首页 > 最新文献

Journal of Computational and Graphical Statistics最新文献

英文 中文
Byzantine-robust Distributed One-step Estimation 拜占庭鲁棒分布式一步估计
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2025-09-02 DOI: 10.1080/10618600.2025.2551266
Chuhan Wang, Xuehu Zhu, Lixing Zhu
{"title":"Byzantine-robust Distributed One-step Estimation","authors":"Chuhan Wang, Xuehu Zhu, Lixing Zhu","doi":"10.1080/10618600.2025.2551266","DOIUrl":"https://doi.org/10.1080/10618600.2025.2551266","url":null,"abstract":"","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"14 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144928461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Choice of trimming proportion and number of clusters in robust clustering based on trimming 基于裁剪的鲁棒聚类中裁剪比例和簇数的选择
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2025-09-02 DOI: 10.1080/10618600.2025.2554675
Luis Angel García-Escudero, Christian Hennig, Agustín Mayo-Iscar, Gianluca Morelli, Marco Riani
{"title":"Choice of trimming proportion and number of clusters in robust clustering based on trimming","authors":"Luis Angel García-Escudero, Christian Hennig, Agustín Mayo-Iscar, Gianluca Morelli, Marco Riani","doi":"10.1080/10618600.2025.2554675","DOIUrl":"https://doi.org/10.1080/10618600.2025.2554675","url":null,"abstract":"","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"302 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144930898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Clustering for Functional Data. 功能数据的局部聚类。
IF 1.8 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2025-09-01 Epub Date: 2025-02-10 DOI: 10.1080/10618600.2024.2431057
Yuanxing Chen, Qingzhao Zhang, Shuangge Ma

In functional data analysis, unsupervised clustering has been extensively conducted and has important implications. In most of the existing functional clustering analyses, it is assumed that there is a single clustering structure across the whole domain of measurement (say, time interval). In some data analyses, for example, the analysis of normalized COVID-19 daily confirmed cases for the U.S. states, it is observed that functions can have different clustering patterns in different time subintervals. To tackle the lack of flexibility of the existing functional clustering techniques, we develop a local clustering approach, which can fully data-dependently identify subintervals, where, in different subintervals, functions have different clustering structures. This approach is built on the basis expansion technique and has a novel penalization form. It simultaneously achieves subinterval identification, clustering, and estimation. Its estimation and clustering consistency properties are rigorously established. In simulation, it significantly outperforms multiple competitors. In the analysis of the COVID-19 case trajectory data, it identifies sensible subintervals and clustering structures. Supplementary materials for this article are available online.

在功能数据分析中,无监督聚类得到了广泛的应用,具有重要的意义。在大多数现有的功能聚类分析中,假设在整个测量域(例如,时间间隔)中存在单一的聚类结构。在一些数据分析中,例如对美国各州新冠肺炎日确诊病例的归一化分析,可以观察到函数在不同的时间子间隔中具有不同的聚类模式。为了解决现有功能聚类技术缺乏灵活性的问题,我们开发了一种局部聚类方法,该方法可以完全依赖数据识别子区间,其中,在不同的子区间中,函数具有不同的聚类结构。该方法建立在基展开技术的基础上,具有新颖的惩罚形式。同时实现子区间识别、聚类和估计。严格建立了其估计一致性和聚类一致性。在模拟中,它明显优于多个竞争对手。在对COVID-19病例轨迹数据的分析中,识别出合理的子区间和聚类结构。本文的补充材料可在网上获得。
{"title":"Local Clustering for Functional Data.","authors":"Yuanxing Chen, Qingzhao Zhang, Shuangge Ma","doi":"10.1080/10618600.2024.2431057","DOIUrl":"10.1080/10618600.2024.2431057","url":null,"abstract":"<p><p>In functional data analysis, unsupervised clustering has been extensively conducted and has important implications. In most of the existing functional clustering analyses, it is assumed that there is a single clustering structure across the whole domain of measurement (say, time interval). In some data analyses, for example, the analysis of normalized COVID-19 daily confirmed cases for the U.S. states, it is observed that functions can have different clustering patterns in different time subintervals. To tackle the lack of flexibility of the existing functional clustering techniques, we develop a local clustering approach, which can fully data-dependently identify subintervals, where, in different subintervals, functions have different clustering structures. This approach is built on the basis expansion technique and has a novel penalization form. It simultaneously achieves subinterval identification, clustering, and estimation. Its estimation and clustering consistency properties are rigorously established. In simulation, it significantly outperforms multiple competitors. In the analysis of the COVID-19 case trajectory data, it identifies sensible subintervals and clustering structures. Supplementary materials for this article are available online.</p>","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"34 3","pages":"1075-1090"},"PeriodicalIF":1.8,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12588091/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145458747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective Permutation Tests for Differences Across Multiple High-Dimensional Correlation Matrices 多个高维相关矩阵差异的有效置换检验
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2025-08-29 DOI: 10.1080/10618600.2025.2550527
José Á. Sánchez Gómez, Elio Zhang, Yufeng Liu
{"title":"Effective Permutation Tests for Differences Across Multiple High-Dimensional Correlation Matrices","authors":"José Á. Sánchez Gómez, Elio Zhang, Yufeng Liu","doi":"10.1080/10618600.2025.2550527","DOIUrl":"https://doi.org/10.1080/10618600.2025.2550527","url":null,"abstract":"","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"13 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144919367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous estimation of connectivity and dimensionality in samples of networks 网络样本中连通性和维数的同时估计
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2025-08-26 DOI: 10.1080/10618600.2025.2551270
Wenlong Jiang, Chris McKennan, Jesús Arroyo, Joshua Cape
{"title":"Simultaneous estimation of connectivity and dimensionality in samples of networks","authors":"Wenlong Jiang, Chris McKennan, Jesús Arroyo, Joshua Cape","doi":"10.1080/10618600.2025.2551270","DOIUrl":"https://doi.org/10.1080/10618600.2025.2551270","url":null,"abstract":"","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"55 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144906064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrete Autoregressive Switching Processes with Cumulative Shrinkage Priors for Graphical Modeling of Time Series Data 具有累积收缩先验的离散自回归切换过程用于时间序列数据的图形建模
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2025-08-26 DOI: 10.1080/10618600.2025.2551271
Beniamino Hadj-Amar, Aaron M. Bornstein, Michele Guindani, Marina Vannucci
{"title":"Discrete Autoregressive Switching Processes with Cumulative Shrinkage Priors for Graphical Modeling of Time Series Data","authors":"Beniamino Hadj-Amar, Aaron M. Bornstein, Michele Guindani, Marina Vannucci","doi":"10.1080/10618600.2025.2551271","DOIUrl":"https://doi.org/10.1080/10618600.2025.2551271","url":null,"abstract":"","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"23 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144906065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Neural Network for Functional Graphical Models Structure Learning 用于功能图模型结构学习的深度神经网络
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2025-08-26 DOI: 10.1080/10618600.2025.2551268
Shuoyang Wang, Guanqun Cao
{"title":"Deep Neural Network for Functional Graphical Models Structure Learning","authors":"Shuoyang Wang, Guanqun Cao","doi":"10.1080/10618600.2025.2551268","DOIUrl":"https://doi.org/10.1080/10618600.2025.2551268","url":null,"abstract":"","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"19 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144906066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Multilevel Network Recovery Selection 贝叶斯多级网络恢复选择
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2025-08-25 DOI: 10.1080/10618600.2025.2549454
Mohamed Salem, Inyoung Kim
{"title":"Bayesian Multilevel Network Recovery Selection","authors":"Mohamed Salem, Inyoung Kim","doi":"10.1080/10618600.2025.2549454","DOIUrl":"https://doi.org/10.1080/10618600.2025.2549454","url":null,"abstract":"","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"121 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144900108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variational Inference Aided Variable Selection For Spatially Structured High Dimensional Covariates 空间结构高维协变量的变分推理辅助变量选择
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2025-08-25 DOI: 10.1080/10618600.2025.2549110
Siddhartha Nandy, Minwoo Kim, Shrijita Bhattacharya, Tapabrata Maiti
{"title":"Variational Inference Aided Variable Selection For Spatially Structured High Dimensional Covariates","authors":"Siddhartha Nandy, Minwoo Kim, Shrijita Bhattacharya, Tapabrata Maiti","doi":"10.1080/10618600.2025.2549110","DOIUrl":"https://doi.org/10.1080/10618600.2025.2549110","url":null,"abstract":"","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"193 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144900107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximate Bayesian Computation with Deep Learning and Conformal prediction 基于深度学习和保形预测的近似贝叶斯计算
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2025-08-22 DOI: 10.1080/10618600.2025.2546446
Meïli Baragatti, Céline Casenave, Bertrand Cloez, David Métivier, Isabelle Sanchez
{"title":"Approximate Bayesian Computation with Deep Learning and Conformal prediction","authors":"Meïli Baragatti, Céline Casenave, Bertrand Cloez, David Métivier, Isabelle Sanchez","doi":"10.1080/10618600.2025.2546446","DOIUrl":"https://doi.org/10.1080/10618600.2025.2546446","url":null,"abstract":"","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"16 1","pages":"1-35"},"PeriodicalIF":2.4,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144900109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Computational and Graphical Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1