我们的模型所提供的增强图像为皮肤病学界提供了宝贵的工具,有助于更准确、更高效地检测黑色素瘤:我们的合成毛发皮肤镜图像数据集和基于 CNN 的模型的推出,代表了黑色素瘤检测医学图像分析领域的一大进步。通过有效去除皮肤镜图像中的毛发,同时保留病变细节,我们的方法提高了诊断准确性,为早期黑色素瘤检测工作提供了支持。
{"title":"Advancing dermoscopy through a synthetic hair benchmark dataset and deep learning-based hair removal.","authors":"Lennart Jütte, Harshkumar Patel, Bernhard Roth","doi":"10.1117/1.JBO.29.11.116003","DOIUrl":"10.1117/1.JBO.29.11.116003","url":null,"abstract":"<p><strong>Significance: </strong>Early detection of melanoma is crucial for improving patient outcomes, and dermoscopy is a critical tool for this purpose. However, hair presence in dermoscopic images can obscure important features, complicating the diagnostic process. Enhancing image clarity by removing hair without compromising lesion integrity can significantly aid dermatologists in accurate melanoma detection.</p><p><strong>Aim: </strong>We aim to develop a novel synthetic hair dermoscopic image dataset and a deep learning model specifically designed for hair removal in melanoma dermoscopy images.</p><p><strong>Approach: </strong>To address the challenge of hair in dermoscopic images, we created a comprehensive synthetic hair dataset that simulates various hair types and dimensions over melanoma lesions. We then designed a convolutional neural network (CNN)-based model that focuses on effective hair removal while preserving the integrity of the melanoma lesions.</p><p><strong>Results: </strong>The CNN-based model demonstrated significant improvements in the clarity and diagnostic utility of dermoscopic images. The enhanced images provided by our model offer a valuable tool for the dermatological community, aiding in more accurate and efficient melanoma detection.</p><p><strong>Conclusions: </strong>The introduction of our synthetic hair dermoscopic image dataset and CNN-based model represents a significant advancement in medical image analysis for melanoma detection. By effectively removing hair from dermoscopic images while preserving lesion details, our approach enhances diagnostic accuracy and supports early melanoma detection efforts.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 11","pages":"116003"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transport-of-intensity phase imaging using commercially available confocal microscope. 使用市售共聚焦显微镜进行强度传输相位成像。
IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-01 Epub Date: 2024-11-07 DOI: 10.1117/1.JBO.29.11.116002
Naru Yoneda, Joe Sakamoto, Takumi Tomoi, Tomomi Nemoto, Yosuke Tamada, Osamu Matoba

Significance: Confocal microscopy is an indispensable tool for biologists to observe samples and is useful for fluorescence imaging of living cells with high spatial resolution. Recently, phase information induced by the sample has been attracting attention because of its applicability such as the measurability of physical parameters and wavefront compensation. However, commercially available confocal microscopy has no phase imaging function.

Aim: We reborn an off-the-shelf confocal microscope as a phase measurement microscope. This is a milestone in changing the perspective of researchers in this field. We would meet the demand of biologists if only they had measured the phase with their handheld microscopes.

Approach: We proposed phase imaging based on the transport of intensity equation (TIE) in commercially available confocal microscopy. The proposed method requires no modification using a bright field imaging module of a commercially available confocal microscope.

Results: The feasibility of the proposed method is confirmed by evaluating the phase difference of a microlens array and living cells of the moss Physcomitrium patens and living mammalian cultured cells. In addition, multi-modal imaging of fluorescence and phase information is demonstrated.

Conclusions: TIE-based quantitative phase imaging (QPI) using commercially available confocal microscopy is proposed. We evaluated the feasibility of the proposed method by measuring the microlens array, plant, and mammalian cultured cells. The experimental result indicates that QPI can be realized in commercially available confocal microscopy using the TIE technique. This method will be useful for measuring dry mass, viscosity, and temperature of cells and for correcting phase fluctuation to cancel aberration and scattering caused by an object in the future.

意义重大:共聚焦显微镜是生物学家观察样本不可或缺的工具,可用于对活细胞进行高空间分辨率的荧光成像。近来,样品诱导的相位信息因其适用性(如物理参数的可测量性和波前补偿)而备受关注。目的:我们将现成的共聚焦显微镜改造成了相位测量显微镜。这是改变该领域研究人员视角的一个里程碑。只要生物学家能用手持显微镜测量相位,我们就能满足他们的需求:我们提出了基于商用共聚焦显微镜中强度传输方程(TIE)的相位成像方法。方法:我们在市售共聚焦显微镜中提出了基于传输强度方程(TIE)的相位成像方法,使用市售共聚焦显微镜的明场成像模块,无需进行任何修改:结果:通过评估微透镜阵列和青苔活细胞以及哺乳动物活培养细胞的相位差,证实了所提方法的可行性。此外,还展示了荧光和相位信息的多模式成像:结论:我们提出了使用市售共聚焦显微镜进行基于 TIE 的定量相位成像(QPI)的方法。我们通过测量微透镜阵列、植物和哺乳动物培养细胞,评估了所提方法的可行性。实验结果表明,使用 TIE 技术可以在市售共聚焦显微镜中实现 QPI。这种方法将有助于测量细胞的干质量、粘度和温度,以及校正相位波动以消除物体造成的像差和散射。
{"title":"Transport-of-intensity phase imaging using commercially available confocal microscope.","authors":"Naru Yoneda, Joe Sakamoto, Takumi Tomoi, Tomomi Nemoto, Yosuke Tamada, Osamu Matoba","doi":"10.1117/1.JBO.29.11.116002","DOIUrl":"https://doi.org/10.1117/1.JBO.29.11.116002","url":null,"abstract":"<p><strong>Significance: </strong>Confocal microscopy is an indispensable tool for biologists to observe samples and is useful for fluorescence imaging of living cells with high spatial resolution. Recently, phase information induced by the sample has been attracting attention because of its applicability such as the measurability of physical parameters and wavefront compensation. However, commercially available confocal microscopy has no phase imaging function.</p><p><strong>Aim: </strong>We reborn an off-the-shelf confocal microscope as a phase measurement microscope. This is a milestone in changing the perspective of researchers in this field. We would meet the demand of biologists if only they had measured the phase with their handheld microscopes.</p><p><strong>Approach: </strong>We proposed phase imaging based on the transport of intensity equation (TIE) in commercially available confocal microscopy. The proposed method requires no modification using a bright field imaging module of a commercially available confocal microscope.</p><p><strong>Results: </strong>The feasibility of the proposed method is confirmed by evaluating the phase difference of a microlens array and living cells of the moss <i>Physcomitrium patens</i> and living mammalian cultured cells. In addition, multi-modal imaging of fluorescence and phase information is demonstrated.</p><p><strong>Conclusions: </strong>TIE-based quantitative phase imaging (QPI) using commercially available confocal microscopy is proposed. We evaluated the feasibility of the proposed method by measuring the microlens array, plant, and mammalian cultured cells. The experimental result indicates that QPI can be realized in commercially available confocal microscopy using the TIE technique. This method will be useful for measuring dry mass, viscosity, and temperature of cells and for correcting phase fluctuation to cancel aberration and scattering caused by an object in the future.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 11","pages":"116002"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542725/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative estimation of optical properties in bilayer media within the subdiffusive regime using tilted fiber-optic probe diffuse reflectance spectroscopy, part 2: probe design, realization, and experimental validation. 利用倾斜光纤探针漫反射光谱定量估算亚扩散体系中双层介质的光学特性,第 2 部分:探针设计、实现和实验验证。
IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-01 Epub Date: 2024-10-29 DOI: 10.1117/1.JBO.29.10.105002
Philippe De Tillieux, Maxime Baillot, Pierre Marquet

Significance: Tissues like skin have a layered structure where each layer's optical properties vary significantly. However, traditional diffuse reflectance spectroscopy assumes a homogeneous medium, often leading to estimations that reflects the properties of neither layer. There's a clear need for probes that can precisely measure the optical properties of layered tissues.

Aim: This paper aims to design a diffuse reflectance probe capable of accurately estimating the optical properties of bilayer tissues in the subdiffusive regime.

Approach: Using Monte Carlo simulations, we evaluated key geometric factors-fiber placement, tilt angle, diameter, and numerical aperture-on optical property estimation, following the methodology in Part I. A robust design is proposed that balances accurate intrinsic optical property (IOP) calculations with practical experimental constraints.

Results: The designed probe, featuring eight illumination and eight detection fibers with varying spacings and tilt angles. The estimation error of the IOP calculation for bilayer phantoms is less than 20% for top layers with thicknesses between 0.2 and 1.0 mm.

Conclusion: Building on the approach from Part I and using a precise calibration, the probe effectively quantified and distinguished the IOPs of bilayer samples, particularly those relevant to early skin pathology detection and characterization.

意义重大:皮肤等组织具有分层结构,每一层的光学特性都有很大差异。然而,传统的漫反射光谱法假定介质是均匀的,这往往导致估算结果不能反映任何一层的特性。目的:本文旨在设计一种漫反射探针,能够在亚扩散体系中准确估计双层组织的光学特性:利用蒙特卡罗模拟,我们按照第一部分的方法评估了关键几何因素--纤维位置、倾斜角度、直径和数值孔径--对光学特性估算的影响,并提出了一种稳健的设计,在精确的本征光学特性(IOP)计算与实际实验限制之间取得平衡:所设计的探针有八根照明光纤和八根检测光纤,其间距和倾斜角度各不相同。对于厚度在 0.2 至 1.0 毫米之间的顶层,双层模型的 IOP 计算估计误差小于 20%:基于第一部分的方法并使用精确的校准,该探头有效地量化和区分了双层样本的 IOP,尤其是与早期皮肤病理学检测和特征描述相关的样本。
{"title":"Quantitative estimation of optical properties in bilayer media within the subdiffusive regime using tilted fiber-optic probe diffuse reflectance spectroscopy, part 2: probe design, realization, and experimental validation.","authors":"Philippe De Tillieux, Maxime Baillot, Pierre Marquet","doi":"10.1117/1.JBO.29.10.105002","DOIUrl":"https://doi.org/10.1117/1.JBO.29.10.105002","url":null,"abstract":"<p><strong>Significance: </strong>Tissues like skin have a layered structure where each layer's optical properties vary significantly. However, traditional diffuse reflectance spectroscopy assumes a homogeneous medium, often leading to estimations that reflects the properties of neither layer. There's a clear need for probes that can precisely measure the optical properties of layered tissues.</p><p><strong>Aim: </strong>This paper aims to design a diffuse reflectance probe capable of accurately estimating the optical properties of bilayer tissues in the subdiffusive regime.</p><p><strong>Approach: </strong>Using Monte Carlo simulations, we evaluated key geometric factors-fiber placement, tilt angle, diameter, and numerical aperture-on optical property estimation, following the methodology in Part I. A robust design is proposed that balances accurate intrinsic optical property (IOP) calculations with practical experimental constraints.</p><p><strong>Results: </strong>The designed probe, featuring eight illumination and eight detection fibers with varying spacings and tilt angles. The estimation error of the IOP calculation for bilayer phantoms is less than 20% for top layers with thicknesses between 0.2 and 1.0 mm.</p><p><strong>Conclusion: </strong>Building on the approach from Part I and using a precise calibration, the probe effectively quantified and distinguished the IOPs of bilayer samples, particularly those relevant to early skin pathology detection and characterization.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 10","pages":"105002"},"PeriodicalIF":3.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic multispectral NIR/SWIR for in vivo lymphovascular architectural and functional quantification. 用于体内淋巴管结构和功能量化的动态多光谱近红外/西红外技术。
IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-01 Epub Date: 2024-09-26 DOI: 10.1117/1.JBO.29.10.106001
Christopher Hansen, Jaidip Jagtap, Abdul Parchur, Gayatri Sharma, Shayan Shafiee, Sayantan Sinha, Heather Himburg, Amit Joshi

Significance: Although the lymphatic system is the second largest circulatory system in the body, there are limited techniques available for characterizing lymphatic vessel function. We report shortwave-infrared (SWIR) imaging for minimally invasive in vivo quantification of lymphatic circulation with superior contrast and resolution compared with near-infrared first window imaging.

Aim: We aim to study the lymphatic structure and function in vivo via SWIR fluorescence imaging.

Approach: We evaluated subsurface lymphatic circulation in healthy, adult immunocompromised salt-sensitive Sprague-Dawley rats using two fluorescence imaging modalities: near-infrared first window (NIR-I, 700 to 900 nm) and SWIR (900 to 1800 nm) imaging. We also compared two fluorescent imaging probes: indocyanine green (ICG) and silver sulfide quantum dots (QDs) as SWIR lymphatic contrast agents following intradermal footpad delivery in these rats.

Results: SWIR imaging exhibits reduced scattering and autofluorescence background relative to NIR-I imaging. SWIR imaging with ICG provides 1.7 times better resolution and sensitivity than NIR-I, and SWIR imaging with QDs provides nearly two times better resolution and sensitivity with enhanced vessel distinguishability. SWIR images thus provide a more accurate estimation of in vivo vessel size than conventional NIR-I images.

Conclusions: SWIR imaging of silver sulfide QDs into the intradermal footpad injection provides superior image resolution compared with conventional imaging techniques using NIR-I imaging with ICG dye.

意义重大:虽然淋巴系统是人体的第二大循环系统,但用于描述淋巴管功能的技术却很有限。与近红外第一窗口成像相比,短波-红外(SWIR)成像具有更高的对比度和分辨率,可用于体内淋巴循环的微创量化:我们使用两种荧光成像模式:近红外第一窗口(NIR-I,700 到 900 nm)和西南红外(900 到 1800 nm)成像,评估了健康的成年免疫受损盐敏感 Sprague-Dawley 大鼠的体表下淋巴循环。我们还比较了两种荧光成像探针:吲哚菁绿(ICG)和硫化银量子点(QDs)作为 SWIR 淋巴造影剂在大鼠足垫皮内给药后的成像效果:结果:与近红外成像相比,SWIR成像可减少散射和自发荧光背景。使用 ICG 进行的 SWIR 成像的分辨率和灵敏度比 NIR-I 高 1.7 倍,使用 QDs 进行的 SWIR 成像的分辨率和灵敏度比 NIR-I 高近 2 倍,同时还能提高血管的可分辨性。因此,与传统的近红外成像相比,SWIR 图像能更准确地估计体内血管的大小:结论:与使用 ICG 染料进行近红外成像的传统成像技术相比,硫化银 QDs 皮下足垫注射的 SWIR 成像具有更高的图像分辨率。
{"title":"Dynamic multispectral NIR/SWIR for <i>in vivo</i> lymphovascular architectural and functional quantification.","authors":"Christopher Hansen, Jaidip Jagtap, Abdul Parchur, Gayatri Sharma, Shayan Shafiee, Sayantan Sinha, Heather Himburg, Amit Joshi","doi":"10.1117/1.JBO.29.10.106001","DOIUrl":"https://doi.org/10.1117/1.JBO.29.10.106001","url":null,"abstract":"<p><strong>Significance: </strong>Although the lymphatic system is the second largest circulatory system in the body, there are limited techniques available for characterizing lymphatic vessel function. We report shortwave-infrared (SWIR) imaging for minimally invasive <i>in vivo</i> quantification of lymphatic circulation with superior contrast and resolution compared with near-infrared first window imaging.</p><p><strong>Aim: </strong>We aim to study the lymphatic structure and function <i>in vivo</i> via SWIR fluorescence imaging.</p><p><strong>Approach: </strong>We evaluated subsurface lymphatic circulation in healthy, adult immunocompromised salt-sensitive Sprague-Dawley rats using two fluorescence imaging modalities: near-infrared first window (NIR-I, 700 to 900 nm) and SWIR (900 to 1800 nm) imaging. We also compared two fluorescent imaging probes: indocyanine green (ICG) and silver sulfide quantum dots (QDs) as SWIR lymphatic contrast agents following intradermal footpad delivery in these rats.</p><p><strong>Results: </strong>SWIR imaging exhibits reduced scattering and autofluorescence background relative to NIR-I imaging. SWIR imaging with ICG provides 1.7 times better resolution and sensitivity than NIR-I, and SWIR imaging with QDs provides nearly two times better resolution and sensitivity with enhanced vessel distinguishability. SWIR images thus provide a more accurate estimation of <i>in vivo</i> vessel size than conventional NIR-I images.</p><p><strong>Conclusions: </strong>SWIR imaging of silver sulfide QDs into the intradermal footpad injection provides superior image resolution compared with conventional imaging techniques using NIR-I imaging with ICG dye.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 10","pages":"106001"},"PeriodicalIF":3.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425400/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mueller matrix analysis of a biologically sourced engineered tissue construct as polarimetric phantom. 对作为偏振模型的生物来源工程组织结构进行穆勒矩阵分析。
IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-01 Epub Date: 2024-10-29 DOI: 10.1117/1.JBO.29.10.106002
Zixi Lin, Samantha Madnick, Joshua A Burrow, Jeffrey R Morgan, Kimani C Toussaint

Significance: The polarimetric properties of biological tissues are often difficult to ascertain independent of their complex structural and organizational features. Conventional polarimetric tissue phantoms have well-characterized optical properties but are overly simplified. We demonstrate that an innovative, biologically sourced, engineered tissue construct better recapitulates the desired structural and polarimetric properties of native collagenous tissues, with the added benefit of potential tunability of the polarimetric response. We bridge the gap between non-biological polarimetric phantoms and native tissues.

Aim: We aim to evaluate a synthesized tissue construct for its effectiveness as a phantom that mimics the polarimetric properties in typical collagenous tissues.

Approach: We use a fibroblast-derived, ring-shaped engineered tissue construct as an innovative tissue phantom for polarimetric imaging. We perform polarimetry measurements and subsequent analysis using the Mueller matrix decomposition and Mueller matrix transformation methods. Scalar polarimetric parameters of the engineered tissue are analyzed at different time points for both a control group and for those treated with the transforming growth factor ( TGF ) - β 1 . Second-harmonic generation (SHG) imaging and three-dimensional collagen fiber organization analysis are also applied.

Results: We identify linear retardance and circular depolarization as the parameters that are most sensitive to the tissue culture time and the addition of TGF - β 1 . Aside from a statistically significant increase over time, the behavior of linear retardance and circular depolarization indicates that the addition of TGF - β 1 accelerates the growth of the engineered tissue, which is consistent with expectations. We also find through SHG images that collagen fiber organization becomes more aligned over time but is not susceptible to the addition of TGF - β 1 .

Conclusions: The engineered tissue construct exhibits changes in polarimetric properties, especially linear retardance and circular depolarization, over culture time and under TGF - β 1 treatments. This tissue construct has the potential to act as a controlled modular optical phantom for polarimetric-based methods.

意义重大:生物组织的偏振特性往往难以确定,这与其复杂的结构和组织特征无关。传统的偏振组织模型具有良好的光学特性,但过于简化。我们证明,一种创新的生物来源工程组织结构能更好地再现原生胶原组织所需的结构和偏振特性,并具有偏振响应潜在可调性的额外优势。我们在非生物极谱模型和原生组织之间架起了一座桥梁。目的:我们旨在评估合成组织构建物作为模拟典型胶原组织极谱特性的模型的有效性:方法:我们使用一种源自成纤维细胞的环形工程组织结构作为创新的组织模型,用于极坐标成像。我们使用穆勒矩阵分解法和穆勒矩阵变换法进行极坐标测量和后续分析。在不同的时间点分析了对照组和使用转化生长因子(TGF)- β 1 处理的工程组织的标量极坐标参数。此外,还应用了二次谐波发生(SHG)成像和三维胶原纤维组织分析:我们发现线性延迟和环形去极化是对组织培养时间和添加 TGF - β 1 最敏感的参数。除了线性延迟和环形去极化随着时间的推移在统计学上有明显增加外,其行为表明添加 TGF - β 1 会加速工程组织的生长,这与预期一致。我们还通过 SHG 图像发现,随着时间的推移,胶原纤维组织变得更加整齐,但并不受添加 TGF - β 1 的影响:随着培养时间的推移和在 TGF - β 1 处理下,工程组织构建物的极性发生了变化,特别是线性延迟和环形去极化。这种组织结构有可能成为基于偏振测量方法的受控模块化光学模型。
{"title":"Mueller matrix analysis of a biologically sourced engineered tissue construct as polarimetric phantom.","authors":"Zixi Lin, Samantha Madnick, Joshua A Burrow, Jeffrey R Morgan, Kimani C Toussaint","doi":"10.1117/1.JBO.29.10.106002","DOIUrl":"https://doi.org/10.1117/1.JBO.29.10.106002","url":null,"abstract":"<p><strong>Significance: </strong>The polarimetric properties of biological tissues are often difficult to ascertain independent of their complex structural and organizational features. Conventional polarimetric tissue phantoms have well-characterized optical properties but are overly simplified. We demonstrate that an innovative, biologically sourced, engineered tissue construct better recapitulates the desired structural and polarimetric properties of native collagenous tissues, with the added benefit of potential tunability of the polarimetric response. We bridge the gap between non-biological polarimetric phantoms and native tissues.</p><p><strong>Aim: </strong>We aim to evaluate a synthesized tissue construct for its effectiveness as a phantom that mimics the polarimetric properties in typical collagenous tissues.</p><p><strong>Approach: </strong>We use a fibroblast-derived, ring-shaped engineered tissue construct as an innovative tissue phantom for polarimetric imaging. We perform polarimetry measurements and subsequent analysis using the Mueller matrix decomposition and Mueller matrix transformation methods. Scalar polarimetric parameters of the engineered tissue are analyzed at different time points for both a control group and for those treated with the transforming growth factor <math><mrow><mo>(</mo> <mi>TGF</mi> <mo>)</mo> <mtext>-</mtext> <mi>β</mi> <mn>1</mn></mrow> </math> . Second-harmonic generation (SHG) imaging and three-dimensional collagen fiber organization analysis are also applied.</p><p><strong>Results: </strong>We identify linear retardance and circular depolarization as the parameters that are most sensitive to the tissue culture time and the addition of <math><mrow><mi>TGF</mi> <mtext>-</mtext> <mi>β</mi> <mn>1</mn></mrow> </math> . Aside from a statistically significant increase over time, the behavior of linear retardance and circular depolarization indicates that the addition of <math><mrow><mi>TGF</mi> <mtext>-</mtext> <mi>β</mi> <mn>1</mn></mrow> </math> accelerates the growth of the engineered tissue, which is consistent with expectations. We also find through SHG images that collagen fiber organization becomes more aligned over time but is not susceptible to the addition of <math><mrow><mi>TGF</mi> <mtext>-</mtext> <mi>β</mi> <mn>1</mn></mrow> </math> .</p><p><strong>Conclusions: </strong>The engineered tissue construct exhibits changes in polarimetric properties, especially linear retardance and circular depolarization, over culture time and under <math><mrow><mi>TGF</mi> <mtext>-</mtext> <mi>β</mi> <mn>1</mn></mrow> </math> treatments. This tissue construct has the potential to act as a controlled modular optical phantom for polarimetric-based methods.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 10","pages":"106002"},"PeriodicalIF":3.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative estimation of optical properties in bilayer media within the subdiffusive regime using a tilted fiber-optic probe in diffuse reflectance spectroscopy, part 1: a theoretical framework for designing probe geometry. 在漫反射光谱学中使用倾斜光纤探针对亚扩散体系中双层介质的光学特性进行定量估算,第 1 部分:设计探针几何形状的理论框架。
IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-01 Epub Date: 2024-10-29 DOI: 10.1117/1.JBO.29.10.105001
Philippe De Tillieux, Maxime Baillot, Pierre Marquet

Significance: As biological tissues are highly heterogeneous, there is a great interest in developing non-invasive optical approaches capable of characterizing them in a very localized manner. Obtaining accurate absolute values of the local optical properties from the measured reflectance requires finding a probe geometry, which allows us to solve this inverse problem robustly and reliably despite neglecting the higher-order moments of the scattering phase function.

Aim: Our goal is to develop a theoretical framework for designing tilted-fiber diffuse reflectance probes that allow quantitative estimation of the optical properties corresponding to limited tissue volume (typically a few cubic millimeters).

Approach: Relationships among probe geometry, sampled tissue volume, and robustness of the inverse solver to calculate optical properties from reflectance are studied using Monte Carlo simulations.

Results: The analysis of the number of scattering events of the collected photons leads to the establishment of relationships among the probe geometry, the sampled tissue volume, and the validity of a subdiffusive regime for the reflectance.

Conclusions: A methodology is proposed for the design of new compact probes with tilted fiber geometry that can quantitatively estimate the values of the optical coefficients in a localized manner within living biological tissues by recording diffuse reflectance spectra.

意义重大:由于生物组织具有高度异质性,因此人们对开发能够以非常局部的方式描述生物组织特征的非侵入式光学方法非常感兴趣。要从测量到的反射率中获得准确的局部光学特性绝对值,需要找到一种探针几何形状,它能让我们在忽略散射相位函数的高阶矩的情况下,稳健可靠地解决这个逆问题。目标:我们的目标是建立一个理论框架,用于设计倾斜纤维漫反射探针,以便定量估计与有限组织体积(通常为几立方毫米)相对应的光学特性:方法:利用蒙特卡洛模拟法研究探头几何形状、采样组织体积以及通过反射率计算光学特性的逆求解器的稳健性之间的关系:结果:通过分析所收集光子的散射事件数量,确定了探头几何形状、取样组织体积和反射率亚扩散机制的有效性之间的关系:结论:本文提出了一种方法,用于设计具有倾斜光纤几何形状的新型紧凑探头,该探头可通过记录漫反射光谱,以局部方式定量估算活体生物组织内的光学系数值。
{"title":"Quantitative estimation of optical properties in bilayer media within the subdiffusive regime using a tilted fiber-optic probe in diffuse reflectance spectroscopy, part 1: a theoretical framework for designing probe geometry.","authors":"Philippe De Tillieux, Maxime Baillot, Pierre Marquet","doi":"10.1117/1.JBO.29.10.105001","DOIUrl":"https://doi.org/10.1117/1.JBO.29.10.105001","url":null,"abstract":"<p><strong>Significance: </strong>As biological tissues are highly heterogeneous, there is a great interest in developing non-invasive optical approaches capable of characterizing them in a very localized manner. Obtaining accurate absolute values of the local optical properties from the measured reflectance requires finding a probe geometry, which allows us to solve this inverse problem robustly and reliably despite neglecting the higher-order moments of the scattering phase function.</p><p><strong>Aim: </strong>Our goal is to develop a theoretical framework for designing tilted-fiber diffuse reflectance probes that allow quantitative estimation of the optical properties corresponding to limited tissue volume (typically a few cubic millimeters).</p><p><strong>Approach: </strong>Relationships among probe geometry, sampled tissue volume, and robustness of the inverse solver to calculate optical properties from reflectance are studied using Monte Carlo simulations.</p><p><strong>Results: </strong>The analysis of the number of scattering events of the collected photons leads to the establishment of relationships among the probe geometry, the sampled tissue volume, and the validity of a subdiffusive regime for the reflectance.</p><p><strong>Conclusions: </strong>A methodology is proposed for the design of new compact probes with tilted fiber geometry that can quantitatively estimate the values of the optical coefficients in a localized manner within living biological tissues by recording diffuse reflectance spectra.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 10","pages":"105001"},"PeriodicalIF":3.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accuracy enhancement of metabolic index-based blood glucose estimation with a screening process for low-quality data. 通过筛选低质量数据,提高基于代谢指数的血糖估算的准确性。
IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-01 Epub Date: 2024-10-25 DOI: 10.1117/1.JBO.29.10.107001
Tomoya Nakazawa, Keiji Morishita, Anna Ienaka, Takeo Fujii, Masaki Ito, Fumie Matsushita

Significance: Many researchers have proposed various non-invasive glucose monitoring (NIGM) approaches using wearable or portable devices. However, due to the limited capacity of detectors for such compact devices and the movement of the body during measurement, the precision of the acquired data frequently diminishes, which can cause problems during actual use in daily life. In addition, intensive smoothing is often used in post-processing to mitigate the effects of erroneous values. However, this requires a considerable amount of data and results in a delay in the response to the actual blood glucose level (BGL).

Aim: Instead of just applying data smoothing in the post-process of the data acquisition, we propose an active low-quality data screening method in the pre-process. In the proposal phase of the screening process, we employ an analytical approach to examine and formulate factors that might affect the BGL estimation accuracy.

Approach: A signal quality index inspired by the standard deviation concept is introduced to detect visually apparent noise on signals. Furthermore, the total estimation error in the metabolic index (MI) is calculated based on potential perturbations defined by the signal-to-noise ratio (SNR) and the uncertainty due to discrete sampling. Thereafter, the acquired data were screened by these quality indices.

Results: By applying the proposed data screening process to the data obtained from a commercially available smartwatch device in the pre-process, the estimation accuracy of the MI-based BGL was improved significantly.

Conclusions: Adopting the proposed screen process improves BGL estimation accuracy in the smartwatch-based prototype. Applying the proposed screen process will facilitate the integration of wearable and continuous BGL monitoring into size- and SNR-limited devices such as smartwatches and smart rings.

意义重大:许多研究人员提出了各种使用可穿戴或便携式设备的无创葡萄糖监测(NIGM)方法。然而,由于这种小巧设备的探测器容量有限,而且在测量过程中身体会移动,因此获取数据的精度经常会降低,这可能会在日常生活的实际使用中造成问题。此外,在后期处理过程中,通常会使用强化平滑处理来减轻错误值的影响。目的:我们提出了一种在前处理过程中主动筛选低质量数据的方法,而不是仅仅在数据采集的后处理中应用数据平滑。在筛选过程的建议阶段,我们采用一种分析方法来研究和制定可能影响血糖估计准确性的因素:方法:受标准偏差概念的启发,我们引入了一个信号质量指标,用于检测视觉上明显的信号噪声。此外,根据信噪比(SNR)定义的潜在扰动和离散采样导致的不确定性,计算出代谢指数(MI)的总估计误差。之后,根据这些质量指数对获取的数据进行筛选:通过在预处理中对从市售智能手表设备获取的数据应用所提出的数据筛选流程,基于 MI 的 BGL 估算精度得到了显著提高:结论:在基于智能手表的原型中,采用建议的筛选流程提高了 BGL 估算的准确性。应用所提出的屏幕流程将有助于将可穿戴和连续 BGL 监测集成到智能手表和智能手环等受尺寸和信噪比限制的设备中。
{"title":"Accuracy enhancement of metabolic index-based blood glucose estimation with a screening process for low-quality data.","authors":"Tomoya Nakazawa, Keiji Morishita, Anna Ienaka, Takeo Fujii, Masaki Ito, Fumie Matsushita","doi":"10.1117/1.JBO.29.10.107001","DOIUrl":"10.1117/1.JBO.29.10.107001","url":null,"abstract":"<p><strong>Significance: </strong>Many researchers have proposed various non-invasive glucose monitoring (NIGM) approaches using wearable or portable devices. However, due to the limited capacity of detectors for such compact devices and the movement of the body during measurement, the precision of the acquired data frequently diminishes, which can cause problems during actual use in daily life. In addition, intensive smoothing is often used in post-processing to mitigate the effects of erroneous values. However, this requires a considerable amount of data and results in a delay in the response to the actual blood glucose level (BGL).</p><p><strong>Aim: </strong>Instead of just applying data smoothing in the post-process of the data acquisition, we propose an active low-quality data screening method in the pre-process. In the proposal phase of the screening process, we employ an analytical approach to examine and formulate factors that might affect the BGL estimation accuracy.</p><p><strong>Approach: </strong>A signal quality index inspired by the standard deviation concept is introduced to detect visually apparent noise on signals. Furthermore, the total estimation error in the metabolic index (MI) is calculated based on potential perturbations defined by the signal-to-noise ratio (SNR) and the uncertainty due to discrete sampling. Thereafter, the acquired data were screened by these quality indices.</p><p><strong>Results: </strong>By applying the proposed data screening process to the data obtained from a commercially available smartwatch device in the pre-process, the estimation accuracy of the MI-based BGL was improved significantly.</p><p><strong>Conclusions: </strong>Adopting the proposed screen process improves BGL estimation accuracy in the smartwatch-based prototype. Applying the proposed screen process will facilitate the integration of wearable and continuous BGL monitoring into size- and SNR-limited devices such as smartwatches and smart rings.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 10","pages":"107001"},"PeriodicalIF":3.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-resolution lensless holographic microscopy using a physics-aware deep network. 使用物理感知深度网络的高分辨率无透镜全息显微镜。
IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-01 Epub Date: 2024-10-08 DOI: 10.1117/1.JBO.29.10.106502
Ashwini S Galande, Vikas Thapa, Aswathy Vijay, Renu John

Significance: Lensless digital inline holographic microscopy (LDIHM) is an emerging quantitative phase imaging modality that uses advanced computational methods for phase retrieval from the interference pattern. The existing end-to-end deep networks require a large training dataset with sufficient diversity to achieve high-fidelity hologram reconstruction. To mitigate this data requirement problem, physics-aware deep networks integrate the physics of holography in the loss function to reconstruct complex objects without needing prior training. However, the data fidelity term measures the data consistency with a single low-resolution hologram without any external regularization, which results in a low performance on complex biological data.

Aim: We aim to mitigate the challenges with trained and physics-aware untrained deep networks separately and combine the benefits of both methods for high-resolution phase recovery from a single low-resolution hologram in LDIHM.

Approach: We propose a hybrid deep framework (HDPhysNet) using a plug-and-play method that blends the benefits of trained and untrained deep models for phase recovery in LDIHM. The high-resolution phase is generated by a pre-trained high-definition generative adversarial network (HDGAN) from a single low-resolution hologram. The generated phase is then plugged into the loss function of a physics-aware untrained deep network to regulate the complex object reconstruction process.

Results: Simulation results show that the SSIM of the proposed method is increased by 0.07 over the trained and 0.04 over the untrained deep networks. The average phase-SNR is elevated by 8.2 dB over trained deep models and 9.8 dB over untrained deep networks on the experimental biological cells (cervical cells and red blood cells).

Conclusions: We showed improved performance of the HDPhysNet against the unknown perturbation in the imaging parameters such as the propagation distance, the wavelength of the illuminating source, and the imaging sample compared with the trained network (HDGAN). LDIHM, combined with HDPhysNet, is a portable and technology-driven microscopy best suited for point-of-care cytology applications.

意义重大:无透镜数字内联全息显微镜(LDIHM)是一种新兴的定量相位成像模式,它使用先进的计算方法从干涉图案中进行相位检索。现有的端到端深度网络需要具有足够多样性的大型训练数据集,才能实现高保真全息图重建。为缓解这一数据要求问题,物理感知深度网络在损失函数中集成了全息物理学,无需事先训练即可重建复杂对象。然而,数据保真度项衡量的是数据与单一低分辨率全息图的一致性,而没有任何外部正则化,这导致在复杂生物数据上的性能较低。Aim: We aim to mitigate the challenges with trained and physics-aware untrained deep networks separately and combine the benefits of both methods for high-resolution phase recovery from a single low-resolution hologram in LDIHM.Approach.We提出了混合深度框架(Hybrid deep framework, HDIHM):我们提出了一种混合深度框架(HDPhysNet),该框架采用即插即用的方法,将经过训练和未经训练的深度模型的优势结合起来,用于 LDIHM 中的相位恢复。高分辨率相位由预先训练好的高清生成对抗网络(HDGAN)从单张低分辨率全息图生成。然后将生成的相位插入物理感知的未训练深度网络的损失函数中,以调节复杂的物体重建过程:仿真结果表明,建议方法的 SSIM 比训练过的深度网络提高了 0.07,比未训练过的深度网络提高了 0.04。在实验生物细胞(宫颈细胞和红细胞)上,平均相位-SNR 比经过训练的深度模型提高了 8.2 dB,比未经训练的深度网络提高了 9.8 dB:与训练有素的网络(HDGAN)相比,我们发现 HDPhysNet 在面对成像参数(如传播距离、光源波长和成像样本)的未知扰动时性能有所提高。LDIHM 与 HDPhysNet 相结合,是一种便携式、技术驱动型显微镜,最适合用于护理点细胞学应用。
{"title":"High-resolution lensless holographic microscopy using a physics-aware deep network.","authors":"Ashwini S Galande, Vikas Thapa, Aswathy Vijay, Renu John","doi":"10.1117/1.JBO.29.10.106502","DOIUrl":"https://doi.org/10.1117/1.JBO.29.10.106502","url":null,"abstract":"<p><strong>Significance: </strong>Lensless digital inline holographic microscopy (LDIHM) is an emerging quantitative phase imaging modality that uses advanced computational methods for phase retrieval from the interference pattern. The existing end-to-end deep networks require a large training dataset with sufficient diversity to achieve high-fidelity hologram reconstruction. To mitigate this data requirement problem, physics-aware deep networks integrate the physics of holography in the loss function to reconstruct complex objects without needing prior training. However, the data fidelity term measures the data consistency with a single low-resolution hologram without any external regularization, which results in a low performance on complex biological data.</p><p><strong>Aim: </strong>We aim to mitigate the challenges with trained and physics-aware untrained deep networks separately and combine the benefits of both methods for high-resolution phase recovery from a single low-resolution hologram in LDIHM.</p><p><strong>Approach: </strong>We propose a hybrid deep framework (HDPhysNet) using a plug-and-play method that blends the benefits of trained and untrained deep models for phase recovery in LDIHM. The high-resolution phase is generated by a pre-trained high-definition generative adversarial network (HDGAN) from a single low-resolution hologram. The generated phase is then plugged into the loss function of a physics-aware untrained deep network to regulate the complex object reconstruction process.</p><p><strong>Results: </strong>Simulation results show that the SSIM of the proposed method is increased by 0.07 over the trained and 0.04 over the untrained deep networks. The average phase-SNR is elevated by 8.2 dB over trained deep models and 9.8 dB over untrained deep networks on the experimental biological cells (cervical cells and red blood cells).</p><p><strong>Conclusions: </strong>We showed improved performance of the HDPhysNet against the unknown perturbation in the imaging parameters such as the propagation distance, the wavelength of the illuminating source, and the imaging sample compared with the trained network (HDGAN). LDIHM, combined with HDPhysNet, is a portable and technology-driven microscopy best suited for point-of-care cytology applications.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 10","pages":"106502"},"PeriodicalIF":3.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomedical Optics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1