首页 > 最新文献

Journal of Computational and Graphical Statistics最新文献

英文 中文
Distance-based clustering of functional data with derivative principal component analysis 利用衍生主成分分析对功能数据进行基于距离的聚类
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-06-11 DOI: 10.1080/10618600.2024.2366499
Ping Yu, Gongmin Shi, Chunjie Wang, Xinyuan Song
Functional data analysis (FDA) is an important modern paradigm for handling infinite-dimensional data. An important task in FDA is clustering, which identifies subgroups based on the shapes of meas...
函数数据分析(FDA)是处理无限维数据的重要现代范式。功能数据分析的一项重要任务是聚类,即根据测量值的形状来确定子组。
{"title":"Distance-based clustering of functional data with derivative principal component analysis","authors":"Ping Yu, Gongmin Shi, Chunjie Wang, Xinyuan Song","doi":"10.1080/10618600.2024.2366499","DOIUrl":"https://doi.org/10.1080/10618600.2024.2366499","url":null,"abstract":"Functional data analysis (FDA) is an important modern paradigm for handling infinite-dimensional data. An important task in FDA is clustering, which identifies subgroups based on the shapes of meas...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-efficient MCMC for Bayesian longitudinal functional data analysis 用于贝叶斯纵向功能数据分析的超高效 MCMC
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-06-07 DOI: 10.1080/10618600.2024.2362227
Thomas Y. Sun, Daniel R. Kowal
Functional mixed models are widely useful for regression analysis with dependent functional data, including longitudinal functional data with scalar predictors. However, existing algorithms for Bay...
函数混合模型对于依赖函数数据的回归分析非常有用,包括带有标量预测因子的纵向函数数据。然而,现有的贝叶斯混合模型算法并不能解决这些问题。
{"title":"Ultra-efficient MCMC for Bayesian longitudinal functional data analysis","authors":"Thomas Y. Sun, Daniel R. Kowal","doi":"10.1080/10618600.2024.2362227","DOIUrl":"https://doi.org/10.1080/10618600.2024.2362227","url":null,"abstract":"Functional mixed models are widely useful for regression analysis with dependent functional data, including longitudinal functional data with scalar predictors. However, existing algorithms for Bay...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivariate Singular Spectrum Analysis by Robust Diagonalwise Low-Rank Approximation 通过鲁棒对角线低方根逼近进行多变量奇异频谱分析
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-06-05 DOI: 10.1080/10618600.2024.2362222
Fabio Centofanti, Mia Hubert, Biagio Palumbo, Peter J. Rousseeuw
Multivariate Singular Spectrum Analysis (MSSA) is a powerful and widely used nonparametric method for multivariate time series, which allows the analysis of complex temporal data from diverse field...
多变量奇异谱分析(MSSA)是一种功能强大、应用广泛的多变量时间序列非参数方法,可以分析来自不同领域的复杂时间数据。
{"title":"Multivariate Singular Spectrum Analysis by Robust Diagonalwise Low-Rank Approximation","authors":"Fabio Centofanti, Mia Hubert, Biagio Palumbo, Peter J. Rousseeuw","doi":"10.1080/10618600.2024.2362222","DOIUrl":"https://doi.org/10.1080/10618600.2024.2362222","url":null,"abstract":"Multivariate Singular Spectrum Analysis (MSSA) is a powerful and widely used nonparametric method for multivariate time series, which allows the analysis of complex temporal data from diverse field...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parsimonious Tensor Dimension Reduction 对数张量降维
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-06-04 DOI: 10.1080/10618600.2024.2362220
Xin Xing, Peng Zeng, Youhui Ye, Wenxuan Zhong
{"title":"Parsimonious Tensor Dimension Reduction","authors":"Xin Xing, Peng Zeng, Youhui Ye, Wenxuan Zhong","doi":"10.1080/10618600.2024.2362220","DOIUrl":"https://doi.org/10.1080/10618600.2024.2362220","url":null,"abstract":"","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141268429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kernel Angle Dependence Measures in Metric Spaces 公制空间中的核角度依赖性度量
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-06-03 DOI: 10.1080/10618600.2024.2357620
Yilin Zhang, Songshan Yang
{"title":"Kernel Angle Dependence Measures in Metric Spaces","authors":"Yilin Zhang, Songshan Yang","doi":"10.1080/10618600.2024.2357620","DOIUrl":"https://doi.org/10.1080/10618600.2024.2357620","url":null,"abstract":"","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141271128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Class-Distributed Learning for Multinomial Logistic Regression with High Dimensional Features and a Large Number of Classes 具有高维特征和大量类别的多项式逻辑回归的类别分布式学习
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-05-31 DOI: 10.1080/10618600.2024.2362230
Shuyuan Wu, Jing Zhou, Ke Xu, Hansheng Wang
Estimating a high-dimensional multinomial logistic regression model with a larger number of categories is of fundamental importance but it presents two challenges. Computationally, it leads to heav...
估计具有更多类别的高维多项式逻辑回归模型具有根本性的重要意义,但它也带来了两个挑战。在计算上,它导致了大量的...
{"title":"Class-Distributed Learning for Multinomial Logistic Regression with High Dimensional Features and a Large Number of Classes","authors":"Shuyuan Wu, Jing Zhou, Ke Xu, Hansheng Wang","doi":"10.1080/10618600.2024.2362230","DOIUrl":"https://doi.org/10.1080/10618600.2024.2362230","url":null,"abstract":"Estimating a high-dimensional multinomial logistic regression model with a larger number of categories is of fundamental importance but it presents two challenges. Computationally, it leads to heav...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Versatile Descent Algorithms for Group Regularization and Variable Selection in Generalized Linear Models 通用线性模型中分组正规化和变量选择的多功能后裔算法
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-05-31 DOI: 10.1080/10618600.2024.2362232
Nathaniel E. Helwig
This paper proposes an adaptively bounded gradient descent (ABGD) algorithm for group elastic net penalized regression. Unlike previously proposed algorithms, the proposed algorithm adaptively boun...
本文提出了一种用于组弹性网惩罚回归的自适应有界梯度下降(ABGD)算法。与之前提出的算法不同,本文提出的算法能自适应地约束梯度下降。
{"title":"Versatile Descent Algorithms for Group Regularization and Variable Selection in Generalized Linear Models","authors":"Nathaniel E. Helwig","doi":"10.1080/10618600.2024.2362232","DOIUrl":"https://doi.org/10.1080/10618600.2024.2362232","url":null,"abstract":"This paper proposes an adaptively bounded gradient descent (ABGD) algorithm for group elastic net penalized regression. Unlike previously proposed algorithms, the proposed algorithm adaptively boun...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iterated Data Sharpening 迭代数据锐化
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-05-31 DOI: 10.1080/10618600.2024.2362219
Hanxiao Chen, W. John Braun, Xiaoping Shi
Data sharpening in kernel regression has been shown to be an effective method of reducing bias while having minimal effects on variance. Earlier efforts to iterate the data sharpening procedure hav...
核回归中的数据锐化已被证明是减少偏差的有效方法,同时对方差的影响最小。早先对数据锐化程序进行迭代的努力...
{"title":"Iterated Data Sharpening","authors":"Hanxiao Chen, W. John Braun, Xiaoping Shi","doi":"10.1080/10618600.2024.2362219","DOIUrl":"https://doi.org/10.1080/10618600.2024.2362219","url":null,"abstract":"Data sharpening in kernel regression has been shown to be an effective method of reducing bias while having minimal effects on variance. Earlier efforts to iterate the data sharpening procedure hav...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple-use calibration for all future values and exact two-sided simultaneous tolerance intervals in linear regression 线性回归中所有未来值和精确双侧同时容差区间的多用途校准
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-05-28 DOI: 10.1080/10618600.2024.2359507
Yang Han, Lingjiao Wang, Wei Liu, Frank Bretz
Multiple-use calibration using regression is an important statistical tool. Confidence sets for the x-values associated with all future y-values should guarantee a key property, which can be satisf...
使用回归法进行多用途校准是一种重要的统计工具。与所有未来 y 值相关的 x 值置信度集应保证一个关键属性,该属性可以满足...
{"title":"Multiple-use calibration for all future values and exact two-sided simultaneous tolerance intervals in linear regression","authors":"Yang Han, Lingjiao Wang, Wei Liu, Frank Bretz","doi":"10.1080/10618600.2024.2359507","DOIUrl":"https://doi.org/10.1080/10618600.2024.2359507","url":null,"abstract":"Multiple-use calibration using regression is an important statistical tool. Confidence sets for the x-values associated with all future y-values should guarantee a key property, which can be satisf...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Survival Prediction Using Sparse Longitudinal Images via Multi-Dimensional Functional Principal Component Analysis 通过多维功能主成分分析利用稀疏纵向图像进行动态生存预测
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-05-23 DOI: 10.1080/10618600.2024.2335182
Haolun Shi, Shu Jiang, Da Ma, Mirza Faisal Beg, Jiguo Cao
Our work is motivated by predicting the progression of Alzheimer’s disease (AD) based on a series of longitudinally observed brain scan images. Existing works on dynamic prediction for AD focus pri...
我们的工作是基于一系列纵向观察的大脑扫描图像来预测阿尔茨海默病(AD)的进展。现有的阿兹海默病动态预测工作主要集中在对阿兹海默病进展的预测上。
{"title":"Dynamic Survival Prediction Using Sparse Longitudinal Images via Multi-Dimensional Functional Principal Component Analysis","authors":"Haolun Shi, Shu Jiang, Da Ma, Mirza Faisal Beg, Jiguo Cao","doi":"10.1080/10618600.2024.2335182","DOIUrl":"https://doi.org/10.1080/10618600.2024.2335182","url":null,"abstract":"Our work is motivated by predicting the progression of Alzheimer’s disease (AD) based on a series of longitudinally observed brain scan images. Existing works on dynamic prediction for AD focus pri...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Computational and Graphical Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1