首页 > 最新文献

Journal of Biomedical Optics最新文献

英文 中文
Handheld multispectral photoacoustic imaging for assessing myocardial metabolism. 手持式多光谱光声成像评估心肌代谢。
IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-10-01 Epub Date: 2025-10-07 DOI: 10.1117/1.JBO.30.10.105001
Bokang Zhai, Yawen Shi, Handi Deng, Hongli Liu, Chenliang Xie, Naiyue Zhang, Wenyuan Yu, Dingce Sun, Yang Yu, Cheng Ma

Significance: Myocardial oxygen metabolism is a key focus of cardiac surgery. It serves as important evidence for surgeons to evaluate surgical quality and surgical plans. However, current clinical methods lack the capability to directly monitor dynamic changes in myocardial metabolism during surgery. Photoacoustic imaging (PAI), a biomedical optical imaging modality, offers real-time assessment of blood oxygen saturation. By visualizing oxygen saturation levels in both blood and muscle tissue, PAI provides a means to infer myocardial metabolic status intraoperatively.

Aim: We use PAI to observe the differences between infarcted myocardium and normal cardiac muscle and to explore the feasibility of using PAI to monitor myocardial metabolism levels during cardiac surgery.

Approach: Ten rabbits were randomly divided into experimental and control groups. The animals in the experimental group underwent thoracotomy followed by left anterior descending coronary artery ligation, whereas those in the control group received thoracotomy only. PAI was performed both at the beginning and before the end of the surgical procedure. The PAI results were compared between the two groups to analyze the relationship between myocardial PAI signal changes and oxygen metabolism levels.

Results: Following coronary ligation, the experimental group exhibited significant ST-segment elevation on electrocardiography, whereas no notable changes were observed in controls. PAI demonstrated: baseline myocardial oxygen saturation ( SmO 2 ) ranged from 45% to 72% across all rabbits. Ligation-induced ischemia sharply reduced SmO 2 to 1% to 19% in experimental animals. Control animals maintained stable SmO 2 levels throughout the procedure. Histopathological examination confirmed extensive myocardial necrosis in the apical region of ligated rabbits, consistent with the observed functional and metabolic alterations.

Conclusions: PAI can detect myocardial oxygen saturation in real-time during surgery and determine the occurrence of myocardial ischemia and changes in oxygen metabolism levels based on differences in oxygen saturation.

意义:心肌氧代谢是心脏外科手术的重点。它是外科医生评价手术质量和手术方案的重要依据。然而,目前的临床方法缺乏直接监测术中心肌代谢动态变化的能力。光声成像(PAI)是一种生物医学光学成像方式,可实时评估血氧饱和度。通过观察血液和肌肉组织中的氧饱和度水平,PAI提供了一种推断术中心肌代谢状态的手段。目的:应用PAI观察梗死心肌与正常心肌的差异,探讨PAI在心脏手术中监测心肌代谢水平的可行性。方法:10只家兔随机分为实验组和对照组。实验组采用开胸术,结扎左冠状动脉前降支,对照组仅开胸术。PAI在手术开始和结束前进行。比较两组PAI结果,分析心肌PAI信号变化与氧代谢水平的关系。结果:冠脉结扎后,实验组心电图显示st段明显抬高,而对照组无明显变化。PAI显示:所有家兔的基线心肌氧饱和度(smo2)范围为45%至72%。结扎引起的缺血使实验动物的smo2急剧降低至1%至19%。对照动物在整个过程中维持稳定的smo2水平。组织病理学检查证实结扎兔根尖区广泛心肌坏死,与观察到的功能和代谢改变一致。结论:PAI可实时检测术中心肌血氧饱和度,根据血氧饱和度的差异判断心肌缺血的发生及氧代谢水平的变化。
{"title":"Handheld multispectral photoacoustic imaging for assessing myocardial metabolism.","authors":"Bokang Zhai, Yawen Shi, Handi Deng, Hongli Liu, Chenliang Xie, Naiyue Zhang, Wenyuan Yu, Dingce Sun, Yang Yu, Cheng Ma","doi":"10.1117/1.JBO.30.10.105001","DOIUrl":"10.1117/1.JBO.30.10.105001","url":null,"abstract":"<p><strong>Significance: </strong>Myocardial oxygen metabolism is a key focus of cardiac surgery. It serves as important evidence for surgeons to evaluate surgical quality and surgical plans. However, current clinical methods lack the capability to directly monitor dynamic changes in myocardial metabolism during surgery. Photoacoustic imaging (PAI), a biomedical optical imaging modality, offers real-time assessment of blood oxygen saturation. By visualizing oxygen saturation levels in both blood and muscle tissue, PAI provides a means to infer myocardial metabolic status intraoperatively.</p><p><strong>Aim: </strong>We use PAI to observe the differences between infarcted myocardium and normal cardiac muscle and to explore the feasibility of using PAI to monitor myocardial metabolism levels during cardiac surgery.</p><p><strong>Approach: </strong>Ten rabbits were randomly divided into experimental and control groups. The animals in the experimental group underwent thoracotomy followed by left anterior descending coronary artery ligation, whereas those in the control group received thoracotomy only. PAI was performed both at the beginning and before the end of the surgical procedure. The PAI results were compared between the two groups to analyze the relationship between myocardial PAI signal changes and oxygen metabolism levels.</p><p><strong>Results: </strong>Following coronary ligation, the experimental group exhibited significant ST-segment elevation on electrocardiography, whereas no notable changes were observed in controls. PAI demonstrated: baseline myocardial oxygen saturation ( <math> <mrow><msub><mi>SmO</mi> <mn>2</mn></msub> </mrow> </math> ) ranged from 45% to 72% across all rabbits. Ligation-induced ischemia sharply reduced <math> <mrow><msub><mi>SmO</mi> <mn>2</mn></msub> </mrow> </math> to 1% to 19% in experimental animals. Control animals maintained stable <math> <mrow><msub><mi>SmO</mi> <mn>2</mn></msub> </mrow> </math> levels throughout the procedure. Histopathological examination confirmed extensive myocardial necrosis in the apical region of ligated rabbits, consistent with the observed functional and metabolic alterations.</p><p><strong>Conclusions: </strong>PAI can detect myocardial oxygen saturation in real-time during surgery and determine the occurrence of myocardial ischemia and changes in oxygen metabolism levels based on differences in oxygen saturation.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 10","pages":"105001"},"PeriodicalIF":2.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12502845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145251163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplane 2.5D microscopy for high-throughput high-resolution tissue imaging. 用于高通量高分辨率组织成像的多平面2.5D显微镜。
IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-10-01 Epub Date: 2025-10-17 DOI: 10.1117/1.JBO.30.10.106502
Le-Mei Wang, Dhruvam Pandey, Wencai Zhang, Kyu Young Han

Significance: Fast, high-throughput fluorescence imaging is essential for numerous biomedical applications, particularly in high-resolution volumetric tissue analysis.

Aim: We aim to develop an imaging strategy that combines the strengths of multiplane microscopy and extended depth-of-field (EDOF) microscopy and to characterize its performance on tissue samples.

Approach: We employed 2.5D microscopy, an EDOF approach optimized for high-resolution imaging, and integrated it with a quad-plane image splitter. This technique enables simultaneous capture of four focal volumes using a single camera, allowing volumetric imaging of 16 to 20    μ m thick mouse and human tissues prepared as frozen or formalin-fixed, paraffin-embedded sections.

Results: Our approach achieves a 25-fold reduction in image acquisition time compared with conventional z -scanning widefield microscopy. For example, a 2    m m × 2    m m × 16    μ m volume can be imaged in 4.7 min, down from 2    h . We further demonstrate compatibility with multicolor imaging and successful application to nucleus segmentation for downstream analysis.

Conclusions: This imaging technique provides a promising tool for tissue analysis, offering significant improvements in volumetric imaging speed with minimal compromise in spatial resolution and sensitivity.

意义:快速、高通量荧光成像在许多生物医学应用中是必不可少的,特别是在高分辨率体积组织分析中。目的:我们的目标是开发一种结合多平面显微镜和扩展景深(EDOF)显微镜优势的成像策略,并表征其在组织样品上的性能。方法:我们采用2.5D显微镜,一种优化了高分辨率成像的EDOF方法,并将其与四平面图像分配器集成在一起。该技术允许使用单个摄像机同时捕获四个焦点体积,允许对冷冻或福尔马林固定石蜡包埋切片制备的16至20 μ m厚的小鼠和人体组织进行体积成像。结果:与传统的z扫描宽视场显微镜相比,我们的方法在图像采集时间上减少了25倍。例如,一个2 m × 2 m × 16 μ m的体积可以在4.7分钟内成像,而之前的成像时间为2小时。我们进一步证明了与多色成像的兼容性,并成功应用于下游分析的核分割。结论:该成像技术为组织分析提供了一种很有前途的工具,在空间分辨率和灵敏度最小的情况下,显著提高了体积成像速度。
{"title":"Multiplane 2.5D microscopy for high-throughput high-resolution tissue imaging.","authors":"Le-Mei Wang, Dhruvam Pandey, Wencai Zhang, Kyu Young Han","doi":"10.1117/1.JBO.30.10.106502","DOIUrl":"10.1117/1.JBO.30.10.106502","url":null,"abstract":"<p><strong>Significance: </strong>Fast, high-throughput fluorescence imaging is essential for numerous biomedical applications, particularly in high-resolution volumetric tissue analysis.</p><p><strong>Aim: </strong>We aim to develop an imaging strategy that combines the strengths of multiplane microscopy and extended depth-of-field (EDOF) microscopy and to characterize its performance on tissue samples.</p><p><strong>Approach: </strong>We employed 2.5D microscopy, an EDOF approach optimized for high-resolution imaging, and integrated it with a quad-plane image splitter. This technique enables simultaneous capture of four focal volumes using a single camera, allowing volumetric imaging of <math><mrow><mo>∼</mo> <mn>16</mn></mrow> </math> to <math><mrow><mn>20</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> thick mouse and human tissues prepared as frozen or formalin-fixed, paraffin-embedded sections.</p><p><strong>Results: </strong>Our approach achieves a 25-fold reduction in image acquisition time compared with conventional <math><mrow><mi>z</mi></mrow> </math> -scanning widefield microscopy. For example, a <math><mrow><mn>2</mn> <mtext>  </mtext> <mi>m</mi> <mi>m</mi> <mo>×</mo> <mn>2</mn> <mtext>  </mtext> <mi>m</mi> <mi>m</mi> <mo>×</mo> <mn>16</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> volume can be imaged in 4.7 min, down from <math><mrow><mo>∼</mo> <mn>2</mn> <mtext>  </mtext> <mi>h</mi></mrow> </math> . We further demonstrate compatibility with multicolor imaging and successful application to nucleus segmentation for downstream analysis.</p><p><strong>Conclusions: </strong>This imaging technique provides a promising tool for tissue analysis, offering significant improvements in volumetric imaging speed with minimal compromise in spatial resolution and sensitivity.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 10","pages":"106502"},"PeriodicalIF":2.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12531577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145329260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Segmental airway adenocarcinoma-simulating phantom for endoscopic near-infrared optical coherence tomography. 用于内镜近红外光学相干断层扫描的段状气道腺癌模拟模型。
IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-10-01 Epub Date: 2025-10-07 DOI: 10.1117/1.JBO.30.10.105002
Eric Brace, Alicia Fung, Adrian Tanskanen, Jeanie Malone, Calum E MacAulay, Pierre M Lane

Significance: There is an unmet need for readily accessible imaging targets to verify whether devices can discriminate lesions from healthy tissue and identify sub-surface vasculature in the small airways.

Aim: Our aim is to develop a phantom that mimics human segmental airway adenocarcinoma in vivo for 1310 nm endoscopic optical coherence tomography (OCT) and angiography characterization.

Approach: We develop phantoms using a mixture of agar, intralipid, and coconut oil cured in a 3D printed mold with embedded tubing to mimic vasculature. The parenchyma optical attenuation coefficient (OAC) is calibrated using optical transmission measurements from an agar and intralipid dilution series. Depth-resolved OAC histogram distributions, analysis of variance, and image quality are used to assess repeatability and biofidelity of these phantoms.

Results: Transmission measurements show large increases in OAC when intralipid is cured with agar compared with water-intralipid dilutions. Representative phantom OACs show repeatability within 2.7% and match normal in vivo tissue measurements within 16%. Embedded lesion phantoms achieve imaging characteristics of in vivo adenocarcinoma. Fluid flow within embedded tubing is visualized with Doppler OCT.

Conclusions: The segmental airway phantoms demonstrate in vivo human imaging characteristics, including structural and optical markers of pathological progression-providing a platform for imaging system characterization and optimization.

意义:目前尚不需要容易接近的成像目标来验证设备是否可以区分病变和健康组织,并识别小气道的表面下血管系统。目的:我们的目标是开发一种模拟人体段性气道腺癌的假体,用于1310nm内镜光学相干断层扫描(OCT)和血管造影表征。方法:我们开发的幻影使用琼脂,内脂和椰子油的混合物固化在3D打印模具嵌入管模拟血管系统。使用琼脂和脂内稀释系列的光透射测量校准薄壁光学衰减系数(OAC)。深度分辨OAC直方图分布、方差分析和图像质量用于评估这些幻象的可重复性和生物保真度。结果:传输测量显示,当脂内用琼脂固化时,与水-脂内稀释相比,OAC大幅增加。代表性幻影oac的重复性在2.7%以内,与正常体内组织测量值的匹配度在16%以内。埋置病灶影达到体内腺癌的影像学特征。结论:段状气道图像显示了体内人体成像特征,包括病理进展的结构和光学标记,为成像系统的表征和优化提供了一个平台。
{"title":"Segmental airway adenocarcinoma-simulating phantom for endoscopic near-infrared optical coherence tomography.","authors":"Eric Brace, Alicia Fung, Adrian Tanskanen, Jeanie Malone, Calum E MacAulay, Pierre M Lane","doi":"10.1117/1.JBO.30.10.105002","DOIUrl":"10.1117/1.JBO.30.10.105002","url":null,"abstract":"<p><strong>Significance: </strong>There is an unmet need for readily accessible imaging targets to verify whether devices can discriminate lesions from healthy tissue and identify sub-surface vasculature in the small airways.</p><p><strong>Aim: </strong>Our aim is to develop a phantom that mimics human segmental airway adenocarcinoma <i>in vivo</i> for 1310 nm endoscopic optical coherence tomography (OCT) and angiography characterization.</p><p><strong>Approach: </strong>We develop phantoms using a mixture of agar, intralipid, and coconut oil cured in a 3D printed mold with embedded tubing to mimic vasculature. The parenchyma optical attenuation coefficient (OAC) is calibrated using optical transmission measurements from an agar and intralipid dilution series. Depth-resolved OAC histogram distributions, analysis of variance, and image quality are used to assess repeatability and biofidelity of these phantoms.</p><p><strong>Results: </strong>Transmission measurements show large increases in OAC when intralipid is cured with agar compared with water-intralipid dilutions. Representative phantom OACs show repeatability within 2.7% and match normal <i>in vivo</i> tissue measurements within 16%. Embedded lesion phantoms achieve imaging characteristics of <i>in vivo</i> adenocarcinoma. Fluid flow within embedded tubing is visualized with Doppler OCT.</p><p><strong>Conclusions: </strong>The segmental airway phantoms demonstrate <i>in vivo</i> human imaging characteristics, including structural and optical markers of pathological progression-providing a platform for imaging system characterization and optimization.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 10","pages":"105002"},"PeriodicalIF":2.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12509969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145280333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrathin lensed fiber-based manual scanning optical coherence tomography needle probe for the detection of the interproximal caries. 基于超薄透镜光纤的手工扫描光学相干断层扫描针探头用于近端间龋的检测。
IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-10-01 Epub Date: 2025-10-14 DOI: 10.1117/1.JBO.30.10.106001
Tong Wu, Yu Zhao, Jie He, YuFei Shan, Hong Shen, Youwen Liu, YaoYao Shi, XiaoRong Gu, YuanGang Lu, Jiming Wang, ChongJun He

Significance: Interproximal caries detection is critical for effective dental treatment. We report an ultrathin lensed fiber-based manual scanning optical coherence tomography (OCT) needle probe to enables the direct imaging of the interproximal caries between two adjacent teeth.

Aim: We aim to design and fabricate the ultrathin lensed fiber-based manual scanning OCT needle probe, and validate the performance of the proposed probe by applying it to the imaging of the phantom sample, the human skin tissue and the interproximal caries between two adjacent teeth.

Approach: A homemade lensed fiber is packaged into a 21-gauge hypodermic needle to create a high-flexibility, ultrathin probe. A decorrelation algorithm is employed for image reconstruction based on manual scanning. The performances of the developed needle probe are experimentally measured. The probe is incorporated in a swept-source OCT system to image the phantom sample, the human skin tissue, and the interproximal caries between two adjacent teeth.

Results: The working distance and focused spot diameter of the developed probe are measured to be 1.22 mm and 18.78    μ m , respectively. The correctly reconstructed OCT images of the phantom, skin tissue, and the tooth tissue demonstrate the performance of the developed ultrathin lensed fiber-based manual scanning OCT needle probe. The distinct structural difference between the healthy and abnormal teeth tissue validates the efficacy of the proposed method.

Conclusion: We propose an ultrathin lensed fiber-based manual scanning OCT needle probe potentially useful for the interproximal caries detection. The design, fabrication, and performances of the developed needle probe are demonstrated. We address a critical issue in the caries diagnostics and offer a promising tool for the future clinical applications.

意义:近端间龋的检测是有效治疗的关键。我们报告了一种超薄透镜光纤手工扫描光学相干断层扫描(OCT)探针,可以直接成像两颗相邻牙齿之间的近端间龋。目的:设计和制作基于纤维的超薄透镜型手动扫描OCT探针,并将其应用于对幻体样本、人体皮肤组织和相邻两牙间近端龋的成像,验证探针的性能。方法:将自制的透镜纤维包装在21号皮下注射针中,形成高柔韧性、超薄的探针。在人工扫描的基础上,采用去相关算法进行图像重建。实验测量了所研制的针探针的性能。探头与扫描源OCT系统结合,对幻影样本、人体皮肤组织和两颗相邻牙齿之间的近端间龋进行成像。结果:所研制探针的工作距离为1.22 mm,聚焦光斑直径为18.78 μ m。正确重建的幻影、皮肤组织和牙齿组织的OCT图像证明了所开发的基于超薄透镜纤维的手动扫描OCT针探头的性能。健康和异常牙齿组织的明显结构差异验证了该方法的有效性。结论:我们提出了一种基于超薄透镜纤维的手动扫描OCT针探针,可用于近端间龋的检测。介绍了所研制的针探针的设计、制造和性能。我们解决了龋齿诊断中的一个关键问题,并为未来的临床应用提供了一个有前途的工具。
{"title":"Ultrathin lensed fiber-based manual scanning optical coherence tomography needle probe for the detection of the interproximal caries.","authors":"Tong Wu, Yu Zhao, Jie He, YuFei Shan, Hong Shen, Youwen Liu, YaoYao Shi, XiaoRong Gu, YuanGang Lu, Jiming Wang, ChongJun He","doi":"10.1117/1.JBO.30.10.106001","DOIUrl":"10.1117/1.JBO.30.10.106001","url":null,"abstract":"<p><strong>Significance: </strong>Interproximal caries detection is critical for effective dental treatment. We report an ultrathin lensed fiber-based manual scanning optical coherence tomography (OCT) needle probe to enables the direct imaging of the interproximal caries between two adjacent teeth.</p><p><strong>Aim: </strong>We aim to design and fabricate the ultrathin lensed fiber-based manual scanning OCT needle probe, and validate the performance of the proposed probe by applying it to the imaging of the phantom sample, the human skin tissue and the interproximal caries between two adjacent teeth.</p><p><strong>Approach: </strong>A homemade lensed fiber is packaged into a 21-gauge hypodermic needle to create a high-flexibility, ultrathin probe. A decorrelation algorithm is employed for image reconstruction based on manual scanning. The performances of the developed needle probe are experimentally measured. The probe is incorporated in a swept-source OCT system to image the phantom sample, the human skin tissue, and the interproximal caries between two adjacent teeth.</p><p><strong>Results: </strong>The working distance and focused spot diameter of the developed probe are measured to be 1.22 mm and <math><mrow><mn>18.78</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> , respectively. The correctly reconstructed OCT images of the phantom, skin tissue, and the tooth tissue demonstrate the performance of the developed ultrathin lensed fiber-based manual scanning OCT needle probe. The distinct structural difference between the healthy and abnormal teeth tissue validates the efficacy of the proposed method.</p><p><strong>Conclusion: </strong>We propose an ultrathin lensed fiber-based manual scanning OCT needle probe potentially useful for the interproximal caries detection. The design, fabrication, and performances of the developed needle probe are demonstrated. We address a critical issue in the caries diagnostics and offer a promising tool for the future clinical applications.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 10","pages":"106001"},"PeriodicalIF":2.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12519090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145300838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-exposure speckle imaging through an optical fiber bundle. 通过光纤束的多曝光散斑成像。
IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-10-01 Epub Date: 2025-10-24 DOI: 10.1117/1.JBO.30.10.106006
Logan Parker, Shaun A Englemann, Alankrit Tomar, Andrew K Dunn, James W Tunnell

Significance: Multi-exposure speckle imaging (MESI) is a label-free technique to visualize and measure blood flow. Accurate perfusion measurements are useful in a variety of applications, including surgery, monitoring treatment, and diagnosing various conditions.

Aim: We aim to demonstrate the feasibility of capturing speckle images through an optical fiber bundle for use in MESI for potential applications such as endoscopy or where free space measurements are not feasible.

Approach: To compare the accuracy of fiber bundle MESI measurements against free space MESI measurements, measurements of a tissue-simulating flow phantom and in vivo mouse cortex were acquired simultaneously through free space and an optical fiber bundle.

Results: Using the Pearson correlation coefficient for comparing measurements, R 2 values of 0.9994 and 0.9942 were calculated for low (1 to 10    μ L / min ) and high (10 to 100    μ L / min ) flow rates, respectively. For in vivo measurements, an R 2 value of 0.970 was calculated for flow in 14 vessels and 5 parenchyma regions. R 2 values of 0.953 and 0.906 were calculated for two vessels before, during, and after a stroke.

Conclusions: MESI measurements through an optical fiber bundle show similar results to free-space MESI.

意义:多曝光散斑成像(MESI)是一种可视化和测量血流的无标签技术。准确的灌注测量在各种应用中都很有用,包括手术、监测治疗和诊断各种疾病。目的:我们的目标是证明通过光纤束捕获散斑图像的可行性,用于MESI的潜在应用,如内窥镜或自由空间测量不可行的地方。方法:为了比较光纤束MESI测量与自由空间MESI测量的准确性,通过自由空间和光纤束同时获得了组织模拟流动幻影和体内小鼠皮层的测量。结果:采用Pearson相关系数对测量值进行比较,低流速(1 ~ 10 μ L / min)和高流速(10 ~ 100 μ L / min)的r2值分别为0.9994和0.9942。在体内测量中,14条血管和5个实质区域的血流r2值为0.970。两根血管在卒中前、卒中中、卒中后的r2分别为0.953、0.906。结论:通过光纤束的MESI测量结果与自由空间MESI测量结果相似。
{"title":"Multi-exposure speckle imaging through an optical fiber bundle.","authors":"Logan Parker, Shaun A Englemann, Alankrit Tomar, Andrew K Dunn, James W Tunnell","doi":"10.1117/1.JBO.30.10.106006","DOIUrl":"10.1117/1.JBO.30.10.106006","url":null,"abstract":"<p><strong>Significance: </strong>Multi-exposure speckle imaging (MESI) is a label-free technique to visualize and measure blood flow. Accurate perfusion measurements are useful in a variety of applications, including surgery, monitoring treatment, and diagnosing various conditions.</p><p><strong>Aim: </strong>We aim to demonstrate the feasibility of capturing speckle images through an optical fiber bundle for use in MESI for potential applications such as endoscopy or where free space measurements are not feasible.</p><p><strong>Approach: </strong>To compare the accuracy of fiber bundle MESI measurements against free space MESI measurements, measurements of a tissue-simulating flow phantom and <i>in vivo</i> mouse cortex were acquired simultaneously through free space and an optical fiber bundle.</p><p><strong>Results: </strong>Using the Pearson correlation coefficient for comparing measurements, <math> <mrow><msup><mi>R</mi> <mn>2</mn></msup> </mrow> </math> values of 0.9994 and 0.9942 were calculated for low (1 to <math><mrow><mn>10</mn> <mtext>  </mtext> <mi>μ</mi> <mi>L</mi> <mo>/</mo> <mi>min</mi></mrow> </math> ) and high (10 to <math><mrow><mn>100</mn> <mtext>  </mtext> <mi>μ</mi> <mi>L</mi> <mo>/</mo> <mi>min</mi></mrow> </math> ) flow rates, respectively. For <i>in vivo</i> measurements, an <math> <mrow><msup><mi>R</mi> <mn>2</mn></msup> </mrow> </math> value of 0.970 was calculated for flow in 14 vessels and 5 parenchyma regions. <math> <mrow><msup><mi>R</mi> <mn>2</mn></msup> </mrow> </math> values of 0.953 and 0.906 were calculated for two vessels before, during, and after a stroke.</p><p><strong>Conclusions: </strong>MESI measurements through an optical fiber bundle show similar results to free-space MESI.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 10","pages":"106006"},"PeriodicalIF":2.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12549214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145377337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Affordable miniaturized speckle contrast diffuse correlation tomography device for depth-sensitive mapping of cerebral blood flow in rodents. 用于啮齿动物脑血流深度敏感成像的价格合理的小型化散斑对比弥散相关断层扫描设备。
IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-10-01 Epub Date: 2025-10-24 DOI: 10.1117/1.JBO.30.10.106007
Fatemeh Hamedi, Faezeh Akbari, Mehrana Mohtasebi, Chong Huang, Li Chen, Lei Chen, Guoqiang Yu

Significance: Continuous and longitudinal monitoring of cerebral blood flow (CBF) is critical for understanding brain pathophysiology and guiding interventions. Although rodents are the primary models in neuroscience, existing imaging modalities often fail to provide the optimal combination of low cost, high spatiotemporal resolution, wide head coverage, and sufficient penetration depth for small-animal brain imaging.

Aim: Leveraging a clinical speckle contrast diffuse correlation tomography (scDCT) system, we aimed to develop an affordable, user-friendly, fast, and miniaturized scDCT (mini-scDCT) device tailored for depth-sensitive CBF imaging in small rodents.

Approach: The mini-scDCT replaces bulky and costly optoelectronic components with compact, low-cost alternatives while preserving imaging performance. It is mounted on a standard stereotaxic apparatus for portability and ease of use. Temporal resolution was improved by hardware synchronization and software optimization. System validation was performed using head-simulating phantoms and rodent models under various pathophysiological conditions.

Results: Compared with the original scDCT, the mini-scDCT achieved a fourfold cost reduction, a fivefold footprint reduction, and eightfold improvement in temporal resolution per source. Validation experiments confirmed the system's depth sensitivity in head-simulating phantoms and its ability to detect both global and regional CBF changes in rodents, with results consistent with physiological expectations and prior studies.

Conclusion: The mini-scDCT offers an affordable, user-friendly, depth-sensitive platform for functional brain imaging in rodent models. Its reduced cost and compact footprint enhance accessibility, whereas the improved spatiotemporal resolution enables diverse applications such as imaging brain functional connectivity in neuroscience research.

意义:连续和纵向监测脑血流量(CBF)对了解脑病理生理和指导干预措施至关重要。尽管啮齿类动物是神经科学的主要模型,但现有的成像方式往往无法为小动物脑成像提供低成本、高时空分辨率、宽头部覆盖和足够穿透深度的最佳组合。目的:利用临床散斑对比弥散相关断层扫描(scDCT)系统,我们旨在开发一种价格合理、用户友好、快速、小型化的scDCT (mini-scDCT)设备,专门用于小型啮齿动物的深度敏感CBF成像。方法:迷你scdct用紧凑、低成本的替代品取代了笨重、昂贵的光电元件,同时保持了成像性能。它被安装在一个标准的立体定向装置上,便于携带和使用。通过硬件同步和软件优化来提高时间分辨率。在各种病理生理条件下,使用模拟头部的模型和啮齿动物模型进行系统验证。结果:与原始的scDCT相比,mini-scDCT的成本降低了4倍,占地面积减少了5倍,每个源的时间分辨率提高了8倍。验证实验证实了该系统在模拟头部幻象中的深度敏感性,以及检测啮齿动物整体和区域CBF变化的能力,其结果与生理学预期和先前的研究一致。结论:mini-scDCT为啮齿类动物模型的功能脑成像提供了一个价格合理、用户友好、深度敏感的平台。其降低的成本和紧凑的占地面积增强了可访问性,而改进的时空分辨率使各种应用成为可能,例如神经科学研究中的脑功能连接成像。
{"title":"Affordable miniaturized speckle contrast diffuse correlation tomography device for depth-sensitive mapping of cerebral blood flow in rodents.","authors":"Fatemeh Hamedi, Faezeh Akbari, Mehrana Mohtasebi, Chong Huang, Li Chen, Lei Chen, Guoqiang Yu","doi":"10.1117/1.JBO.30.10.106007","DOIUrl":"10.1117/1.JBO.30.10.106007","url":null,"abstract":"<p><strong>Significance: </strong>Continuous and longitudinal monitoring of cerebral blood flow (CBF) is critical for understanding brain pathophysiology and guiding interventions. Although rodents are the primary models in neuroscience, existing imaging modalities often fail to provide the optimal combination of low cost, high spatiotemporal resolution, wide head coverage, and sufficient penetration depth for small-animal brain imaging.</p><p><strong>Aim: </strong>Leveraging a clinical speckle contrast diffuse correlation tomography (scDCT) system, we aimed to develop an affordable, user-friendly, fast, and miniaturized scDCT (mini-scDCT) device tailored for depth-sensitive CBF imaging in small rodents.</p><p><strong>Approach: </strong>The mini-scDCT replaces bulky and costly optoelectronic components with compact, low-cost alternatives while preserving imaging performance. It is mounted on a standard stereotaxic apparatus for portability and ease of use. Temporal resolution was improved by hardware synchronization and software optimization. System validation was performed using head-simulating phantoms and rodent models under various pathophysiological conditions.</p><p><strong>Results: </strong>Compared with the original scDCT, the mini-scDCT achieved a fourfold cost reduction, a fivefold footprint reduction, and eightfold improvement in temporal resolution per source. Validation experiments confirmed the system's depth sensitivity in head-simulating phantoms and its ability to detect both global and regional CBF changes in rodents, with results consistent with physiological expectations and prior studies.</p><p><strong>Conclusion: </strong>The mini-scDCT offers an affordable, user-friendly, depth-sensitive platform for functional brain imaging in rodent models. Its reduced cost and compact footprint enhance accessibility, whereas the improved spatiotemporal resolution enables diverse applications such as imaging brain functional connectivity in neuroscience research.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 10","pages":"106007"},"PeriodicalIF":2.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12551968/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145377370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid CNN-transformer demosaicing for bioinspired single-chip color-near-infrared fluorescence imaging in oncologic surgery. 用于肿瘤手术中生物启发的单芯片彩色近红外荧光成像的混合cnn -变压器去马赛克。
IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-10-01 Epub Date: 2025-10-28 DOI: 10.1117/1.JBO.30.10.106008
Yifei Jin, Jiankun Yang, Borislav Kondov, Goran Kondov, Sunil Singhal, David Forsyth, Brian T Cunningham, Shuming Nie, Viktor Gruev

Significance: Single-chip multispectral imaging sensors with vertically stacked photodiodes and pixelated spectral filters enable advanced, real-time visualization for image-guided cancer surgery. However, their design inherently reduces spatial resolution. We present a convolutional neural network (CNN)-transformer demosaicing algorithm, validated on both clinical and preclinical datasets that effectively doubles spatial resolution and improves image quality-substantially enhancing intraoperative cancer visualization.

Aim: We present a CNN-transformer-based demosaicing approach specifically optimized for reconstructing high-resolution color and NIR images acquired by a hexachromatic imaging sensor.

Approach: A hybrid CNN-transformer demosaicing model was developed and trained on color-image datasets, then rigorously evaluated on color and NIR images to demonstrate superior reconstruction quality compared with conventional bilinear interpolation and residual CNN methods.

Results: Our CNN-transformer demosaicing method achieves an average mean squared error (MSE) reduction of 85 % for color images and 76% for NIR images and improves structural dissimilarity by roughly 72% and 79%, respectively, compared with state-of-the-art CNN-based demosaicing algorithms in preclinical datasets. In clinical datasets, our approach similarly demonstrates significant reductions in MSE and structural dissimilarity, substantially outperforming existing CNN-based methods, particularly in reconstructing high-frequency image details.

Conclusions: We demonstrate improvements in spatial resolution and image fidelity for color and NIR images obtained from hexachromatic imaging sensors, achieved by integrating convolutional neural networks with transformer architectures. Given recent advances in GPU computing, our CNN-transformer approach offers a practical, real-time solution for enhanced multispectral imaging during cancer surgery.

意义:具有垂直堆叠光电二极管和像素化光谱滤波器的单芯片多光谱成像传感器为图像引导的癌症手术提供了先进的实时可视化。然而,它们的设计本质上降低了空间分辨率。我们提出了一种卷积神经网络(CNN)-变压器去马赛克算法,该算法在临床和临床前数据集上进行了验证,有效地提高了空间分辨率,提高了图像质量,大大增强了术中癌症的可视化。目的:我们提出了一种基于cnn变压器的去马赛克方法,该方法专门针对六色成像传感器获得的高分辨率彩色和近红外图像进行了优化。方法:开发了一种混合CNN-transformer去马赛克模型,并在彩色图像数据集上进行了训练,然后对彩色和近红外图像进行了严格的评估,与传统的双线性插值和残差CNN方法相比,显示出更好的重建质量。结果:与临床前数据集中最先进的基于cnn的去马赛克算法相比,我们的CNN-transformer去马赛克方法在彩色图像和近红外图像上实现了平均均方误差(MSE)降低约85%和76%,并分别将结构不相似性提高了约72%和79%。在临床数据集中,我们的方法同样显示出MSE和结构不相似性的显著降低,大大优于现有的基于cnn的方法,特别是在重建高频图像细节方面。结论:我们展示了通过将卷积神经网络与变压器架构集成来实现从六色成像传感器获得的彩色和近红外图像的空间分辨率和图像保真度的改进。鉴于GPU计算的最新进展,我们的CNN-transformer方法为癌症手术期间增强多光谱成像提供了实用的实时解决方案。
{"title":"Hybrid CNN-transformer demosaicing for bioinspired single-chip color-near-infrared fluorescence imaging in oncologic surgery.","authors":"Yifei Jin, Jiankun Yang, Borislav Kondov, Goran Kondov, Sunil Singhal, David Forsyth, Brian T Cunningham, Shuming Nie, Viktor Gruev","doi":"10.1117/1.JBO.30.10.106008","DOIUrl":"10.1117/1.JBO.30.10.106008","url":null,"abstract":"<p><strong>Significance: </strong>Single-chip multispectral imaging sensors with vertically stacked photodiodes and pixelated spectral filters enable advanced, real-time visualization for image-guided cancer surgery. However, their design inherently reduces spatial resolution. We present a convolutional neural network (CNN)-transformer demosaicing algorithm, validated on both clinical and preclinical datasets that effectively doubles spatial resolution and improves image quality-substantially enhancing intraoperative cancer visualization.</p><p><strong>Aim: </strong>We present a CNN-transformer-based demosaicing approach specifically optimized for reconstructing high-resolution color and NIR images acquired by a hexachromatic imaging sensor.</p><p><strong>Approach: </strong>A hybrid CNN-transformer demosaicing model was developed and trained on color-image datasets, then rigorously evaluated on color and NIR images to demonstrate superior reconstruction quality compared with conventional bilinear interpolation and residual CNN methods.</p><p><strong>Results: </strong>Our CNN-transformer demosaicing method achieves an average mean squared error (MSE) reduction of <math><mrow><mo>∼</mo> <mn>85</mn> <mo>%</mo></mrow> </math> for color images and 76% for NIR images and improves structural dissimilarity by roughly 72% and 79%, respectively, compared with state-of-the-art CNN-based demosaicing algorithms in preclinical datasets. In clinical datasets, our approach similarly demonstrates significant reductions in MSE and structural dissimilarity, substantially outperforming existing CNN-based methods, particularly in reconstructing high-frequency image details.</p><p><strong>Conclusions: </strong>We demonstrate improvements in spatial resolution and image fidelity for color and NIR images obtained from hexachromatic imaging sensors, achieved by integrating convolutional neural networks with transformer architectures. Given recent advances in GPU computing, our CNN-transformer approach offers a practical, real-time solution for enhanced multispectral imaging during cancer surgery.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 10","pages":"106008"},"PeriodicalIF":2.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12561625/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145400893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced automated classification and segmentation of leukemic cells using simulated optical scanning holography and active contour methods. 利用模拟光学扫描全息和主动轮廓方法对白血病细胞进行高级自动分类和分割。
IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-09-01 Epub Date: 2025-09-27 DOI: 10.1117/1.JBO.30.9.096005
Abdennacer El-Ouarzadi, Abdelaziz Essadike, Younes Achaoui, Abdenbi Bouzid

Significance: Leukemia, a complex hematological cancer, poses significant diagnostic challenges due to the heterogeneity of leukemic cells, inter-observer variability, and lack of standardized analysis methodology. Accurate and rapid cell classification is essential to improve clinical management, optimize treatment, and reduce diagnostic errors.

Aim: We propose an innovative approach combining optical scanning holography (OSH) and active contour (AC) models to automate the classification and segmentation of leukemic cells with increased accuracy.

Approach: OSH is used to capture the phase current of leukocytes, providing a cost-effective, noninvasive, and simplified alternative to conventional techniques. AC models are used to improve cell segmentation. Analysis of the maximum amplitude values of the phase current allows rapid and fully automated classification.

Results: The proposed approach shows a significant improvement in terms of reliability, speed, and reproducibility compared with existing methods. The integration of OSH and AC enables robust segmentation and efficient classification of leukemic cells.

Conclusion: This method provides a reliable, rapid, and systematic solution for the accurate diagnosis of leukemia, enabling optimized therapeutic management.

意义:白血病是一种复杂的血液学癌症,由于白血病细胞的异质性、观察者间的可变性和缺乏标准化的分析方法,给诊断带来了重大挑战。准确和快速的细胞分类对于改善临床管理、优化治疗和减少诊断错误至关重要。目的:提出一种结合光学扫描全息(OSH)和活动轮廓(AC)模型的创新方法,以提高白血病细胞的自动分类和分割精度。方法:OSH用于捕获白细胞的相电流,为传统技术提供了一种经济、无创和简化的替代方法。交流模型用于改进细胞分割。分析相电流的最大振幅值允许快速和全自动分类。结果:与现有方法相比,该方法在可靠性、速度和重现性方面均有显著提高。OSH和AC的整合使白血病细胞的稳健分割和有效分类成为可能。结论:该方法为白血病的准确诊断提供了可靠、快速、系统的解决方案,可优化治疗管理。
{"title":"Advanced automated classification and segmentation of leukemic cells using simulated optical scanning holography and active contour methods.","authors":"Abdennacer El-Ouarzadi, Abdelaziz Essadike, Younes Achaoui, Abdenbi Bouzid","doi":"10.1117/1.JBO.30.9.096005","DOIUrl":"10.1117/1.JBO.30.9.096005","url":null,"abstract":"<p><strong>Significance: </strong>Leukemia, a complex hematological cancer, poses significant diagnostic challenges due to the heterogeneity of leukemic cells, inter-observer variability, and lack of standardized analysis methodology. Accurate and rapid cell classification is essential to improve clinical management, optimize treatment, and reduce diagnostic errors.</p><p><strong>Aim: </strong>We propose an innovative approach combining optical scanning holography (OSH) and active contour (AC) models to automate the classification and segmentation of leukemic cells with increased accuracy.</p><p><strong>Approach: </strong>OSH is used to capture the phase current of leukocytes, providing a cost-effective, noninvasive, and simplified alternative to conventional techniques. AC models are used to improve cell segmentation. Analysis of the maximum amplitude values of the phase current allows rapid and fully automated classification.</p><p><strong>Results: </strong>The proposed approach shows a significant improvement in terms of reliability, speed, and reproducibility compared with existing methods. The integration of OSH and AC enables robust segmentation and efficient classification of leukemic cells.</p><p><strong>Conclusion: </strong>This method provides a reliable, rapid, and systematic solution for the accurate diagnosis of leukemia, enabling optimized therapeutic management.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 9","pages":"096005"},"PeriodicalIF":2.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145185931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lightweight and precise cell classification based on holographic tomography-derived refractive index point cloud. 基于全息层析折射率点云的轻量化精确细胞分类。
IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-09-01 Epub Date: 2025-09-02 DOI: 10.1117/1.JBO.30.9.096501
Haoyuan Wang, Difeng Wu, Miao Zheng, Zuoshuai Zhang, Weina Zhang, Jianglei Di, Liyun Zhong

Significance: Accurate cell classification is essential in disease diagnosis and drug screening. Three-dimensional (3D) voxel models derived from holographic tomography effectively capture the internal structural features of cells, enhancing classification accuracy. However, their high dimensionality leads to significant increases in data volume, computational complexity, processing time, and hardware costs, which limit their practical applicability.

Aim: We aim to develop an efficient and accurate cell classification method using 3D refractive index (RI) point cloud data obtained from holographic tomography, focusing on reducing computational complexity without sacrificing classification performance.

Approach: We transformed 3D RI voxel data into point cloud representations using segmented equilibrium sampling to substantially decrease data volume while retaining crucial structural features. A deep learning model, named RI-PointNet++, was then specifically designed for RI point cloud data to enhance feature extraction and enable precise cell classification.

Results: In experiments classifying the viability of HeLa cells, the proposed method achieved a classification accuracy of 93.5%, significantly outperforming conventional two-dimensional models (87.0%). Furthermore, compared with traditional 3D voxel-based models, our method reduced computational complexity by over 99%, with floating-point operations of only 1.49 G, thus enabling efficient performance even on central processing unit (CPU) hardware.

Conclusions: Our proposed method provides an innovative, lightweight solution for 3D cell classification, highlighting the considerable potential of point cloud-based approaches in biomedical research applications.

意义:准确的细胞分类对疾病诊断和药物筛选至关重要。基于全息层析成像的三维体素模型能有效地捕捉细胞的内部结构特征,提高分类精度。然而,它们的高维性导致数据量、计算复杂性、处理时间和硬件成本的显著增加,这限制了它们的实际适用性。目的:利用全息层析成像获得的三维折射率(RI)点云数据,开发一种高效、准确的细胞分类方法,重点是在不牺牲分类性能的情况下降低计算复杂度。方法:我们使用分段均衡采样将3D RI体素数据转换为点云表示,以在保留关键结构特征的同时大幅减少数据量。然后专门为RI点云数据设计了一个名为RI- pointnet ++的深度学习模型,以增强特征提取并实现精确的细胞分类。结果:在对HeLa细胞活力进行分类的实验中,该方法的分类准确率为93.5%,明显优于传统二维模型(87.0%)。此外,与传统的基于体素的3D模型相比,我们的方法将计算复杂度降低了99%以上,浮点运算仅为1.49 G,因此即使在中央处理器(CPU)硬件上也能实现高效的性能。结论:我们提出的方法为3D细胞分类提供了一种创新的轻量级解决方案,突出了基于点云的方法在生物医学研究应用中的巨大潜力。
{"title":"Lightweight and precise cell classification based on holographic tomography-derived refractive index point cloud.","authors":"Haoyuan Wang, Difeng Wu, Miao Zheng, Zuoshuai Zhang, Weina Zhang, Jianglei Di, Liyun Zhong","doi":"10.1117/1.JBO.30.9.096501","DOIUrl":"10.1117/1.JBO.30.9.096501","url":null,"abstract":"<p><strong>Significance: </strong>Accurate cell classification is essential in disease diagnosis and drug screening. Three-dimensional (3D) voxel models derived from holographic tomography effectively capture the internal structural features of cells, enhancing classification accuracy. However, their high dimensionality leads to significant increases in data volume, computational complexity, processing time, and hardware costs, which limit their practical applicability.</p><p><strong>Aim: </strong>We aim to develop an efficient and accurate cell classification method using 3D refractive index (RI) point cloud data obtained from holographic tomography, focusing on reducing computational complexity without sacrificing classification performance.</p><p><strong>Approach: </strong>We transformed 3D RI voxel data into point cloud representations using segmented equilibrium sampling to substantially decrease data volume while retaining crucial structural features. A deep learning model, named RI-PointNet++, was then specifically designed for RI point cloud data to enhance feature extraction and enable precise cell classification.</p><p><strong>Results: </strong>In experiments classifying the viability of HeLa cells, the proposed method achieved a classification accuracy of 93.5%, significantly outperforming conventional two-dimensional models (87.0%). Furthermore, compared with traditional 3D voxel-based models, our method reduced computational complexity by over 99%, with floating-point operations of only 1.49 G, thus enabling efficient performance even on central processing unit (CPU) hardware.</p><p><strong>Conclusions: </strong>Our proposed method provides an innovative, lightweight solution for 3D cell classification, highlighting the considerable potential of point cloud-based approaches in biomedical research applications.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 9","pages":"096501"},"PeriodicalIF":2.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144992768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical modeling and analysis for tissue curvature correction in near-infrared spectroscopy imaging. 近红外光谱成像中组织曲率校正的数学建模与分析。
IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-09-01 Epub Date: 2025-09-19 DOI: 10.1117/1.JBO.30.9.096002
Himaddri Shakhar Roy, Daniela Leizaola, Charles Policard, Anuradha Godavarty

Significance: Near-infrared spectroscopy (NIRS) imaging modalities are used to provide noncontact measurements of tissue oxygenation in diabetic foot ulcers. However, the curved surface of the diabetic foot introduces inaccurate tissue oxygenation measurement. The changes in spatial NIRS optical measurements may result from variations in the underlying physiology or from the curvature of the tissue surface. Therefore, the effect of tissue curvature must be accounted for to ensure the accurate measurement of tissue oxygenation (or hemoglobin parameters) in clinical applications.

Aim: Our aim is to develop and validate mathematical curvature correction models to account for the effects of tissue curvature on diffuse reflectance (DR) in NIRS imaging and assess their effect on the hemoglobin parameters as well.

Approach: Monte-Carlo-based light propagation simulations were performed to develop correction models and applied to three-layered curved geometries in MCMatlab. Four curvature correction models based on height and/or angle were developed via Monte Carlo simulation studies. All the correction models were applied to the simulated DR signals obtained from various curved geometries (concave, convex, and wound-mimicking) using Gaussian light sources at 690 and 830 nm. The effect of correction models on DR signals and hemoglobin parameters was determined.

Results: Simulation results showed that a concave curved surface did not require correction, whereas convex and wound-mimicking geometries showed a reduced median error upon using an empirical height/angle correction model. In addition, the correction model also reduced the median error significantly for the oxygen-saturation-based hemoglobin parameter in both the convex and wound-mimicking geometries.

Conclusions: The developed mathematical model effectively corrected tissue curvature effects in NIRS DR signals and hemoglobin parameters for wound-mimicking irregular geometry. Ongoing work focuses on experimental validation of these correction models on curved phantoms, prior to in vivo imaging studies.

意义:近红外光谱(NIRS)成像模式用于提供糖尿病足溃疡组织氧合的非接触测量。然而,糖尿病足的曲面导致组织氧合测量不准确。空间近红外光学测量的变化可能是由于潜在生理学或组织表面曲率的变化引起的。因此,必须考虑组织曲率的影响,以确保在临床应用中准确测量组织氧合(或血红蛋白参数)。目的:我们的目的是开发和验证数学曲率校正模型,以解释组织曲率对近红外成像中漫反射(DR)的影响,并评估它们对血红蛋白参数的影响。方法:基于蒙特卡罗光传播模拟,建立校正模型,并在MCMatlab中应用于三层弯曲几何。通过蒙特卡罗仿真研究,建立了四种基于高度和/或角度的曲率校正模型。将校正模型应用于690 nm和830 nm高斯光源下不同弯曲几何形状(凹形、凸形和仿形伤口)的模拟DR信号。确定校正模型对DR信号和血红蛋白参数的影响。结果:模拟结果表明,凹曲面不需要校正,而凸和模仿伤口的几何形状在使用经验高度/角度校正模型时显示出较小的中位数误差。此外,校正模型还显著降低了基于氧饱和度的血红蛋白参数在凸形和仿创面几何形状中的中值误差。结论:建立的数学模型有效地修正了NIRS DR信号中的组织曲率效应和不规则几何形状的血红蛋白参数。正在进行的工作重点是在体内成像研究之前,在弯曲的幻影上对这些校正模型进行实验验证。
{"title":"Mathematical modeling and analysis for tissue curvature correction in near-infrared spectroscopy imaging.","authors":"Himaddri Shakhar Roy, Daniela Leizaola, Charles Policard, Anuradha Godavarty","doi":"10.1117/1.JBO.30.9.096002","DOIUrl":"10.1117/1.JBO.30.9.096002","url":null,"abstract":"<p><strong>Significance: </strong>Near-infrared spectroscopy (NIRS) imaging modalities are used to provide noncontact measurements of tissue oxygenation in diabetic foot ulcers. However, the curved surface of the diabetic foot introduces inaccurate tissue oxygenation measurement. The changes in spatial NIRS optical measurements may result from variations in the underlying physiology or from the curvature of the tissue surface. Therefore, the effect of tissue curvature must be accounted for to ensure the accurate measurement of tissue oxygenation (or hemoglobin parameters) in clinical applications.</p><p><strong>Aim: </strong>Our aim is to develop and validate mathematical curvature correction models to account for the effects of tissue curvature on diffuse reflectance (DR) in NIRS imaging and assess their effect on the hemoglobin parameters as well.</p><p><strong>Approach: </strong>Monte-Carlo-based light propagation simulations were performed to develop correction models and applied to three-layered curved geometries in MCMatlab. Four curvature correction models based on height and/or angle were developed via Monte Carlo simulation studies. All the correction models were applied to the simulated DR signals obtained from various curved geometries (concave, convex, and wound-mimicking) using Gaussian light sources at 690 and 830 nm. The effect of correction models on DR signals and hemoglobin parameters was determined.</p><p><strong>Results: </strong>Simulation results showed that a concave curved surface did not require correction, whereas convex and wound-mimicking geometries showed a reduced median error upon using an empirical height/angle correction model. In addition, the correction model also reduced the median error significantly for the oxygen-saturation-based hemoglobin parameter in both the convex and wound-mimicking geometries.</p><p><strong>Conclusions: </strong>The developed mathematical model effectively corrected tissue curvature effects in NIRS DR signals and hemoglobin parameters for wound-mimicking irregular geometry. Ongoing work focuses on experimental validation of these correction models on curved phantoms, prior to <i>in vivo</i> imaging studies.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 9","pages":"096002"},"PeriodicalIF":2.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145113169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomedical Optics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1