Significance: Airway wall elastography (AWE) is promising for evaluating upper airway obstructive disorders and airway injuries. Technologies for AWE based on endoscopic optical coherence tomography (OCT) provide micron-scale resolution to capture airway wall deformations during tidal breathing. Combined with an intraluminal pressure probe, these technologies can provide quantitative AWE as part of a routine bronchoscopy exam. However, scan times must be of short duration to mitigate risk.
Aim: Our objective is to reduce the scan time necessary to perform OCT elastography over a 50 mm length of the airway wall to less than 1 min.
Approach: We introduce an innovative, 4D OCT imaging technique that scans in a sawtooth pattern to revisit each axial position of the airway over a diversity of respiratory phases. An anatomical (long-range) OCT system capable of capturing cross-sections of the upper airway was employed in conjunction with an intraluminal pressure catheter. Scanned data are retrospectively sorted into axial bins with high- and low-pressure thresholds used to compute cross-sectional compliance (CC) within each bin across the length of the upper airway.
Results: 4D OCT was tested in simulation, on rigid and deformable samples, and on in vivo pigs undergoing bronchoscopy. A precise CC measurement with a 0.5 mm sampling resolution over a 50 mm scan length in under 42 s was achieved.
Conclusions: The retrospective, respiratory-gated 4D aOCT scanning method is a minimally invasive technique for measuring airway wall CC. The method exhibited high precision in controlled models, effectively detected elastic heterogeneity, and yielded clinically relevant results in in vivo pigs.
扫码关注我们
求助内容:
应助结果提醒方式:
