DeLisa Fairweather, Danielle J Beetler, Elizabeth J McCabe, Scott M Lieberman
Autoimmune diseases are a leading cause of disability worldwide. Most autoimmune diseases occur more often in women than men, with rheumatic autoimmune diseases being among those most highly expressed in women. Several key factors, identified mainly in animal models and cell culture experiments, are important in increasing autoimmune disease in females. These include sex hormones, immune genes including those found on the X chromosome, sex-specific epigenetic effects on genes by estrogen and the environment, and regulation of genes and messenger RNA by microRNAs found in extracellular vesicles. Evidence is also emerging that viruses as well as drugs or toxins that damage mitochondria may contribute to increased levels of autoantibodies against nuclear and mitochondrial antigens, which are common in many autoimmune diseases. The purpose of this Review is to summarize our current understanding of mechanisms that may determine sex differences in autoimmune disease.
自身免疫性疾病是导致全球残疾的一个主要原因。大多数自身免疫性疾病在女性中的发病率高于男性,其中风湿性自身免疫性疾病在女性中的发病率最高。主要在动物模型和细胞培养实验中发现的几个关键因素对增加女性自身免疫性疾病非常重要。这些因素包括性激素、免疫基因(包括在 X 染色体上发现的基因)、雌激素和环境对基因的性别特异性表观遗传效应,以及细胞外囊泡中的微核糖核酸对基因和信使核糖核酸的调控。还有证据表明,病毒以及损害线粒体的药物或毒素可能导致针对核抗原和线粒体抗原的自身抗体水平升高,这在许多自身免疫性疾病中很常见。本综述旨在总结我们目前对可能决定自身免疫疾病性别差异的机制的认识。
{"title":"Mechanisms underlying sex differences in autoimmunity.","authors":"DeLisa Fairweather, Danielle J Beetler, Elizabeth J McCabe, Scott M Lieberman","doi":"10.1172/JCI180076","DOIUrl":"https://doi.org/10.1172/JCI180076","url":null,"abstract":"<p><p>Autoimmune diseases are a leading cause of disability worldwide. Most autoimmune diseases occur more often in women than men, with rheumatic autoimmune diseases being among those most highly expressed in women. Several key factors, identified mainly in animal models and cell culture experiments, are important in increasing autoimmune disease in females. These include sex hormones, immune genes including those found on the X chromosome, sex-specific epigenetic effects on genes by estrogen and the environment, and regulation of genes and messenger RNA by microRNAs found in extracellular vesicles. Evidence is also emerging that viruses as well as drugs or toxins that damage mitochondria may contribute to increased levels of autoantibodies against nuclear and mitochondrial antigens, which are common in many autoimmune diseases. The purpose of this Review is to summarize our current understanding of mechanisms that may determine sex differences in autoimmune disease.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 18","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenyan Ren, Weiqi Hong, Jingyun Yang, Jun Zou, Li Chen, Yanan Zhou, Hong Lei, Aqu Alu, Haiying Que, Yanqiu Gong, Zhenfei Bi, Cai He, Minyang Fu, Dandan Peng, Yun Yang, Wenhai Yu, Cong Tang, Qing Huang, Mengli Yang, Bai Li, Jingmei Li, Junbin Wang, Xuelei Ma, Hongbo Hu, Wei Cheng, Haohao Dong, Jian Lei, Lu Chen, Xikun Zhou, Jiong Li, Wei Wang, Guangwen Lu, Guobo Shen, Li Yang, Jinliang Yang, Zhenling Wang, Guowen Jia, Zhaoming Su, Bin Shao, Hanpei Miao, Johnson Yiu-Nam Lau, Yuquan Wei, Kang Zhang, Lunzhi Dai, Shuaiyao Lu, Xiawei Wei
Soluble host factors in the upper respiratory tract can serve as the first line of defense against SARS-CoV-2 infection. In this study, we described the identification and function of a human airway trypsin-like protease (HAT), capable of reducing the infectivity of ancestral SARS-CoV-2. Further, in mouse models, HAT analogue expression was upregulated by SARS-CoV-2 infection. The antiviral activity of HAT functioned through the cleavage of the SARS-CoV-2 spike glycoprotein at R682. This cleavage resulted in inhibition of the attachment of ancestral spike proteins to host cells, which inhibited the cell-cell membrane fusion process. Importantly, exogenous addition of HAT notably reduced the infectivity of ancestral SARS-CoV-2 in vivo. However, HAT was ineffective against the Delta variant and most circulating Omicron variants, including the BQ.1.1 and XBB.1.5 subvariants. We demonstrate that the P681R mutation in Delta and P681H mutation in the Omicron variants, adjacent to the R682 cleavage site, contributed to HAT resistance. Our study reports what we believe to be a novel soluble defense factor against SARS-CoV-2 and resistance of its actions in the Delta and Omicron variants.
{"title":"SARS-CoV-2 Delta and Omicron variants resist spike cleavage by human airway trypsin-like protease.","authors":"Wenyan Ren, Weiqi Hong, Jingyun Yang, Jun Zou, Li Chen, Yanan Zhou, Hong Lei, Aqu Alu, Haiying Que, Yanqiu Gong, Zhenfei Bi, Cai He, Minyang Fu, Dandan Peng, Yun Yang, Wenhai Yu, Cong Tang, Qing Huang, Mengli Yang, Bai Li, Jingmei Li, Junbin Wang, Xuelei Ma, Hongbo Hu, Wei Cheng, Haohao Dong, Jian Lei, Lu Chen, Xikun Zhou, Jiong Li, Wei Wang, Guangwen Lu, Guobo Shen, Li Yang, Jinliang Yang, Zhenling Wang, Guowen Jia, Zhaoming Su, Bin Shao, Hanpei Miao, Johnson Yiu-Nam Lau, Yuquan Wei, Kang Zhang, Lunzhi Dai, Shuaiyao Lu, Xiawei Wei","doi":"10.1172/JCI174304","DOIUrl":"10.1172/JCI174304","url":null,"abstract":"<p><p>Soluble host factors in the upper respiratory tract can serve as the first line of defense against SARS-CoV-2 infection. In this study, we described the identification and function of a human airway trypsin-like protease (HAT), capable of reducing the infectivity of ancestral SARS-CoV-2. Further, in mouse models, HAT analogue expression was upregulated by SARS-CoV-2 infection. The antiviral activity of HAT functioned through the cleavage of the SARS-CoV-2 spike glycoprotein at R682. This cleavage resulted in inhibition of the attachment of ancestral spike proteins to host cells, which inhibited the cell-cell membrane fusion process. Importantly, exogenous addition of HAT notably reduced the infectivity of ancestral SARS-CoV-2 in vivo. However, HAT was ineffective against the Delta variant and most circulating Omicron variants, including the BQ.1.1 and XBB.1.5 subvariants. We demonstrate that the P681R mutation in Delta and P681H mutation in the Omicron variants, adjacent to the R682 cleavage site, contributed to HAT resistance. Our study reports what we believe to be a novel soluble defense factor against SARS-CoV-2 and resistance of its actions in the Delta and Omicron variants.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 18","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405045/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial mimicry, the process in which a microbial antigen elicits an immune response and breaks tolerance to a structurally related self-antigen, has long been proposed as a mechanism in autoimmunity. In this issue of the JCI, Dolton et al. extend this paradigm by demonstrating that a naturally processed peptide from Klebsiella oxytoca acts as a superagonist for autoreactive T cells in type 1 diabetes (T1D). Reframing microbial mimics as superagonists that are thousands of times better at binding disease-associated autoreactive T cell receptors than self-peptides serves to narrow the search space for relevant sequences in the vast microbial proteome. Moreover, the identified superagonists have implications for the intervention and personalized monitoring of T1D that may carry over to other autoimmune diseases with microbial mimicry.
微生物拟态是指微生物抗原引起免疫反应并打破对结构相关的自身抗原的耐受性的过程,长期以来一直被认为是自身免疫的一种机制。在本期 JCI 杂志上,Dolton 等人扩展了这一范式,证明了一种来自克雷伯菌的天然加工肽对 1 型糖尿病(T1D)患者的自身反应性 T 细胞具有超拮抗剂的作用。将微生物模拟物重塑为超级拮抗剂,其结合疾病相关的自反应性 T 细胞受体的能力比自身肽强数千倍,这有助于缩小在庞大的微生物蛋白质组中寻找相关序列的搜索空间。此外,鉴定出的超级拮抗剂对T1D的干预和个性化监测具有重要意义,这种意义可能会延伸到其他具有微生物拟态的自身免疫性疾病。
{"title":"Microbial mimics supersize the pathogenic self-response.","authors":"Jesusa Capera, Michael L Dustin","doi":"10.1172/JCI184046","DOIUrl":"https://doi.org/10.1172/JCI184046","url":null,"abstract":"<p><p>Microbial mimicry, the process in which a microbial antigen elicits an immune response and breaks tolerance to a structurally related self-antigen, has long been proposed as a mechanism in autoimmunity. In this issue of the JCI, Dolton et al. extend this paradigm by demonstrating that a naturally processed peptide from Klebsiella oxytoca acts as a superagonist for autoreactive T cells in type 1 diabetes (T1D). Reframing microbial mimics as superagonists that are thousands of times better at binding disease-associated autoreactive T cell receptors than self-peptides serves to narrow the search space for relevant sequences in the vast microbial proteome. Moreover, the identified superagonists have implications for the intervention and personalized monitoring of T1D that may carry over to other autoimmune diseases with microbial mimicry.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 18","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maintaining protein homeostasis (proteostasis) requires precise control of protein folding and degradation. Failure to properly respond to stresses disrupts proteostasis, which is a hallmark of many diseases, including cataracts. Hibernators are natural cold-stress adaptors; however, little is known about how they keep a balanced proteome under conditions of drastic temperature shift. Intriguingly, we identified a reversible lens opacity phenotype in ground squirrels (GSs) associated with their hibernation-rewarming process. To understand this "cataract-reversing" phenomenon, we first established induced lens epithelial cells differentiated from GS-derived induced pluripotent stem cells, which helped us explore the molecular mechanism preventing the accumulation of protein aggregates in GS lenses. We discovered that the ubiquitin-proteasome system (UPS) played a vital role in minimizing the aggregation of the lens protein αA-crystallin (CRYAA) during rewarming. Such function was, for the first time to our knowledge, associated with an E3 ubiquitin ligase, RNF114, which appears to be one of the key mechanisms mediating the turnover and homeostasis of lens proteins. Leveraging this knowledge gained from hibernators, we engineered a deliverable RNF114 complex and successfully reduced lens opacity in rats with cold-induced cataracts and zebrafish with oxidative stress-related cataracts. These data provide new insights into the critical role of the UPS in maintaining proteostasis in cold and possibly other forms of stresses. The newly identified E3 ubiquitin ligase RNF114, related to CRYAA, offers a promising avenue for treating cataracts with protein aggregates.
{"title":"Reversible cold-induced lens opacity in a hibernator reveals a molecular target for treating cataracts.","authors":"Hao Yang, Xiyuan Ping, Jiayue Zhou, Hailaiti Ailifeire, Jing Wu, Francisco M Nadal-Nicolás, Kiyoharu J Miyagishima, Jing Bao, Yuxin Huang, Yilei Cui, Xin Xing, Shiqiang Wang, Ke Yao, Wei Li, Xingchao Shentu","doi":"10.1172/JCI169666","DOIUrl":"https://doi.org/10.1172/JCI169666","url":null,"abstract":"<p><p>Maintaining protein homeostasis (proteostasis) requires precise control of protein folding and degradation. Failure to properly respond to stresses disrupts proteostasis, which is a hallmark of many diseases, including cataracts. Hibernators are natural cold-stress adaptors; however, little is known about how they keep a balanced proteome under conditions of drastic temperature shift. Intriguingly, we identified a reversible lens opacity phenotype in ground squirrels (GSs) associated with their hibernation-rewarming process. To understand this \"cataract-reversing\" phenomenon, we first established induced lens epithelial cells differentiated from GS-derived induced pluripotent stem cells, which helped us explore the molecular mechanism preventing the accumulation of protein aggregates in GS lenses. We discovered that the ubiquitin-proteasome system (UPS) played a vital role in minimizing the aggregation of the lens protein αA-crystallin (CRYAA) during rewarming. Such function was, for the first time to our knowledge, associated with an E3 ubiquitin ligase, RNF114, which appears to be one of the key mechanisms mediating the turnover and homeostasis of lens proteins. Leveraging this knowledge gained from hibernators, we engineered a deliverable RNF114 complex and successfully reduced lens opacity in rats with cold-induced cataracts and zebrafish with oxidative stress-related cataracts. These data provide new insights into the critical role of the UPS in maintaining proteostasis in cold and possibly other forms of stresses. The newly identified E3 ubiquitin ligase RNF114, related to CRYAA, offers a promising avenue for treating cataracts with protein aggregates.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 18","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epigallocatechin gallate (EGCG) is a polyphenol plant metabolite abundant in tea that has demonstrated antifibrotic properties in the lung. In this issue of the JCI, Cohen, Brumwell, and colleagues interrogated the mechanistic action of EGCG by investigating lung biopsies of patients with mild interstitial lung disease (ILD) who had undergone EGCG treatment. EGCG targeted the WNT inhibitor SFRP2, which was enriched in fibrotic fibroblasts and acted as a TGF-β target, with paracrine effects leading to pathologic basal metaplasia of alveolar epithelial type 2 cells. This study emphasizes the epithelial-mesenchymal trophic unit as a central signaling hub in lung fibrosis. Understanding and simultaneous targeting of interlinked signaling pathways, such as TGF-β and WNT, paves the road for future treatment options for pulmonary fibrosis.
{"title":"Teatime: epigallocatechin gallate targets fibroblast-epithelial cell crosstalk to combat lung fibrosis.","authors":"Olivier Burgy, Melanie Königshoff","doi":"10.1172/JCI183970","DOIUrl":"https://doi.org/10.1172/JCI183970","url":null,"abstract":"<p><p>Epigallocatechin gallate (EGCG) is a polyphenol plant metabolite abundant in tea that has demonstrated antifibrotic properties in the lung. In this issue of the JCI, Cohen, Brumwell, and colleagues interrogated the mechanistic action of EGCG by investigating lung biopsies of patients with mild interstitial lung disease (ILD) who had undergone EGCG treatment. EGCG targeted the WNT inhibitor SFRP2, which was enriched in fibrotic fibroblasts and acted as a TGF-β target, with paracrine effects leading to pathologic basal metaplasia of alveolar epithelial type 2 cells. This study emphasizes the epithelial-mesenchymal trophic unit as a central signaling hub in lung fibrosis. Understanding and simultaneous targeting of interlinked signaling pathways, such as TGF-β and WNT, paves the road for future treatment options for pulmonary fibrosis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 18","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405033/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul Deschamps, Margaux Wacheux, Axel Gosseye, Margot Morabito, Arnaud Pagès, Anne-Marie Lyne, Alexia Alfaro, Philippe Rameau, Aygun Imanci, Rabie Chelbi, Valentine Marchand, Aline Renneville, Mrinal M Patnaik, Valerie Lapierre, Bouchra Badaoui, Orianne Wagner-Ballon, Céline Berthon, Thorsten Braun, Christophe Willekens, Raphael Itzykson, Pierre Fenaux, Sylvain Thépot, Gabriel Etienne, Emilie Elvira-Matelot, Francoise Porteu, Nathalie Droin, Leïla Perié, Lucie Laplane, Eric Solary, Dorothée Selimoglu-Buet
Chronic myelomonocytic leukemia (CMML) is a severe myeloid malignancy with limited therapeutic options. Single-cell analysis of clonal architecture demonstrates early clonal dominance with few residual WT hematopoietic stem cells. Circulating myeloid cells of the leukemic clone and the cytokines they produce generate a deleterious inflammatory climate. Our hypothesis is that therapeutic control of the inflammatory component in CMML could contribute to stepping down disease progression. The present study explored the contribution of immature granulocytes (iGRANs) to CMML progression. iGRANs were detected and quantified in the peripheral blood of patients by spectral and conventional flow cytometry. Their accumulation was a potent and independent poor prognostic factor. These cells belong to the leukemic clone and behaved as myeloid-derived suppressor cells. Bulk and single-cell RNA-Seq revealed a proinflammatory status of iGRAN that secreted multiple cytokines of which CXCL8 was at the highest level. This cytokine inhibited the proliferation of WT but not CMML hematopoietic stem and progenitor cells (HSPCs) in which CXCL8 receptors were downregulated. CXCL8 receptor inhibitors and CXCL8 blockade restored WT HSPC proliferation, suggesting that relieving CXCL8 selective pressure on WT HSPCs is a potential strategy to slow CMML progression and restore some healthy hematopoiesis.
{"title":"CXCL8 secreted by immature granulocytes inhibits WT hematopoiesis in chronic myelomonocytic leukemia.","authors":"Paul Deschamps, Margaux Wacheux, Axel Gosseye, Margot Morabito, Arnaud Pagès, Anne-Marie Lyne, Alexia Alfaro, Philippe Rameau, Aygun Imanci, Rabie Chelbi, Valentine Marchand, Aline Renneville, Mrinal M Patnaik, Valerie Lapierre, Bouchra Badaoui, Orianne Wagner-Ballon, Céline Berthon, Thorsten Braun, Christophe Willekens, Raphael Itzykson, Pierre Fenaux, Sylvain Thépot, Gabriel Etienne, Emilie Elvira-Matelot, Francoise Porteu, Nathalie Droin, Leïla Perié, Lucie Laplane, Eric Solary, Dorothée Selimoglu-Buet","doi":"10.1172/JCI180738","DOIUrl":"10.1172/JCI180738","url":null,"abstract":"<p><p>Chronic myelomonocytic leukemia (CMML) is a severe myeloid malignancy with limited therapeutic options. Single-cell analysis of clonal architecture demonstrates early clonal dominance with few residual WT hematopoietic stem cells. Circulating myeloid cells of the leukemic clone and the cytokines they produce generate a deleterious inflammatory climate. Our hypothesis is that therapeutic control of the inflammatory component in CMML could contribute to stepping down disease progression. The present study explored the contribution of immature granulocytes (iGRANs) to CMML progression. iGRANs were detected and quantified in the peripheral blood of patients by spectral and conventional flow cytometry. Their accumulation was a potent and independent poor prognostic factor. These cells belong to the leukemic clone and behaved as myeloid-derived suppressor cells. Bulk and single-cell RNA-Seq revealed a proinflammatory status of iGRAN that secreted multiple cytokines of which CXCL8 was at the highest level. This cytokine inhibited the proliferation of WT but not CMML hematopoietic stem and progenitor cells (HSPCs) in which CXCL8 receptors were downregulated. CXCL8 receptor inhibitors and CXCL8 blockade restored WT HSPC proliferation, suggesting that relieving CXCL8 selective pressure on WT HSPCs is a potential strategy to slow CMML progression and restore some healthy hematopoiesis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 22","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Garry Dolton, Anna Bulek, Aaron Wall, Hannah Thomas, Jade R Hopkins, Cristina Rius, Sarah Ae Galloway, Thomas Whalley, Li Rong Tan, Théo Morin, Nader Omidvar, Anna Fuller, Katie Topley, Md Samiul Hasan, Shikha Jain, Nirupa D'Souza, Thomas Hodges-Hoyland, Owen B Spiller, Deborah Kronenberg-Versteeg, Barbara Szomolay, Hugo A van den Berg, Lucy C Jones, Mark Peakman, David K Cole, Pierre J Rizkallah, Andrew K Sewell
CD8+ T cells destroy insulin-producing pancreatic β cells in type 1 diabetes through HLA class I-restricted presentation of self-antigens. Combinatorial peptide library screening was used to produce a preferred peptide recognition landscape for a patient-derived T cell receptor (TCR) that recognized the preproinsulin-derived (PPI-derived) peptide sequence LWMRLLPLL in the context of disease risk allele HLA A*24:02. Data were used to generate a strong superagonist peptide, enabling production of an autoimmune HLA A*24:02-peptide-TCR structure by crystal seeding. TCR binding to the PPI epitope was strongly focused on peptide residues Arg4 and Leu5, with more flexibility at other positions, allowing the TCR to strongly engage many peptides derived from pathogenic bacteria. We confirmed an epitope from Klebsiella that was recognized by PPI-reactive T cells from 3 of 3 HLA A*24:02+ patients. Remarkably, the same epitope selected T cells from 7 of 8 HLA A*24+ healthy donors that cross-reacted with PPI, leading to recognition and killing of HLA A*24:02+ cells expressing PPI. These data provide a mechanism by which molecular mimicry between pathogen and self-antigens could have resulted in the breaking of self-tolerance to initiate disease.
CD8+ T细胞通过HLA I类限制性自身抗原呈递来破坏1型糖尿病患者的胰岛素分泌β细胞。通过组合肽库筛选,产生了患者源 T 细胞受体(TCR)的首选肽识别图谱,该 T 细胞受体能在疾病风险等位基因 HLA A*24:02 的背景下识别前胰岛素衍生(PPI-derived)肽序列 LWMRLLPLL。利用这些数据生成了一种强超拮抗剂肽,并通过晶体播种生成了自身免疫 HLA A*24:02 肽-TCR 结构。TCR与PPI表位的结合主要集中在肽残基Arg4和Leu5上,而在其他位置则有更大的灵活性,这使得TCR能与许多来自致病细菌的肽紧密结合。我们确认了克雷伯氏菌的一个表位,该表位被 3 位 HLA A*24:02+ 患者中 3 位的 PPI 反应 T 细胞识别。值得注意的是,同样的表位选择了 8 位 HLA A*24+ 健康供体中 7 位的 T 细胞,这些 T 细胞与 PPI 产生交叉反应,从而识别并杀死表达 PPI 的 HLA A*24:02+ 细胞。这些数据提供了一种机制,即病原体和自身抗原之间的分子模仿可能导致自身耐受性被打破,从而引发疾病。
{"title":"HLA A*24:02-restricted T cell receptors cross-recognize bacterial and preproinsulin peptides in type 1 diabetes.","authors":"Garry Dolton, Anna Bulek, Aaron Wall, Hannah Thomas, Jade R Hopkins, Cristina Rius, Sarah Ae Galloway, Thomas Whalley, Li Rong Tan, Théo Morin, Nader Omidvar, Anna Fuller, Katie Topley, Md Samiul Hasan, Shikha Jain, Nirupa D'Souza, Thomas Hodges-Hoyland, Owen B Spiller, Deborah Kronenberg-Versteeg, Barbara Szomolay, Hugo A van den Berg, Lucy C Jones, Mark Peakman, David K Cole, Pierre J Rizkallah, Andrew K Sewell","doi":"10.1172/JCI164535","DOIUrl":"10.1172/JCI164535","url":null,"abstract":"<p><p>CD8+ T cells destroy insulin-producing pancreatic β cells in type 1 diabetes through HLA class I-restricted presentation of self-antigens. Combinatorial peptide library screening was used to produce a preferred peptide recognition landscape for a patient-derived T cell receptor (TCR) that recognized the preproinsulin-derived (PPI-derived) peptide sequence LWMRLLPLL in the context of disease risk allele HLA A*24:02. Data were used to generate a strong superagonist peptide, enabling production of an autoimmune HLA A*24:02-peptide-TCR structure by crystal seeding. TCR binding to the PPI epitope was strongly focused on peptide residues Arg4 and Leu5, with more flexibility at other positions, allowing the TCR to strongly engage many peptides derived from pathogenic bacteria. We confirmed an epitope from Klebsiella that was recognized by PPI-reactive T cells from 3 of 3 HLA A*24:02+ patients. Remarkably, the same epitope selected T cells from 7 of 8 HLA A*24+ healthy donors that cross-reacted with PPI, leading to recognition and killing of HLA A*24:02+ cells expressing PPI. These data provide a mechanism by which molecular mimicry between pathogen and self-antigens could have resulted in the breaking of self-tolerance to initiate disease.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 18","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Konrad Hoeft, Lars Koch, Susanne Ziegler, Ling Zhang, Steffen Luetke, Maria C Tanzer, Debashish Mohanta, David Schumacher, Felix Schreibing, Qingqing Long, Hyojin Kim, Barbara M Klinkhammer, Carla Schikarski, Sidrah Maryam, Mathijs Baens, Juliane Hermann, Sarah Krieg, Fabian Peisker, Laura De Laporte, Gideon Jl Schaefer, Sylvia Menzel, Joachim Jankowski, Benjamin D Humphreys, Adam Wahida, Rebekka K Schneider, Matthias Versele, Peter Boor, Matthias Mann, Gerhard Sengle, Sikander Hayat, Rafael Kramann
Fibrosis represents the uncontrolled replacement of parenchymal tissue with extracellular matrix (ECM) produced by myofibroblasts. While genetic fate-tracing and single-cell RNA-Seq technologies have helped elucidate fibroblast heterogeneity and ontogeny beyond fibroblast to myofibroblast differentiation, newly identified fibroblast populations remain ill defined, with respect to both the molecular cues driving their differentiation and their subsequent role in fibrosis. Using an unbiased approach, we identified the metalloprotease ADAMTS12 as a fibroblast-specific gene that is strongly upregulated during active fibrogenesis in humans and mice. Functional in vivo KO studies in mice confirmed that Adamts12 was critical during fibrogenesis in both heart and kidney. Mechanistically, using a combination of spatial transcriptomics and expression of catalytically active or inactive ADAMTS12, we demonstrated that the active protease of ADAMTS12 shaped ECM composition and cleaved hemicentin 1 (HMCN1) to enable the activation and migration of a distinct injury-responsive fibroblast subset defined by aberrant high JAK/STAT signaling.
{"title":"ADAMTS12 promotes fibrosis by restructuring extracellular matrix to enable activation of injury-responsive fibroblasts.","authors":"Konrad Hoeft, Lars Koch, Susanne Ziegler, Ling Zhang, Steffen Luetke, Maria C Tanzer, Debashish Mohanta, David Schumacher, Felix Schreibing, Qingqing Long, Hyojin Kim, Barbara M Klinkhammer, Carla Schikarski, Sidrah Maryam, Mathijs Baens, Juliane Hermann, Sarah Krieg, Fabian Peisker, Laura De Laporte, Gideon Jl Schaefer, Sylvia Menzel, Joachim Jankowski, Benjamin D Humphreys, Adam Wahida, Rebekka K Schneider, Matthias Versele, Peter Boor, Matthias Mann, Gerhard Sengle, Sikander Hayat, Rafael Kramann","doi":"10.1172/JCI170246","DOIUrl":"10.1172/JCI170246","url":null,"abstract":"<p><p>Fibrosis represents the uncontrolled replacement of parenchymal tissue with extracellular matrix (ECM) produced by myofibroblasts. While genetic fate-tracing and single-cell RNA-Seq technologies have helped elucidate fibroblast heterogeneity and ontogeny beyond fibroblast to myofibroblast differentiation, newly identified fibroblast populations remain ill defined, with respect to both the molecular cues driving their differentiation and their subsequent role in fibrosis. Using an unbiased approach, we identified the metalloprotease ADAMTS12 as a fibroblast-specific gene that is strongly upregulated during active fibrogenesis in humans and mice. Functional in vivo KO studies in mice confirmed that Adamts12 was critical during fibrogenesis in both heart and kidney. Mechanistically, using a combination of spatial transcriptomics and expression of catalytically active or inactive ADAMTS12, we demonstrated that the active protease of ADAMTS12 shaped ECM composition and cleaved hemicentin 1 (HMCN1) to enable the activation and migration of a distinct injury-responsive fibroblast subset defined by aberrant high JAK/STAT signaling.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 18","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nima Sharifi, Robert Diaz, Hui-Ming Lin, Evan Roberts, Lisa G Horvath, Andrew Martin, Martin R Stockler, Sonia Yip, Vinod V Subhash, Neil Portman, Ian D Davis, Christopher J Sweeney
BACKGROUNDMetastatic hormone-sensitive prostate cancer (mHSPC) is androgen dependent, and its treatment includes androgen deprivation therapy (ADT) with gonadal testosterone suppression. Since 2014, overall survival (OS) has been prolonged with addition of other systemic therapies, such as adrenal androgen synthesis blockers, potent androgen receptor blockers, or docetaxel, to ADT. HSD3B1 encodes the rate-limiting enzyme for nongonadal androgen synthesis, 3β-hydroxysteroid dehydrogenase-1, and has a common adrenal-permissive missense-encoding variant that confers increased synthesis of potent androgens from nongonadal precursor steroids and poorer prostate cancer outcomes.METHODSOur prespecified hypothesis was that poor outcome associated with inheritance of the adrenal-permissive HSD3B1 allele with ADT alone is reversed in patients with low-volume (LV) mHSPC with up-front ADT plus addition of androgen receptor (AR) antagonists to inhibit the effect of adrenal androgens. HSD3B1 genotype was obtained in 287 patients with LV disease treated with ADT + AR antagonist only in the phase III Enzalutamide in First Line Androgen Deprivation Therapy for Metastatic Prostate Cancer (ENZAMET) trial and was associated with clinical outcomes.RESULTSPatients who inherited the adrenal-permissive HSD3B1 allele had more favorable 5-year clinical progression-free survival and OS when treated with ADT plus enzalutamide or ADT plus nonsteroidal antiandrogen compared with their counterparts who did not have adrenal-permissive HSD3B1 inheritance. HSD3B1 was also associated with OS after accounting for known clinical variables. Patients with both genotypes benefited from early enzalutamide.CONCLUSIONThese data demonstrated an inherited physiologic driver of prostate cancer mortality is associated with clinical outcomes and is potentially pharmacologically reversible.FUNDINGNational Cancer Institute, NIH; Department of Defense; Prostate Cancer Foundation, Australian National Health and Medical Research Council.
{"title":"Survival of men with metastatic hormone-sensitive prostate cancer and adrenal-permissive HSD3B1 inheritance.","authors":"Nima Sharifi, Robert Diaz, Hui-Ming Lin, Evan Roberts, Lisa G Horvath, Andrew Martin, Martin R Stockler, Sonia Yip, Vinod V Subhash, Neil Portman, Ian D Davis, Christopher J Sweeney","doi":"10.1172/JCI183583","DOIUrl":"10.1172/JCI183583","url":null,"abstract":"<p><p>BACKGROUNDMetastatic hormone-sensitive prostate cancer (mHSPC) is androgen dependent, and its treatment includes androgen deprivation therapy (ADT) with gonadal testosterone suppression. Since 2014, overall survival (OS) has been prolonged with addition of other systemic therapies, such as adrenal androgen synthesis blockers, potent androgen receptor blockers, or docetaxel, to ADT. HSD3B1 encodes the rate-limiting enzyme for nongonadal androgen synthesis, 3β-hydroxysteroid dehydrogenase-1, and has a common adrenal-permissive missense-encoding variant that confers increased synthesis of potent androgens from nongonadal precursor steroids and poorer prostate cancer outcomes.METHODSOur prespecified hypothesis was that poor outcome associated with inheritance of the adrenal-permissive HSD3B1 allele with ADT alone is reversed in patients with low-volume (LV) mHSPC with up-front ADT plus addition of androgen receptor (AR) antagonists to inhibit the effect of adrenal androgens. HSD3B1 genotype was obtained in 287 patients with LV disease treated with ADT + AR antagonist only in the phase III Enzalutamide in First Line Androgen Deprivation Therapy for Metastatic Prostate Cancer (ENZAMET) trial and was associated with clinical outcomes.RESULTSPatients who inherited the adrenal-permissive HSD3B1 allele had more favorable 5-year clinical progression-free survival and OS when treated with ADT plus enzalutamide or ADT plus nonsteroidal antiandrogen compared with their counterparts who did not have adrenal-permissive HSD3B1 inheritance. HSD3B1 was also associated with OS after accounting for known clinical variables. Patients with both genotypes benefited from early enzalutamide.CONCLUSIONThese data demonstrated an inherited physiologic driver of prostate cancer mortality is associated with clinical outcomes and is potentially pharmacologically reversible.FUNDINGNational Cancer Institute, NIH; Department of Defense; Prostate Cancer Foundation, Australian National Health and Medical Research Council.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 18","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Globally, the majority of people living with HIV are women or girls, but they have been a minority of participants in clinical trials and observational studies of HIV. Despite this underrepresentation, differences in the pathogenesis of HIV have been observed between men and women, with contributions from both gender- and sex-based factors. These include differences in the risk of HIV acquisition, in viral load set point and immune activation in responses to viremia, and differences in HIV reservoir maintenance. These differences obligate adequate study in both males and females in order to optimize treatments, but also provide a powerful leverage point for delineating the mechanisms of HIV pathogenesis. The shifts in exposure to sex steroid hormones across a lifespan introduce additional complexity, which again can be used to focus on either genetic or hormonal influences as the driver of an outcome. In this Review, we discuss consistent and reproducible differences by sex across the spectrum of HIV, from acquisition through pathogenesis, treatment, and cure, and explore potential mechanisms and gaps in knowledge.
在全球范围内,大多数艾滋病毒感染者是妇女或女孩,但在艾滋病毒临床试验和观察性研究中,妇女或女孩的参与人数却很少。尽管代表性不足,但人们还是观察到了男女之间在艾滋病毒发病机制上的差异,这既有性别因素的影响,也有性别因素的影响。这些差异包括感染 HIV 的风险、病毒载量设定点和对病毒血症反应的免疫激活方面的差异,以及 HIV 储存库维持方面的差异。这些差异要求对男性和女性进行充分研究,以优化治疗方法,同时也为确定 HIV 的发病机制提供了一个有力的杠杆点。人在一生中接触到的性类固醇激素的变化带来了更多的复杂性,而这些复杂性又可被用来重点研究基因或激素对结果的影响。在这篇综述中,我们讨论了艾滋病毒从感染到发病、治疗和治愈的整个过程中,不同性别之间存在的一致且可重复的差异,并探讨了潜在的机制和知识空白。
{"title":"The impact of sex on HIV immunopathogenesis and therapeutic interventions.","authors":"Erin Mihealsick, Anna Word, Eileen P Scully","doi":"10.1172/JCI180075","DOIUrl":"https://doi.org/10.1172/JCI180075","url":null,"abstract":"<p><p>Globally, the majority of people living with HIV are women or girls, but they have been a minority of participants in clinical trials and observational studies of HIV. Despite this underrepresentation, differences in the pathogenesis of HIV have been observed between men and women, with contributions from both gender- and sex-based factors. These include differences in the risk of HIV acquisition, in viral load set point and immune activation in responses to viremia, and differences in HIV reservoir maintenance. These differences obligate adequate study in both males and females in order to optimize treatments, but also provide a powerful leverage point for delineating the mechanisms of HIV pathogenesis. The shifts in exposure to sex steroid hormones across a lifespan introduce additional complexity, which again can be used to focus on either genetic or hormonal influences as the driver of an outcome. In this Review, we discuss consistent and reproducible differences by sex across the spectrum of HIV, from acquisition through pathogenesis, treatment, and cure, and explore potential mechanisms and gaps in knowledge.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 18","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}