Maryna V Ivanchenko, Daniel M Hathaway, Eric M Mulhall, Kevin Ta Booth, Mantian Wang, Cole W Peters, Alex J Klein, Xinlan Chen, Yaqiao Li, Bence György, David P Corey
Usher syndrome type 1F (USH1F), resulting from mutations in the protocadherin-15 (PCDH15) gene, is characterized by congenital lack of hearing and balance, and progressive blindness in the form of retinitis pigmentosa. In this study, we explore an approach for USH1F gene therapy, exceeding the single AAV packaging limit by employing a dual adeno-associated virus (AAV) strategy to deliver the full-length PCDH15 coding sequence. We demonstrate the efficacy of this strategy in mouse USH1F models, effectively restoring hearing and balance in these mice. Importantly, our approach also proves successful in expressing PCDH15 protein in clinically relevant retinal models, including human retinal organoids and non-human primate retina, showing efficient targeting of photoreceptors and proper protein expression in the calyceal processes. This research represents a major step toward advancing gene therapy for USH1F and the multiple challenges of hearing, balance, and vision impairment.
{"title":"PCDH15 Dual-AAV Gene Therapy for Deafness and Blindness in Usher Syndrome Type 1F Models.","authors":"Maryna V Ivanchenko, Daniel M Hathaway, Eric M Mulhall, Kevin Ta Booth, Mantian Wang, Cole W Peters, Alex J Klein, Xinlan Chen, Yaqiao Li, Bence György, David P Corey","doi":"10.1172/JCI177700","DOIUrl":"10.1172/JCI177700","url":null,"abstract":"<p><p>Usher syndrome type 1F (USH1F), resulting from mutations in the protocadherin-15 (PCDH15) gene, is characterized by congenital lack of hearing and balance, and progressive blindness in the form of retinitis pigmentosa. In this study, we explore an approach for USH1F gene therapy, exceeding the single AAV packaging limit by employing a dual adeno-associated virus (AAV) strategy to deliver the full-length PCDH15 coding sequence. We demonstrate the efficacy of this strategy in mouse USH1F models, effectively restoring hearing and balance in these mice. Importantly, our approach also proves successful in expressing PCDH15 protein in clinically relevant retinal models, including human retinal organoids and non-human primate retina, showing efficient targeting of photoreceptors and proper protein expression in the calyceal processes. This research represents a major step toward advancing gene therapy for USH1F and the multiple challenges of hearing, balance, and vision impairment.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natallia Makarava, Tarek Safadi, Olga Bocharova, Olga Mychko, Narayan P Pandit, Kara Molesworth, Simone Baiardi, Li Zhang, Piero Parchi, Ilia V Baskakov
Microglia are recognized as the main cells in the central nervous system responsible for phagocytosis. The current study demonstrated that in prion disease, microglia effectively phagocytose prions or PrPSc during early preclinical stages. However, a critical shift occured in microglial activity during the late preclinical stage, transitioning from PrPSc uptake to establishing extensive neuron-microglia body-to-body cell contacts. This change was followed by a rapid accumulation of PrPSc in the brain. Microglia that enveloped neurons exhibited hypertrophic, cathepsin D-positive lysosomal compartments. However, most neurons undergoing envelopment were only partially encircled by microglia. Despite up to 40% of cortical neurons being partially enveloped at clinical stages, only a small percentage of envelopment proceeded to full engulfment. Partially enveloped neurons lacked apoptotic markers but showed signs of functional decline. Neuronal envelopment was independent of the CD11b pathway, previously associated with phagocytosis of newborn neurons during neurodevelopment. This phenomenon of partial envelopment was consistently observed across multiple prion-affected brain regions, various mouse-adapted strains, and different subtypes of sporadic Creutzfeldt-Jakob disease (sCJD) in humans. The current work describes a new phenomenon of partial envelopment of neurons by reactive microglia in the context of an actual neurodegenerative disease, not a disease model.
{"title":"Reactive microglia partially envelop viable neurons in prion diseases.","authors":"Natallia Makarava, Tarek Safadi, Olga Bocharova, Olga Mychko, Narayan P Pandit, Kara Molesworth, Simone Baiardi, Li Zhang, Piero Parchi, Ilia V Baskakov","doi":"10.1172/JCI181169","DOIUrl":"https://doi.org/10.1172/JCI181169","url":null,"abstract":"<p><p>Microglia are recognized as the main cells in the central nervous system responsible for phagocytosis. The current study demonstrated that in prion disease, microglia effectively phagocytose prions or PrPSc during early preclinical stages. However, a critical shift occured in microglial activity during the late preclinical stage, transitioning from PrPSc uptake to establishing extensive neuron-microglia body-to-body cell contacts. This change was followed by a rapid accumulation of PrPSc in the brain. Microglia that enveloped neurons exhibited hypertrophic, cathepsin D-positive lysosomal compartments. However, most neurons undergoing envelopment were only partially encircled by microglia. Despite up to 40% of cortical neurons being partially enveloped at clinical stages, only a small percentage of envelopment proceeded to full engulfment. Partially enveloped neurons lacked apoptotic markers but showed signs of functional decline. Neuronal envelopment was independent of the CD11b pathway, previously associated with phagocytosis of newborn neurons during neurodevelopment. This phenomenon of partial envelopment was consistently observed across multiple prion-affected brain regions, various mouse-adapted strains, and different subtypes of sporadic Creutzfeldt-Jakob disease (sCJD) in humans. The current work describes a new phenomenon of partial envelopment of neurons by reactive microglia in the context of an actual neurodegenerative disease, not a disease model.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elnaz Ghotbi, Edem Tchegnon, Zhiguo Chen, Stephen Li, Tracey Shipman, Yong Wang, Jenny Raman, Yumeng Zhang, Renee M McKay, Chung-Ping Liao, Lu Q Le
Epidermal stem cells control homeostasis and regeneration of skin and hair. In the hair follicle (HF) bulge of mammals, populations of slow-cycling stem cells regenerate the HF during cyclical rounds of anagen (growth), telogen (quiescence), and catagen (regression). Multipotent epidermal cells are also present in the HF above the bulge area, contributing to the formation and maintenance of sebaceous gland and upper and middle portions of the HF. Here, we report that the transcription factor Krox20 is enriched in an epidermal stem cell population located in the upper/ middle HF. Expression analyses and lineage tracing using inducible Krox20-CreERT showed that Krox20-lineage cells migrate out of this HF region and contribute to the formation of bulge in the HF, serving as ancestors of bulge stem cells. In vivo depletion of these cells arrests HF morphogenesis. This study identifies a novel marker for an epidermal stem cell population that is indispensable for hair homeostasis.
{"title":"Transcription factor KROX20 marks epithelial stem cells for hair follicle formation.","authors":"Elnaz Ghotbi, Edem Tchegnon, Zhiguo Chen, Stephen Li, Tracey Shipman, Yong Wang, Jenny Raman, Yumeng Zhang, Renee M McKay, Chung-Ping Liao, Lu Q Le","doi":"10.1172/JCI180160","DOIUrl":"10.1172/JCI180160","url":null,"abstract":"<p><p>Epidermal stem cells control homeostasis and regeneration of skin and hair. In the hair follicle (HF) bulge of mammals, populations of slow-cycling stem cells regenerate the HF during cyclical rounds of anagen (growth), telogen (quiescence), and catagen (regression). Multipotent epidermal cells are also present in the HF above the bulge area, contributing to the formation and maintenance of sebaceous gland and upper and middle portions of the HF. Here, we report that the transcription factor Krox20 is enriched in an epidermal stem cell population located in the upper/ middle HF. Expression analyses and lineage tracing using inducible Krox20-CreERT showed that Krox20-lineage cells migrate out of this HF region and contribute to the formation of bulge in the HF, serving as ancestors of bulge stem cells. In vivo depletion of these cells arrests HF morphogenesis. This study identifies a novel marker for an epidermal stem cell population that is indispensable for hair homeostasis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiuyu Lin, Weicheng Chen, Guilin Yang, Jiazhu Zhang, Huilin Wang, Zeyu Liu, Ying Xi, Tao Ren, Bo Liu, Pengfei Sui
Severe viral pneumonia can induce rapid expansion of KRT5+ basal-like cells in small airways and alveoli; this forms a scar-like structure that persists in the injured alveoli and impedes normal alveolar epithelium regeneration. In this study, we investigated the mechanism by which viral infection induced this remodeling response. Through comparing different lung-injury models, we demonstrated that infection induced strong IFN-γ signal-stimulated dysplastic KRT5+ cell formation. Inactivation of interferon receptor 1 (Ifngr1) reduced dysplastic cell formation, ameliorated lung fibrosis, and improved lung-function recovery. Mechanistically, IFN-γ regulated dysplastic cell formation via the focal adhesion kinase (FAK)/Yes-associated protein 1 (YAP) pathway. Inhibiting FAK/Src diminished IFN-γ-induced YAP nuclear translocation and dysplastic cell formation. Inhibiting YAP during viral infection prevented dysplastic cell formation, whereas inhibiting YAP in persistent KRT5+ cells led to their conversion into distal club cells. Importantly, human dysplastic cells exhibited elevated FAK and YAP activity, and IFN-γ treatment promoted the transformation of human alveolar progenitor cells into dysplastic cells. These findings uncover the role of infection-induced inflammatory response in alveolar remodeling and may provide potential therapeutic avenues for the treatment of alveolar remodeling in patients with severe viral pneumonia.
{"title":"Viral infection induces inflammatory signals that coordinate YAP regulation of dysplastic cells in lung alveoli.","authors":"Xiuyu Lin, Weicheng Chen, Guilin Yang, Jiazhu Zhang, Huilin Wang, Zeyu Liu, Ying Xi, Tao Ren, Bo Liu, Pengfei Sui","doi":"10.1172/JCI176828","DOIUrl":"10.1172/JCI176828","url":null,"abstract":"<p><p>Severe viral pneumonia can induce rapid expansion of KRT5+ basal-like cells in small airways and alveoli; this forms a scar-like structure that persists in the injured alveoli and impedes normal alveolar epithelium regeneration. In this study, we investigated the mechanism by which viral infection induced this remodeling response. Through comparing different lung-injury models, we demonstrated that infection induced strong IFN-γ signal-stimulated dysplastic KRT5+ cell formation. Inactivation of interferon receptor 1 (Ifngr1) reduced dysplastic cell formation, ameliorated lung fibrosis, and improved lung-function recovery. Mechanistically, IFN-γ regulated dysplastic cell formation via the focal adhesion kinase (FAK)/Yes-associated protein 1 (YAP) pathway. Inhibiting FAK/Src diminished IFN-γ-induced YAP nuclear translocation and dysplastic cell formation. Inhibiting YAP during viral infection prevented dysplastic cell formation, whereas inhibiting YAP in persistent KRT5+ cells led to their conversion into distal club cells. Importantly, human dysplastic cells exhibited elevated FAK and YAP activity, and IFN-γ treatment promoted the transformation of human alveolar progenitor cells into dysplastic cells. These findings uncover the role of infection-induced inflammatory response in alveolar remodeling and may provide potential therapeutic avenues for the treatment of alveolar remodeling in patients with severe viral pneumonia.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The emergence of clonal hematopoiesis as a disease determinant.","authors":"Kenneth Walsh","doi":"10.1172/JCI180063","DOIUrl":"10.1172/JCI180063","url":null,"abstract":"","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William G Dunn, Matthew A McLoughlin, George S Vassiliou
Clonal hematopoiesis (CH), the expansion of hematopoietic stem cells and their progeny driven by somatic mutations in leukemia-associated genes, is a common phenomenon that rises in prevalence with advancing age to affect most people older than 70 years. CH remains subclinical in most carriers, but, in a minority, it progresses to a myeloid neoplasm, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm. Over the last decade, advances in our understanding of CH, its molecular landscape, and the risks associated with different driver gene mutations have culminated in recent developments that allow for a more precise estimation of myeloid neoplasia risk in CH carriers. In turn, this is leading to the development of translational and clinical programs to intercept and prevent CH from developing into myeloid neoplasia. Here, we give an overview of the spectrum of CH driver mutations, what is known about their pathophysiology, and how this informs the risk of incident myeloid malignancy.
{"title":"Clonal hematopoiesis and hematological malignancy.","authors":"William G Dunn, Matthew A McLoughlin, George S Vassiliou","doi":"10.1172/JCI180065","DOIUrl":"10.1172/JCI180065","url":null,"abstract":"<p><p>Clonal hematopoiesis (CH), the expansion of hematopoietic stem cells and their progeny driven by somatic mutations in leukemia-associated genes, is a common phenomenon that rises in prevalence with advancing age to affect most people older than 70 years. CH remains subclinical in most carriers, but, in a minority, it progresses to a myeloid neoplasm, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm. Over the last decade, advances in our understanding of CH, its molecular landscape, and the risks associated with different driver gene mutations have culminated in recent developments that allow for a more precise estimation of myeloid neoplasia risk in CH carriers. In turn, this is leading to the development of translational and clinical programs to intercept and prevent CH from developing into myeloid neoplasia. Here, we give an overview of the spectrum of CH driver mutations, what is known about their pathophysiology, and how this informs the risk of incident myeloid malignancy.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444162/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayush Kumar, Hira Goel, Christi Wisniewski, Tao Wang, Yansong Geng, Mengdie Wang, Shivam Goel, Kai Hu, Rui Li, Lihua J Zhu, Jennifer L Clark, Lindsay M Ferreira, Michael Brehm, Thomas J Fitzgerald, Arthur M Mercurio
The high rate of recurrence after radiation therapy in triple-negative breast cancer (TNBC) indicates that novel approaches and targets are needed to enhance radiosensitivity. Here, we report that neuropilin-2 (NRP2), a receptor for vascular endothelial growth factor (VEGF) that is enriched on sub-populations of TNBC cells with stem cell properties, is an effective therapeutic target for sensitizing TNBC to radiotherapy. Specifically, VEGF/NRP2 signaling induces nitric oxide synthase 2 (NOS2) transcription by a mechanism dependent on Gli1. NRP2-expressing tumor cells serve as a hub to produce nitric oxide (NO), an autocrine and paracrine signaling metabolite, which promotes cysteine-nitrosylation of Kelch-like ECH-asssociated protein 1 (KEAP1) and, consequently, nuclear factor erythroid 2-related factor 2 (NFE2L2)-mediated transcription of antioxidant response genes. Inhibiting VEGF binding to NRP2, using a humanized monoclonal antibody (mAb), results in NFE2L2 degradation via KEAP1 rendering cell lines and organoids vulnerable to irradiation. Importantly, treatment of patient-derived xenografts with the NRP2 mAb and radiation resulted in significant tumor necrosis and regression compared to radiation alone. Together, these findings reveal a targetable mechanism of radioresistance and they support the use of NRP2 mAb as an effective radiosensitizer in TNBC.
三阴性乳腺癌(TNBC)放疗后的高复发率表明,需要新的方法和靶点来提高放射敏感性。在这里,我们报告了神经鞘氨醇-2(NRP2)是血管内皮生长因子(VEGF)的受体,它富集在具有干细胞特性的TNBC细胞亚群中,是使TNBC对放疗敏感的有效治疗靶点。具体来说,VEGF/NRP2信号通过依赖Gli1的机制诱导一氧化氮合酶2(NOS2)转录。NRP2表达的肿瘤细胞是产生一氧化氮(NO)的枢纽,一氧化氮是一种自分泌和旁分泌信号代谢产物,它促进Kelch样ECH相关蛋白1(KEAP1)的半胱氨酸-亚硝基化,进而促进核因子红细胞2相关因子2(NFE2L2)介导的抗氧化反应基因的转录。使用人源化单克隆抗体(mAb)抑制血管内皮生长因子与 NRP2 的结合会导致 NFE2L2 通过 KEAP1 降解,从而使细胞系和器官组织易受辐照影响。重要的是,用 NRP2 mAb 和辐射处理患者衍生的异种移植物会导致肿瘤显著坏死和消退,而只用辐射则不会导致肿瘤坏死和消退。这些发现共同揭示了放射抗性的靶向机制,并支持使用 NRP2 mAb 作为 TNBC 的有效放射增敏剂。
{"title":"Neuropilin-2 expressing cells in breast cancer are S-nitrosylation hubs that mitigate radiation-induced oxidative stress.","authors":"Ayush Kumar, Hira Goel, Christi Wisniewski, Tao Wang, Yansong Geng, Mengdie Wang, Shivam Goel, Kai Hu, Rui Li, Lihua J Zhu, Jennifer L Clark, Lindsay M Ferreira, Michael Brehm, Thomas J Fitzgerald, Arthur M Mercurio","doi":"10.1172/JCI181368","DOIUrl":"https://doi.org/10.1172/JCI181368","url":null,"abstract":"<p><p>The high rate of recurrence after radiation therapy in triple-negative breast cancer (TNBC) indicates that novel approaches and targets are needed to enhance radiosensitivity. Here, we report that neuropilin-2 (NRP2), a receptor for vascular endothelial growth factor (VEGF) that is enriched on sub-populations of TNBC cells with stem cell properties, is an effective therapeutic target for sensitizing TNBC to radiotherapy. Specifically, VEGF/NRP2 signaling induces nitric oxide synthase 2 (NOS2) transcription by a mechanism dependent on Gli1. NRP2-expressing tumor cells serve as a hub to produce nitric oxide (NO), an autocrine and paracrine signaling metabolite, which promotes cysteine-nitrosylation of Kelch-like ECH-asssociated protein 1 (KEAP1) and, consequently, nuclear factor erythroid 2-related factor 2 (NFE2L2)-mediated transcription of antioxidant response genes. Inhibiting VEGF binding to NRP2, using a humanized monoclonal antibody (mAb), results in NFE2L2 degradation via KEAP1 rendering cell lines and organoids vulnerable to irradiation. Importantly, treatment of patient-derived xenografts with the NRP2 mAb and radiation resulted in significant tumor necrosis and regression compared to radiation alone. Together, these findings reveal a targetable mechanism of radioresistance and they support the use of NRP2 mAb as an effective radiosensitizer in TNBC.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos A Arango-Franco, Masato Ogishi, Susanne Unger, Ottavia M Delmonte, Julio César Orrego, Ahmad Yatim, Margarita M Velasquez-Lopera, Andrés F Zea-Vera, Jonathan Bohlen, Marwa Chbihi, Antoine Fayand, Juan Pablo Sánchez, Julian Rojas, Yoann Seeleuthner, Tom Le Voyer, Quentin Philippot, Kathryn J Payne, Adrian Gervais, Lucia V Erazo-Borrás, Luis A Correa-Londoño, Axel Cederholm, Alejandro Gallón-Duque, Pedro Goncalves, Jean-Marc Doisne, Liran Horev, Bénédicte Charmeteau-de Muylder, Jesús Á Álvarez, Diana M Arboleda, Lizet Pérez-Zapata, Estefanía Vásquez-Echeverri, Marcela Moncada-Vélez, Juan A López, Yolanda Caicedo, Boaz Palterer, Pablo J Patiño, Carlos J Montoya, Matthieu Chaldebas, Peng Zhang, Tina Nguyen, Cindy S Ma, Mohamed Jeljeli, Juan F Alzate, Felipe Cabarcas, Taushif Khan, Darawan Rinchai, Jean-Luc Prétet, Bertrand Boisson, Nico Marr, Ruba Ibrahim, Vered Molho-Pessach, Stéphanie Boisson-Dupuis, Dimitra Kiritsi, João T Barata, Nils Landegren, Bénédicte Neven, Laurent Abel, Andrea Lisco, Vivien Béziat, Emmanuelle Jouanguy, Jacinta Bustamante, James P Di Santo, Stuart G Tangye, Luigi D Notarangelo, Rémi Cheynier, Ken Natsuga, Andrés A Arias, José Luis Franco, Klaus Warnatz, Jean-Laurent Casanova, Anne Puel
Infants with biallelic IL7R loss-of-function variants have severe combined immune deficiency (SCID) characterized by the absence of autologous T lymphocytes, but normal counts of circulating B and NK cells (T-B+NK+ SCID). We report 6 adults (aged 22 to 59 years) from 4 kindreds and 3 ancestries (Colombian, Israeli Arab, Japanese) carrying homozygous IL7 loss-of-function variants resulting in combined immunodeficiency (CID). Deep immunophenotyping revealed relatively normal counts and/or proportions of myeloid, B, NK, and innate lymphoid cells. By contrast, the patients had profound T cell lymphopenia, with low proportions of innate-like adaptive mucosal-associated invariant T and invariant NK T cells. They also had low blood counts of T cell receptor (TCR) excision circles, recent thymic emigrant T cells and naive CD4+ T cells, and low overall TCR repertoire diversity, collectively indicating impaired thymic output. The proportions of effector memory CD4+ and CD8+ T cells were high, indicating IL-7-independent homeostatic T cell proliferation in the periphery. Intriguingly, the proportions of other T cell subsets, including TCRγδ+ T cells and some TCRαβ+ T cell subsets (including Th1, Tfh, and Treg) were little affected. Peripheral CD4+ T cells displayed poor proliferation, but normal cytokine production upon stimulation with mitogens in vitro. Thus, inherited IL-7 deficiency impairs T cell development less severely and in a more subset-specific manner than IL-7R deficiency. These findings suggest that another IL-7R-binding cytokine, possibly thymic stromal lymphopoietin, governs an IL-7-independent pathway of human T cell development.
携带双倍性 IL7R 功能缺失变体的婴儿具有严重的联合免疫缺陷症(SCID),其特征是缺乏自体 T 淋巴细胞,但循环 B 细胞和 NK 细胞数量正常(T-B+NK+ SCID)。我们报告了 6 名成年人(22 至 59 岁),他们来自 4 个血统和 3 个祖先(哥伦比亚人、以色列阿拉伯人和日本人),携带导致联合免疫缺陷症(CID)的同基因 IL7 功能缺失变体。深度免疫分型显示,骨髓细胞、B细胞、NK细胞和先天性淋巴细胞的数量和/或比例相对正常。相比之下,患者有严重的 T 细胞淋巴细胞减少症,先天类适应性粘膜相关不变 T 细胞和不变 NK T 细胞比例较低。他们血液中的T细胞受体(TCR)切割圈、新近胸腺移出的T细胞和幼稚CD4+T细胞的数量也很低,而且总体TCR库的多样性也很低,这共同表明胸腺输出受损。效应记忆 CD4+ 和 CD8+ T 细胞的比例较高,表明外周存在不依赖于 IL-7 的同源性 T 细胞增殖。有趣的是,其他T细胞亚群的比例,包括TCRγδ+ T细胞和一些TCRαβ+ T细胞亚群(包括Th1、Tfh和Treg)几乎没有受到影响。外周 CD4+ T 细胞增殖不良,但在体外有丝分裂原刺激下细胞因子的产生正常。因此,与 IL-7R 缺乏症相比,遗传性 IL-7 缺乏症对 T 细胞发育的损害不那么严重,而且亚群特异性更强。这些发现表明,另一种与IL-7R结合的细胞因子(可能是胸腺基质淋巴细胞生成素)支配着人类T细胞发育的一条与IL-7无关的途径。
{"title":"IL-7-dependent and -independent lineages of IL-7R-dependent human T cells.","authors":"Carlos A Arango-Franco, Masato Ogishi, Susanne Unger, Ottavia M Delmonte, Julio César Orrego, Ahmad Yatim, Margarita M Velasquez-Lopera, Andrés F Zea-Vera, Jonathan Bohlen, Marwa Chbihi, Antoine Fayand, Juan Pablo Sánchez, Julian Rojas, Yoann Seeleuthner, Tom Le Voyer, Quentin Philippot, Kathryn J Payne, Adrian Gervais, Lucia V Erazo-Borrás, Luis A Correa-Londoño, Axel Cederholm, Alejandro Gallón-Duque, Pedro Goncalves, Jean-Marc Doisne, Liran Horev, Bénédicte Charmeteau-de Muylder, Jesús Á Álvarez, Diana M Arboleda, Lizet Pérez-Zapata, Estefanía Vásquez-Echeverri, Marcela Moncada-Vélez, Juan A López, Yolanda Caicedo, Boaz Palterer, Pablo J Patiño, Carlos J Montoya, Matthieu Chaldebas, Peng Zhang, Tina Nguyen, Cindy S Ma, Mohamed Jeljeli, Juan F Alzate, Felipe Cabarcas, Taushif Khan, Darawan Rinchai, Jean-Luc Prétet, Bertrand Boisson, Nico Marr, Ruba Ibrahim, Vered Molho-Pessach, Stéphanie Boisson-Dupuis, Dimitra Kiritsi, João T Barata, Nils Landegren, Bénédicte Neven, Laurent Abel, Andrea Lisco, Vivien Béziat, Emmanuelle Jouanguy, Jacinta Bustamante, James P Di Santo, Stuart G Tangye, Luigi D Notarangelo, Rémi Cheynier, Ken Natsuga, Andrés A Arias, José Luis Franco, Klaus Warnatz, Jean-Laurent Casanova, Anne Puel","doi":"10.1172/JCI180251","DOIUrl":"10.1172/JCI180251","url":null,"abstract":"<p><p>Infants with biallelic IL7R loss-of-function variants have severe combined immune deficiency (SCID) characterized by the absence of autologous T lymphocytes, but normal counts of circulating B and NK cells (T-B+NK+ SCID). We report 6 adults (aged 22 to 59 years) from 4 kindreds and 3 ancestries (Colombian, Israeli Arab, Japanese) carrying homozygous IL7 loss-of-function variants resulting in combined immunodeficiency (CID). Deep immunophenotyping revealed relatively normal counts and/or proportions of myeloid, B, NK, and innate lymphoid cells. By contrast, the patients had profound T cell lymphopenia, with low proportions of innate-like adaptive mucosal-associated invariant T and invariant NK T cells. They also had low blood counts of T cell receptor (TCR) excision circles, recent thymic emigrant T cells and naive CD4+ T cells, and low overall TCR repertoire diversity, collectively indicating impaired thymic output. The proportions of effector memory CD4+ and CD8+ T cells were high, indicating IL-7-independent homeostatic T cell proliferation in the periphery. Intriguingly, the proportions of other T cell subsets, including TCRγδ+ T cells and some TCRαβ+ T cell subsets (including Th1, Tfh, and Treg) were little affected. Peripheral CD4+ T cells displayed poor proliferation, but normal cytokine production upon stimulation with mitogens in vitro. Thus, inherited IL-7 deficiency impairs T cell development less severely and in a more subset-specific manner than IL-7R deficiency. These findings suggest that another IL-7R-binding cytokine, possibly thymic stromal lymphopoietin, governs an IL-7-independent pathway of human T cell development.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chia-Lin Chen, Hidekazu Tsukamoto, Jian-Chang Liu, Claudine Kashiwabara, Douglas Feldman, Linda Sher, Steven Dooley, Samuel W French, Lopa Mishra, Lydia Petrovic, Joseph H Jeong, Keigo Machida
{"title":"Reciprocal regulation by TLR4 and TGF-β in tumor-initiating stem-like cells.","authors":"Chia-Lin Chen, Hidekazu Tsukamoto, Jian-Chang Liu, Claudine Kashiwabara, Douglas Feldman, Linda Sher, Steven Dooley, Samuel W French, Lopa Mishra, Lydia Petrovic, Joseph H Jeong, Keigo Machida","doi":"10.1172/JCI186923","DOIUrl":"10.1172/JCI186923","url":null,"abstract":"","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ineffective recovery from pneumonia can lead to interstitial lung disease characterized by aberrant epithelial cells in fibrotic regions. In this issue of the JCI, Lin et al. define molecular pathways leading to the development and persistence of keratin 5+ (Krt5+) epithelial cells in the alveolar parenchyma when mice struggle to recover from influenza infection. The receptor for IFN-γ on lung epithelium was essential for the formation of aberrant Krt5+ cells and fibrotic lung disease. The transcription factor Yes-associated protein 1 (YAP) was necessary for persistence of these Krt5+ cells, and IFN-γ activated YAP in lung epithelial cells via JAK, focal adhesion kinase (FAK), and Src kinases. These findings establish a targetable pathway underlying some of the pulmonary postacute sequelae of pneumonia.
{"title":"IFN-γ and YAP lead epithelial cells astray after severe respiratory infection.","authors":"Bradley E Hiller, Joseph P Mizgerd","doi":"10.1172/JCI185072","DOIUrl":"10.1172/JCI185072","url":null,"abstract":"<p><p>Ineffective recovery from pneumonia can lead to interstitial lung disease characterized by aberrant epithelial cells in fibrotic regions. In this issue of the JCI, Lin et al. define molecular pathways leading to the development and persistence of keratin 5+ (Krt5+) epithelial cells in the alveolar parenchyma when mice struggle to recover from influenza infection. The receptor for IFN-γ on lung epithelium was essential for the formation of aberrant Krt5+ cells and fibrotic lung disease. The transcription factor Yes-associated protein 1 (YAP) was necessary for persistence of these Krt5+ cells, and IFN-γ activated YAP in lung epithelial cells via JAK, focal adhesion kinase (FAK), and Src kinases. These findings establish a targetable pathway underlying some of the pulmonary postacute sequelae of pneumonia.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}