首页 > 最新文献

Journal of Climate最新文献

英文 中文
Impact of Summer North Atlantic Sea Surface Temperature Tripole on Precipitation over Mid–high-latitude Eurasia 夏季北大西洋海面温度三极对欧亚大陆中高纬度降水的影响
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-02 DOI: 10.1175/jcli-d-24-0072.1
Shanling Cheng, Haipeng Yu, Jie Zhou, Bofei Zhang, Yu Ren, Hongyu Luo, Siyu Chen, Yongqi Gong, Ming Peng, Yunsai Zhu
Abstract Eurasia is a sensitive and high-risk region for global climate changes, where climate anomalies significantly influence natural ecosystems, human health, and economic development. The North Atlantic tripole (NAT) sea surface temperature anomaly is crucial to interannual precipitation variations in Eurasia. Several studies have focused on the link between the NAT and climate anomalies in winter and spring. However, the mechanism by which the summer NAT impacts climate anomalies in Eurasia remains unclear. This study examines how the NAT impacts interannual variations of summer precipitation in mid-high-latitude Eurasia. Precipitation variations are associated with the atmospheric teleconnection triggered by the NAT. When the NAT is in its positive phase, the anomalous atmospheric diabatic heating over the North Atlantic excites an equivalent-barotropic Rossby wave train response that propagates eastward toward the Eurasia, resulting in atmospheric circulation anomalies over the region. The combined effects of atmospheric circulation, radiative forcing, and water vapor transport anomalies lead to decreased precipitation across Northern Europe and central Eurasia, with higher precipitation anomalies over the Northeast Asia. Finally, numerical experiments verify that the summer NAT excites atmospheric teleconnections that propagate downstream, affecting precipitation anomalies in mid-high-latitude Eurasia. This study provides a scientific basis for predicting Eurasian summer precipitation and strengthening disaster management strategies.
摘要 欧亚大陆是全球气候变化的敏感和高风险地区,那里的气候异常严重影响着自然生态系统、人类健康和经济发展。北大西洋三极海面温度异常对欧亚大陆年际降水量变化至关重要。一些研究重点关注北大西洋三极与冬季和春季气候异常之间的联系。然而,夏季 NAT 对欧亚大陆气候异常的影响机制仍不清楚。本研究探讨了欧亚大陆中高纬度地区夏季降水量的年际变化如何受 NAT 影响。降水量的变化与 NAT 引发的大气远程联系有关。当 NAT 处于正相位时,北大西洋上空异常的大气绝热加热会激发等效各向同性的罗斯比波列响应,并向东传播到欧亚大陆,从而导致该地区的大气环流异常。大气环流、辐射强迫和水汽输送异常的综合效应导致北欧和欧亚大陆中部降水量减少,而亚洲东北部降水量异常增加。最后,数值实验验证了夏季 NAT 激发了大气远距离联系,并向下游传播,影响了欧亚大陆中高纬度地区的降水异常。这项研究为预测欧亚大陆夏季降水和加强灾害管理策略提供了科学依据。
{"title":"Impact of Summer North Atlantic Sea Surface Temperature Tripole on Precipitation over Mid–high-latitude Eurasia","authors":"Shanling Cheng, Haipeng Yu, Jie Zhou, Bofei Zhang, Yu Ren, Hongyu Luo, Siyu Chen, Yongqi Gong, Ming Peng, Yunsai Zhu","doi":"10.1175/jcli-d-24-0072.1","DOIUrl":"https://doi.org/10.1175/jcli-d-24-0072.1","url":null,"abstract":"Abstract Eurasia is a sensitive and high-risk region for global climate changes, where climate anomalies significantly influence natural ecosystems, human health, and economic development. The North Atlantic tripole (NAT) sea surface temperature anomaly is crucial to interannual precipitation variations in Eurasia. Several studies have focused on the link between the NAT and climate anomalies in winter and spring. However, the mechanism by which the summer NAT impacts climate anomalies in Eurasia remains unclear. This study examines how the NAT impacts interannual variations of summer precipitation in mid-high-latitude Eurasia. Precipitation variations are associated with the atmospheric teleconnection triggered by the NAT. When the NAT is in its positive phase, the anomalous atmospheric diabatic heating over the North Atlantic excites an equivalent-barotropic Rossby wave train response that propagates eastward toward the Eurasia, resulting in atmospheric circulation anomalies over the region. The combined effects of atmospheric circulation, radiative forcing, and water vapor transport anomalies lead to decreased precipitation across Northern Europe and central Eurasia, with higher precipitation anomalies over the Northeast Asia. Finally, numerical experiments verify that the summer NAT excites atmospheric teleconnections that propagate downstream, affecting precipitation anomalies in mid-high-latitude Eurasia. This study provides a scientific basis for predicting Eurasian summer precipitation and strengthening disaster management strategies.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"159 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes of intense extratropical cyclone deepening mechanisms in a warmer climate in idealized simulations 理想化模拟中气候变暖时强热带气旋加深机制的变化
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-01 DOI: 10.1175/jcli-d-23-0605.1
Ting-Chen Chen, Christoph Braun, Aiko Voigt, Joaquim G. Pinto
Abstract To understand how extratropical cyclones (ETCs) may change in a warmer climate, we conduct idealized baroclinic life cycle simulations using the ICON-NWP model with varied initial conditions. With respect to a present-day climate, two experiments are highlighted: a 4K uniform warming and a more realistic late 21st-century warming pattern projected by a CMIP6 model. Different ETC deepening mechanisms, especially by diabatic processes, are quantified via the pressure tendency equation analysis, and the horizontal model resolution dependency is examined by contrasting coarse-grid (80 km) and convection-permitting (2.5 km) simulations. While our simulated ETCs are primarily baroclinically driven, dominated by the horizontal warm-air advection in the air column above the surface low, such an effect only strengthens by 10% in both warming experiments. However, the direct contribution of diabatic heating to surface pressure drop almost doubles, which likely feeds back positively to horizontal warm-air advection. Although their combined response to warming is pronounced, it is largely offset by the strengthened adiabatic cooling (17%) due to enhanced upward motions in warmer and moister ETCs, leading to a marginal ETC deepening at maturity (lowers by ~ 1.5–4 hPa). Nevertheless, the near-surface impacts strongly increase, particularly the local extreme precipitation (up to 56%). The convection-permitting and the coarse-grid simulations show qualitatively consistent ETC responses to global warming. We suggest that the systematically weaker ETCs (with higher central pressure) in 2.5 km compared to 80 km simulations might be primarily caused by model uncertainty in representing the convective-diabatic heating over the warm front near the cyclone core.
摘要 为了解在气候变暖的情况下热带气旋(ETC)可能发生的变化,我们利用 ICON-NWP 模式在不同的初始条件下进行了理想化的气旋生命周期模拟。针对当今气候,重点介绍了两个实验:4K 均匀变暖和 CMIP6 模型预测的更现实的 21 世纪晚期变暖模式。通过压力趋势方程分析,量化了不同的 ETC 深化机制,特别是二重过程,并通过对比粗网格(80 千米)和对流允许(2.5 千米)模拟,研究了水平模型分辨率的依赖性。虽然我们模拟的 ETC 主要由气压驱动,由地表低气压上方气柱中的水平暖空气平流主导,但这种效应在两次升温实验中都只增强了 10%。然而,绝热加热对地表压降的直接贡献几乎增加了一倍,这可能会对水平暖空气平流产生正反馈。虽然它们对变暖的综合响应很明显,但在很大程度上被由于较暖较湿的 ETC 向上运动增强而加强的绝热冷却(17%)所抵消,导致 ETC 在成熟时略有加深(降低约 1.5-4 hPa)。然而,近地面影响强烈增加,特别是局地极端降水(高达 56%)。对流允许模拟和粗网格模拟对全球变暖的 ETC 反应在本质上是一致的。我们认为,与 80 公里模拟相比,2.5 公里模拟的 ETC(中心气压较高)系统性较弱,这可能主要是由于模型在表示气旋核心附近暖锋上的对流绝热加热时存在不确定性。
{"title":"Changes of intense extratropical cyclone deepening mechanisms in a warmer climate in idealized simulations","authors":"Ting-Chen Chen, Christoph Braun, Aiko Voigt, Joaquim G. Pinto","doi":"10.1175/jcli-d-23-0605.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0605.1","url":null,"abstract":"Abstract To understand how extratropical cyclones (ETCs) may change in a warmer climate, we conduct idealized baroclinic life cycle simulations using the ICON-NWP model with varied initial conditions. With respect to a present-day climate, two experiments are highlighted: a 4K uniform warming and a more realistic late 21st-century warming pattern projected by a CMIP6 model. Different ETC deepening mechanisms, especially by diabatic processes, are quantified via the pressure tendency equation analysis, and the horizontal model resolution dependency is examined by contrasting coarse-grid (80 km) and convection-permitting (2.5 km) simulations. While our simulated ETCs are primarily baroclinically driven, dominated by the horizontal warm-air advection in the air column above the surface low, such an effect only strengthens by 10% in both warming experiments. However, the direct contribution of diabatic heating to surface pressure drop almost doubles, which likely feeds back positively to horizontal warm-air advection. Although their combined response to warming is pronounced, it is largely offset by the strengthened adiabatic cooling (17%) due to enhanced upward motions in warmer and moister ETCs, leading to a marginal ETC deepening at maturity (lowers by ~ 1.5–4 hPa). Nevertheless, the near-surface impacts strongly increase, particularly the local extreme precipitation (up to 56%). The convection-permitting and the coarse-grid simulations show qualitatively consistent ETC responses to global warming. We suggest that the systematically weaker ETCs (with higher central pressure) in 2.5 km compared to 80 km simulations might be primarily caused by model uncertainty in representing the convective-diabatic heating over the warm front near the cyclone core.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"3 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Northern hemisphere land-atmosphere feedback from prescribed plant phenology in CESM 从 CESM 中规定的植物物候学看北半球陆地-大气反馈
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-01 DOI: 10.1175/jcli-d-23-0179.1
Xiaolu Li, Toby Ault, Andrew D. Richardson, Steve Frolking, Dimitris A. Herrera, Mark A. Friedl, Carlos M. Carrillo, Colin P. Evans
Abstract Plant phenology influences both the terrestrial carbon cycle and land-atmosphere interactions, and therefore can potentially modify large-scale circulations in the atmosphere. However, considerable discrepancies are present among models and between model simulations and observations of plant phenology, adding large uncertainties to future climate projections. Here we modified plant phenology in the Northern Hemisphere in the Community Earth System Model and conducted simulations to characterize how differences in plant phenology influence land-atmosphere coupling. Plant phenology changes the land surface and land-atmosphere interactions by directly modulating absorbed solar radiation and evapotranspiration and indirectly modifying cloud feedback and snow-albedo feedback. Over the Northern Hemisphere, the largest effects occur from March to June when seasonal deciduous phenology is modified from satellite-derived values to model simulations, which results in a >3K increase in surface temperature that propagates to 500hPa (~5km height). Phenology-induced changes in canopy evapotranspiration and surface temperature depend on soil moisture availability during the growing season. Surface temperature decreases significantly due to increasing latent heat flux and cloud reflection where soil moisture is abundant, while soil moisture control over evapotranspiration increases and surface temperature remains little-changed or even increases in more arid regions. Characterizing the influence of phenology on biogeophysical processes is critical, as significant impacts are present both at the land surface and in the atmospheric layers above.
摘要 植物物候既影响陆地碳循环,也影响陆地-大气相互作用,因此有可能改变大气中的大尺度环流。然而,模型之间以及模型模拟与植物物候观测之间存在相当大的差异,给未来气候预测增加了很大的不确定性。在此,我们修改了群落地球系统模式中北半球的植物物候,并进行了模拟,以描述植物物候的差异如何影响陆地-大气耦合。植物物候通过直接调节吸收的太阳辐射和蒸散量以及间接调节云反馈和雪-反照率反馈,改变了陆地表面和陆地-大气相互作用。在北半球,最大的影响发生在 3 月至 6 月,此时季节性落叶物候从卫星推导值到模式模拟值都发生了变化,导致地表温度上升大于 3K,并传播到 500hPa(约 5km 高度)。物候引起的冠层蒸散量和地表温度变化取决于生长季节的土壤水分供应情况。在土壤水分充足的地区,由于潜热通量和云反射的增加,地表温度会明显下降;而在较为干旱的地区,土壤水分对蒸散量的控制会增强,地表温度变化不大,甚至会升高。表征物候对生物地球物理过程的影响至关重要,因为它对地表和大气层都有重大影响。
{"title":"Northern hemisphere land-atmosphere feedback from prescribed plant phenology in CESM","authors":"Xiaolu Li, Toby Ault, Andrew D. Richardson, Steve Frolking, Dimitris A. Herrera, Mark A. Friedl, Carlos M. Carrillo, Colin P. Evans","doi":"10.1175/jcli-d-23-0179.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0179.1","url":null,"abstract":"Abstract Plant phenology influences both the terrestrial carbon cycle and land-atmosphere interactions, and therefore can potentially modify large-scale circulations in the atmosphere. However, considerable discrepancies are present among models and between model simulations and observations of plant phenology, adding large uncertainties to future climate projections. Here we modified plant phenology in the Northern Hemisphere in the Community Earth System Model and conducted simulations to characterize how differences in plant phenology influence land-atmosphere coupling. Plant phenology changes the land surface and land-atmosphere interactions by directly modulating absorbed solar radiation and evapotranspiration and indirectly modifying cloud feedback and snow-albedo feedback. Over the Northern Hemisphere, the largest effects occur from March to June when seasonal deciduous phenology is modified from satellite-derived values to model simulations, which results in a >3K increase in surface temperature that propagates to 500hPa (~5km height). Phenology-induced changes in canopy evapotranspiration and surface temperature depend on soil moisture availability during the growing season. Surface temperature decreases significantly due to increasing latent heat flux and cloud reflection where soil moisture is abundant, while soil moisture control over evapotranspiration increases and surface temperature remains little-changed or even increases in more arid regions. Characterizing the influence of phenology on biogeophysical processes is critical, as significant impacts are present both at the land surface and in the atmospheric layers above.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"32 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atmospheric rivers in East Asia summer as the continuum of extratropical and monsoonal moisture plumes 东亚夏季大气河流是外热带和季风水汽羽流的连续体
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-06-28 DOI: 10.1175/jcli-d-23-0731.1
Chanil Park, Seok-Woo Son
Abstract East Asian atmospheric rivers (ARs) exhibit the most pronounced activity in summer with significant impacts on monsoon rainfall. However, their detailed characteristics from a synoptic perspective are yet to be revealed. In this study, we unravel the inherently complex nature of East Asian summer ARs by applying a multiscale index that quantifies the relative importance of high- (HF) and low-frequency (LF) moisture transports in AR development. It is found that both HF and LF processes contribute to shaping the summertime ARs in East Asia, contrasting to the wintertime ARs dominated by HF processes. Stratification of ARs with the multiscale index reveals that HF-dominant ARs are driven by baroclinically-deepening extratropical cyclones, analogous to the widely-accepted definition of canonical ARs. In contrast, LF-dominant ARs result from enhanced monsoon southwesterly between a quasi-stationary cyclone and anticyclone with the latter being the anomalous expansion of the western North Pacific subtropical high, reminiscent of the classical monsoon rainband. While HF-dominant ARs are transient, LF-dominant ARs are quasi-stationary with a higher potential for prolonged local impacts. The intermediate ARs, constituting a majority of East Asian summer ARs, exhibit synoptic conditions that combine HF- and LF-dominant ARs. Therefore, East Asian summer ARs cannot be explained by a single mechanism but should be considered as a continuum of extratropical cyclone-induced and fluctuating monsoon flow-induced moisture plumes. This finding would serve as a base for the advanced understanding of hydrological impacts, variability, and projected change of East Asian ARs.
摘要 东亚大气河流(ARs)在夏季表现出最明显的活动,对季风降雨有重大影响。然而,从同步角度来看,它们的详细特征尚待揭示。在本研究中,我们采用了一种多尺度指数,量化了高频(HF)和低频(LF)水汽输送在 AR 发展过程中的相对重要性,从而揭示了东亚夏季 AR 的内在复杂性。研究发现,高频和低频过程都有助于形成东亚夏季的大气环流,这与高频过程主导的冬季大气环流形成鲜明对比。用多尺度指数对ARs进行分层显示,高频主导的ARs是由气压加深的外热带气旋驱动的,这与广泛接受的典型ARs定义相似。与此相反,LF 主导的自回归现象是由准静止气旋和反气旋之间增强的季风西南气流造成的,后者是北太平洋西部副热带高压的异常扩张,让人联想到经典的季风雨带。以高频为主的反气旋是短暂的,而以低频为主的反气旋则是准静止的,更有可能对局部地区造成长期影响。构成东亚夏季季候风大部分的中间型季候风表现出结合高频和低频主导型季候风的同步条件。因此,东亚夏季气旋不能用单一机制来解释,而应将其视为外热带气旋诱发和季风气流诱发水汽羽流波动的连续体。这一发现将为进一步了解东亚夏季气旋的水文影响、变异性和预测变化提供基础。
{"title":"Atmospheric rivers in East Asia summer as the continuum of extratropical and monsoonal moisture plumes","authors":"Chanil Park, Seok-Woo Son","doi":"10.1175/jcli-d-23-0731.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0731.1","url":null,"abstract":"Abstract East Asian atmospheric rivers (ARs) exhibit the most pronounced activity in summer with significant impacts on monsoon rainfall. However, their detailed characteristics from a synoptic perspective are yet to be revealed. In this study, we unravel the inherently complex nature of East Asian summer ARs by applying a multiscale index that quantifies the relative importance of high- (HF) and low-frequency (LF) moisture transports in AR development. It is found that both HF and LF processes contribute to shaping the summertime ARs in East Asia, contrasting to the wintertime ARs dominated by HF processes. Stratification of ARs with the multiscale index reveals that HF-dominant ARs are driven by baroclinically-deepening extratropical cyclones, analogous to the widely-accepted definition of canonical ARs. In contrast, LF-dominant ARs result from enhanced monsoon southwesterly between a quasi-stationary cyclone and anticyclone with the latter being the anomalous expansion of the western North Pacific subtropical high, reminiscent of the classical monsoon rainband. While HF-dominant ARs are transient, LF-dominant ARs are quasi-stationary with a higher potential for prolonged local impacts. The intermediate ARs, constituting a majority of East Asian summer ARs, exhibit synoptic conditions that combine HF- and LF-dominant ARs. Therefore, East Asian summer ARs cannot be explained by a single mechanism but should be considered as a continuum of extratropical cyclone-induced and fluctuating monsoon flow-induced moisture plumes. This finding would serve as a base for the advanced understanding of hydrological impacts, variability, and projected change of East Asian ARs.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"26 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remote Forcing for Circulation Pattern Favorable to Surface Melt over the Ross Ice Shelf 罗斯冰架上有利于地表融化的环流模式的遥感影响
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-06-27 DOI: 10.1175/jcli-d-23-0120.1
Yingfei Fang, Song Yang, Xiaoming Hu, Shuheng Lin, James A. Screen, Shangfeng Chen
Abstract The Ross Ice Shelf (RIS) experiences surface melt events in summer, which could accelerate ice loss and destabilize the ice sheet in a warming world. This study links the interannual variability of RIS surface melt to the northerly wind anomaly over the Ross Sea sector, which is established in association with the quasi-geostrophic barotropic Rossby wave trains from the tropical Pacific and subtropical Australia toward West Antarctica. Atmospheric general circulation model experiments suggest that these Rossby wave trains are regulated by El Niño-related sea surface temperature (SST) anomalies in the tropical central-eastern Pacific and atmospheric heating anomalies over western Australia. El Niño provides an important forcing of the atmospheric circulation anomalies over the Ross Sea via inducing a Rossby wave train, and most surface melt events over the RIS happen during El Niño years. In addition, the anomalous atmospheric heating over western Australia, which is independent of El Niño, is another important forcing that triggers a Rossby wave train extending from subtropical Australia to Ross Sea. The northerly flow towards the Ross Sea induces strong poleward moisture and heat transport, which further contributes to surface melt over the RIS.
摘要 罗斯冰架(Ross Ice Shelf,RIS)在夏季会出现表面融化现象,在气候变暖的情况下,这可能会加速冰的流失并破坏冰层的稳定。这项研究将罗斯冰架表面融化的年际变化与罗斯海区域的偏北风异常联系起来,而偏北风异常是与从热带太平洋和亚热带澳大利亚向南极洲西部的准地转偏压罗斯比波列联系在一起的。大气环流模式实验表明,这些罗斯比波列受热带中东太平洋与厄尔尼诺有关的海面温度(SST)异常和澳大利亚西部大气加热异常的调节。厄尔尼诺现象通过诱导罗斯海上空的罗斯比波列,为罗斯海上空的大气环流异常提供了重要的动力,而罗斯海上空的大部分地表融化事件都发生在厄尔尼诺年份。此外,与厄尔尼诺现象无关的澳大利亚西部大气异常增温也是引发从澳大利亚亚热带延伸到罗斯海的罗斯比波列的另一个重要因素。流向罗斯海的偏北气流诱发了强烈的极向水汽和热量输送,进一步促进了 RIS 上的地表融化。
{"title":"Remote Forcing for Circulation Pattern Favorable to Surface Melt over the Ross Ice Shelf","authors":"Yingfei Fang, Song Yang, Xiaoming Hu, Shuheng Lin, James A. Screen, Shangfeng Chen","doi":"10.1175/jcli-d-23-0120.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0120.1","url":null,"abstract":"Abstract The Ross Ice Shelf (RIS) experiences surface melt events in summer, which could accelerate ice loss and destabilize the ice sheet in a warming world. This study links the interannual variability of RIS surface melt to the northerly wind anomaly over the Ross Sea sector, which is established in association with the quasi-geostrophic barotropic Rossby wave trains from the tropical Pacific and subtropical Australia toward West Antarctica. Atmospheric general circulation model experiments suggest that these Rossby wave trains are regulated by El Niño-related sea surface temperature (SST) anomalies in the tropical central-eastern Pacific and atmospheric heating anomalies over western Australia. El Niño provides an important forcing of the atmospheric circulation anomalies over the Ross Sea via inducing a Rossby wave train, and most surface melt events over the RIS happen during El Niño years. In addition, the anomalous atmospheric heating over western Australia, which is independent of El Niño, is another important forcing that triggers a Rossby wave train extending from subtropical Australia to Ross Sea. The northerly flow towards the Ross Sea induces strong poleward moisture and heat transport, which further contributes to surface melt over the RIS.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"2016 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using the observed variations of the start date of the rainy season over Central America for its reliable seasonal outlook 利用观测到的中美洲雨季开始日期的变化进行可靠的季节展望
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-06-26 DOI: 10.1175/jcli-d-23-0699.1
Joanna Rodgers, Vasubandhu Misra, C. B. Jayasankar
Abstract We introduce a simple method to define the start and the end of the rainiest part of the year as the first and the last day of the year when the daily rain rate is more or less than the annual mean climatological rain rate for a region or at a given grid point of the rainfall analysis, respectively. A novelty of this work is the adoption of a perturbation technique to generate a total of 1001 ensemble members to account for observational and analysis uncertainties. This allows for a probabilistic estimate of the start and retreat dates of the rainy season at the granularity of the Integrated Multi-Satellite Retrievals for Global Precipitation Mission version 6 (IMERG) rainfall analysis over Central America. The seasonal cycle of the IMERG rainfall analysis is also found to verify with in situ observations in the region. Many large scale climate drivers affect regional rainfall, often with complex interactions that affect the onset date, retreat date, and magnitude of the seasonal rainfall cycle, making it difficult to predict the length or total quantity of seasonal rainfall using climate drivers alone. Once an onset date is established, however, this metric alone can be more indicative of both the length and total seasonal rainfall anomaly than predicting how the climate drivers will interact to affect the quantity and duration of upcoming seasonal rainfall. The local relationships of the start date with seasonal length and rainfall anomaly are leveraged to produce effective seasonal outlooks of the rainy season for the region by just monitoring the start date variations.
摘要 我们介绍了一种简单的方法,将一年中雨量最多的时段的开始和结束分别定义为某地区或降雨分析给定网格点的日降雨量大于或小于气候学年平均降雨量的第一天和最后一天。这项工作的一个新颖之处是采用了扰动技术,生成总共 1001 个集合成员,以考虑观测和分析的不确定性。这样就可以在中美洲全球降水任务多卫星综合检索第六版(IMERG)降雨分析的粒度上对雨季的开始和结束日期进行概率估计。IMERG 降水分析的季节周期也与该地区的实地观测结果相吻合。影响区域降雨的大尺度气候驱动因素很多,通常会产生复杂的相互作用,影响季节性降雨周期的开始日期、消退日期和降雨量,因此很难仅凭气候驱动因素预测季节性降雨的长度或总量。然而,一旦确定了起始日期,仅凭这一指标就能更好地反映季节性降雨异常的长度和总量,而不是预测气候驱动因素将如何相互作用以影响即将到来的季节性降雨的数量和持续时间。利用开始日期与季节长度和降雨异常的局部关系,只需监测开始日期的变化,就能对该地区的雨季做出有效的季节性展望。
{"title":"Using the observed variations of the start date of the rainy season over Central America for its reliable seasonal outlook","authors":"Joanna Rodgers, Vasubandhu Misra, C. B. Jayasankar","doi":"10.1175/jcli-d-23-0699.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0699.1","url":null,"abstract":"Abstract We introduce a simple method to define the start and the end of the rainiest part of the year as the first and the last day of the year when the daily rain rate is more or less than the annual mean climatological rain rate for a region or at a given grid point of the rainfall analysis, respectively. A novelty of this work is the adoption of a perturbation technique to generate a total of 1001 ensemble members to account for observational and analysis uncertainties. This allows for a probabilistic estimate of the start and retreat dates of the rainy season at the granularity of the Integrated Multi-Satellite Retrievals for Global Precipitation Mission version 6 (IMERG) rainfall analysis over Central America. The seasonal cycle of the IMERG rainfall analysis is also found to verify with in situ observations in the region. Many large scale climate drivers affect regional rainfall, often with complex interactions that affect the onset date, retreat date, and magnitude of the seasonal rainfall cycle, making it difficult to predict the length or total quantity of seasonal rainfall using climate drivers alone. Once an onset date is established, however, this metric alone can be more indicative of both the length and total seasonal rainfall anomaly than predicting how the climate drivers will interact to affect the quantity and duration of upcoming seasonal rainfall. The local relationships of the start date with seasonal length and rainfall anomaly are leveraged to produce effective seasonal outlooks of the rainy season for the region by just monitoring the start date variations.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"151 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The attribution of February extremes over North America: A forecast-based storyline study 北美二月极端天气的归因:基于预测的故事情节研究
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-06-26 DOI: 10.1175/jcli-d-24-0074.1
Donghyun Lee, Sarah Sparrow, Nicholas Leach, Scott Osprey, Jinah Lee, Myles Allen
Abstract The importance of extreme event attribution rises as climate change causes severe damage to populations resulting from unprecedented events. In February 2019, a planetary wave shifted along the U.S.-Canadian border, simultaneously leading to troughing with anomalous cold events and ridging over Alaska and northern Canada with abnormal warm events. Also, a dry-stabilized anticyclonic circulation over low latitudes induced warm extreme events over Mexico and U.S. Florida. Most attribution studies compare the climate model simulations under natural or actual forcing conditions and assess probabilistically from a climatological point of view. However, in this study, we use multiple ensembles from an operational forecast model, promising statistical as well as dynamically constrained attribution assessment, often referred to as the storyline approach to extreme event attribution. In the globally averaged results, increasing CO2 concentrations lead to distinct warming signals at the surface, resulting mainly from diabatic heating. Our study finds that CO2-induced warming eventually affects the possibility of extreme events in North America, quantifying the impact of anthropogenic forcing over less than a week’s forecast simulation. Our study assesses the validity of the storyline approach conditional on the forecast lead times, which is hindered by rising noise in CO2 signals and the declining performance of the forecast model. The forecast-based storyline approach is valid for at least half of the land area within a six-day lead time before the target extreme occurrence. Our attribution results highlight the importance of achieving net-zero emissions ahead of schedule to reduce the occurrence of severe heatwaves.
摘要 随着气候变化导致前所未有的事件对人口造成严重损害,极端事件归因的重要性也随之上升。2019 年 2 月,行星波沿美加边境移动,同时导致低谷和异常寒冷事件,以及阿拉斯加和加拿大北部的脊状异常温暖事件。此外,低纬度地区干燥稳定的反气旋环流也在墨西哥和美国佛罗里达州诱发了暖极端事件。大多数归因研究都是比较自然或实际强迫条件下的气候模式模拟,并从气候学角度进行概率评估。然而,在本研究中,我们使用了运行预报模式的多个集合,有望进行统计和动态约束的归因评估,这通常被称为极端事件归因的故事情节方法。在全球平均结果中,二氧化碳浓度的增加会导致地表出现明显的变暖信号,这主要是由绝热加热造成的。我们的研究发现,二氧化碳引起的变暖最终会影响北美洲发生极端事件的可能性,在不到一周的预测模拟中量化了人为强迫的影响。我们的研究评估了以预测前置时间为条件的故事情节方法的有效性,二氧化碳信号的噪声上升和预测模型性能的下降阻碍了故事情节方法的有效性。在目标极端事件发生前的六天准备时间内,基于预测的故事情节方法至少对一半的陆地面积有效。我们的归因结果凸显了提前实现净零排放对减少严重热浪发生的重要性。
{"title":"The attribution of February extremes over North America: A forecast-based storyline study","authors":"Donghyun Lee, Sarah Sparrow, Nicholas Leach, Scott Osprey, Jinah Lee, Myles Allen","doi":"10.1175/jcli-d-24-0074.1","DOIUrl":"https://doi.org/10.1175/jcli-d-24-0074.1","url":null,"abstract":"Abstract The importance of extreme event attribution rises as climate change causes severe damage to populations resulting from unprecedented events. In February 2019, a planetary wave shifted along the U.S.-Canadian border, simultaneously leading to troughing with anomalous cold events and ridging over Alaska and northern Canada with abnormal warm events. Also, a dry-stabilized anticyclonic circulation over low latitudes induced warm extreme events over Mexico and U.S. Florida. Most attribution studies compare the climate model simulations under natural or actual forcing conditions and assess probabilistically from a climatological point of view. However, in this study, we use multiple ensembles from an operational forecast model, promising statistical as well as dynamically constrained attribution assessment, often referred to as the storyline approach to extreme event attribution. In the globally averaged results, increasing CO2 concentrations lead to distinct warming signals at the surface, resulting mainly from diabatic heating. Our study finds that CO2-induced warming eventually affects the possibility of extreme events in North America, quantifying the impact of anthropogenic forcing over less than a week’s forecast simulation. Our study assesses the validity of the storyline approach conditional on the forecast lead times, which is hindered by rising noise in CO2 signals and the declining performance of the forecast model. The forecast-based storyline approach is valid for at least half of the land area within a six-day lead time before the target extreme occurrence. Our attribution results highlight the importance of achieving net-zero emissions ahead of schedule to reduce the occurrence of severe heatwaves.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"6 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppression of cold air outbreaks over the interior of North America in a warmer climate 在气候变暖的情况下抑制冷空气在北美内陆爆发
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-06-25 DOI: 10.1175/jcli-d-23-0477.1
Kara Hartig, Eli Tziperman
Abstract In spite of the mean warming trend over the last few decades and its amplification in the Arctic, some studies have found no robust decline or even a slight increase in wintertime cold air outbreaks over North America. But fossil evidence from warmer paleoclimate periods indicates that the interior of North America never dropped below freezing even in the depths of winter, which implies that the maintenance of cold air outbreaks is unlikely to continue indefinitely with future warming. To identify key mechanisms affecting cold air outbreaks and understand how and why they will change in a warmer climate, we examine the development of North American cold air outbreaks in both a pre-industrial and a roughly 8×CO2 scenario using the Community Earth System Model, CESM2. We observe a sharp drop-off in the wintertime temperature distribution at the freezing temperature, suppressing below-freezing conditions in the warmer climate and above-freezing conditions in the pre-industrial case. The disappearance of Arctic sea ice and loss of the near-surface temperature inversion dramatically decrease the availability of below-freezing air in source regions. Using an air parcel trajectory analysis, we demonstrate a remarkable similarity in both the dynamics and diabatic effects acting on cold air masses in the two climate scenarios. Diabatic temperature evolution along cold air outbreak trajectories is a competition between cooling from longwave radiation and warming from boundary layer mixing. Surprisingly, while both diabatic effects strengthen in the warmer climate, the balance remains the same, with a net cooling of about −6 K over 10 days.
摘要 尽管在过去几十年里平均气温呈上升趋势并在北极地区有所扩大,但一些研究发现北美地区冬季冷空气爆发并没有明显减少,甚至略有增加。但来自较暖古气候时期的化石证据表明,即使在深冬时节,北美洲内陆地区的气温也从未降至零度以下,这意味着随着未来气候变暖,冷空气爆发现象不太可能无限期地持续下去。为了确定影响冷空气爆发的关键机制,并了解在气候变暖的情况下冷空气爆发将如何以及为何发生变化,我们利用群落地球系统模型 CESM2 研究了工业化前和大约 8×CO2 情景下北美冷空气爆发的发展情况。我们观察到冬季气温分布在冰点温度时急剧下降,在气候变暖的情况下抑制了冰点以下的情况,而在工业化前的情况下则抑制了冰点以上的情况。北极海冰的消失和近地面温度反转的消失极大地减少了冰点以下空气在源区的可用性。通过空气包裹轨迹分析,我们证明了在两种气候情景下,冷空气团的动力学和二重效应具有显著的相似性。沿冷空气爆发轨迹的二重温度演变是长波辐射降温和边界层混合升温之间的竞争。令人惊讶的是,虽然在较暖的气候条件下这两种减热效应都会增强,但平衡却保持不变,10 天内净降温约 -6 K。
{"title":"Suppression of cold air outbreaks over the interior of North America in a warmer climate","authors":"Kara Hartig, Eli Tziperman","doi":"10.1175/jcli-d-23-0477.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0477.1","url":null,"abstract":"Abstract In spite of the mean warming trend over the last few decades and its amplification in the Arctic, some studies have found no robust decline or even a slight increase in wintertime cold air outbreaks over North America. But fossil evidence from warmer paleoclimate periods indicates that the interior of North America never dropped below freezing even in the depths of winter, which implies that the maintenance of cold air outbreaks is unlikely to continue indefinitely with future warming. To identify key mechanisms affecting cold air outbreaks and understand how and why they will change in a warmer climate, we examine the development of North American cold air outbreaks in both a pre-industrial and a roughly 8×CO2 scenario using the Community Earth System Model, CESM2. We observe a sharp drop-off in the wintertime temperature distribution at the freezing temperature, suppressing below-freezing conditions in the warmer climate and above-freezing conditions in the pre-industrial case. The disappearance of Arctic sea ice and loss of the near-surface temperature inversion dramatically decrease the availability of below-freezing air in source regions. Using an air parcel trajectory analysis, we demonstrate a remarkable similarity in both the dynamics and diabatic effects acting on cold air masses in the two climate scenarios. Diabatic temperature evolution along cold air outbreak trajectories is a competition between cooling from longwave radiation and warming from boundary layer mixing. Surprisingly, while both diabatic effects strengthen in the warmer climate, the balance remains the same, with a net cooling of about −6 K over 10 days.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"149 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indian summer monsoon precipitation dominates the reproduction of Circumglobal teleconnection pattern: A comparison of CMIP5 and CMIP6 models 印度夏季季风降水在再现环全球网模式中占主导地位:CMIP5 和 CMIP6 模型的比较
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-06-24 DOI: 10.1175/jcli-d-23-0644.1
Hanzhao Yu, Tianjun Zhou, Linqiang He
Abstract The zonal wavenumber-5 circumglobal teleconnection pattern (CGT) is one of the most critical atmospheric teleconnection patterns during boreal summer over the Northern Hemisphere (NH). CGT can exert significant climatic impact across NH including Europe, East Asia and North America but how reliable coupled climate models simulate the characteristics of CGT is poorly understood. Here, twenty coupled models with their respective versions in Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP6 are selected to evaluate their performance on CGT simulation. We find that while both CMIP5 and CMIP6 models are able to capture the basic features of CGT in multi-model mean (MMM), there are large inter-model discrepancies in the simulation of CGT pattern among CMIP5 and CMIP6 models. High-skill models exhibit strong action center over west-central Asia, coinciding with the pattern derived from reanalysis, while the corresponding action center in low-skill models are weaker. Further analyses demonstrate that high-skill models are capable of simulating more realistic Indian Summer Monsoon (ISM) precipitation anomalies related to CGT. The resultant anomalous upper-tropospheric divergence over west-central Asia, acting as a Rossby wave source, can therefore excite the above-mentioned action center. This high- and low-skill model difference on CGT-ISM relationship is consistent in both CMIP5 and CMIP6. It is also found that high-skill models tend to simulate more realistic CGT-ENSO relationship. The relationship between simulation skills of CGT-ENSO correlation and CGT spatial pattern is attributed to the remote impact of ENSO on CGT wavetrain through affecting ISM precipitation anomalies.
摘要 第 5 波段环流遥连接模式(CGT)是北半球(NH)寒带夏季最关键的大气遥连接模式之一。CGT可对包括欧洲、东亚和北美在内的整个北半球产生重大气候影响,但人们对耦合气候模式如何可靠地模拟CGT的特征知之甚少。本文选取了耦合模式相互比较项目第五阶段(CMIP5)和第六阶段(CMIP6)的 20 个耦合模式,以评估它们在模拟 CGT 方面的性能。我们发现,虽然CMIP5和CMIP6模型都能捕捉到多模型平均值(MMM)中CGT的基本特征,但CMIP5和CMIP6模型在模拟CGT模式时存在较大的模型间差异。高技能模式在亚洲中西部上空表现出较强的作用中心,与再分析得出的模式相吻合,而低技能模式中相应的作用中心则较弱。进一步的分析表明,高技能模式能够模拟与 CGT 有关的更真实的印度夏季季风(ISM)降水异常。因此,在亚洲中西部上空产生的异常对流层上层辐散作为罗斯比波源,可以激发上述作用中心。这种高低技能模式在 CGT-ISM 关系上的差异在 CMIP5 和 CMIP6 中都是一致的。研究还发现,高技能模型倾向于模拟更真实的 CGT-ENSO 关系。CGT-ENSO相关性模拟技能与CGT空间模式之间的关系,归因于厄尔尼诺/南方涛动通过影响ISM降水异常对CGT波系的远距离影响。
{"title":"Indian summer monsoon precipitation dominates the reproduction of Circumglobal teleconnection pattern: A comparison of CMIP5 and CMIP6 models","authors":"Hanzhao Yu, Tianjun Zhou, Linqiang He","doi":"10.1175/jcli-d-23-0644.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0644.1","url":null,"abstract":"Abstract The zonal wavenumber-5 circumglobal teleconnection pattern (CGT) is one of the most critical atmospheric teleconnection patterns during boreal summer over the Northern Hemisphere (NH). CGT can exert significant climatic impact across NH including Europe, East Asia and North America but how reliable coupled climate models simulate the characteristics of CGT is poorly understood. Here, twenty coupled models with their respective versions in Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP6 are selected to evaluate their performance on CGT simulation. We find that while both CMIP5 and CMIP6 models are able to capture the basic features of CGT in multi-model mean (MMM), there are large inter-model discrepancies in the simulation of CGT pattern among CMIP5 and CMIP6 models. High-skill models exhibit strong action center over west-central Asia, coinciding with the pattern derived from reanalysis, while the corresponding action center in low-skill models are weaker. Further analyses demonstrate that high-skill models are capable of simulating more realistic Indian Summer Monsoon (ISM) precipitation anomalies related to CGT. The resultant anomalous upper-tropospheric divergence over west-central Asia, acting as a Rossby wave source, can therefore excite the above-mentioned action center. This high- and low-skill model difference on CGT-ISM relationship is consistent in both CMIP5 and CMIP6. It is also found that high-skill models tend to simulate more realistic CGT-ENSO relationship. The relationship between simulation skills of CGT-ENSO correlation and CGT spatial pattern is attributed to the remote impact of ENSO on CGT wavetrain through affecting ISM precipitation anomalies.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"27 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnosis of atmospheric processes from a local perspective for the western North Pacific summer monsoon onset 从局部角度诊断北太平洋西部夏季季风开始时的大气过程
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-06-24 DOI: 10.1175/jcli-d-23-0533.1
Sining Ling, Riyu Lu
Abstract The climatological western North Pacific summer monsoon onset, so called convection jump, occurs around 41th pentad, corresponding to an abrupt northeastward extension of strong convection. This study investigates the process of convection jump from a local perspective. Composite analyses are performed based on the onset dates that are identified in individual years. The results show that the convective inhibition (CIN) decreases dramatically around the onset dates, while the convective available potential energy (CAPE) reaches its maximum long before the onset, suggesting that the CIN, rather than CAPE, plays a dominant role in triggering convection. Further analysis indicates that the reduction of CIN is induced by the increased low-lever relative humidity, which is the result of enhanced water vapor convergence. The moisture transportation is primarily contributed by the wind transfer from easterlies to southeasterlies or southerlies along the southern boundary of convection jump region, in accordance with the monsoon trough establishment. The present observational results may be used to evaluate climate models in simulating stepwise evolution of summer monsoon.
摘要 气候学上北太平洋西部夏季季风的开始,即所谓的对流跃变,发生在第 41 个五分位点前后,与强对流突然向东北方向延伸相对应。本研究从局部角度研究了对流跃变的过程。根据各年确定的对流跃变发生日期进行了综合分析。结果表明,对流抑制(CIN)在对流发生日前后急剧下降,而对流可用势能(CAPE)早在对流发生前就达到了最大值,这表明在引发对流的过程中起主导作用的是对流抑制,而不是对流可用势能。进一步的分析表明,CIN 的降低是由于低纬相对湿度的增加引起的,而相对湿度的增加则是水汽辐合增强的结果。水汽输送主要是由对流跃迁区南部边界的东风向东南风或偏南风转移,与季风槽的形成相一致。本观测结果可用于评估模拟夏季季风逐步演变的气候模式。
{"title":"Diagnosis of atmospheric processes from a local perspective for the western North Pacific summer monsoon onset","authors":"Sining Ling, Riyu Lu","doi":"10.1175/jcli-d-23-0533.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0533.1","url":null,"abstract":"Abstract The climatological western North Pacific summer monsoon onset, so called convection jump, occurs around 41th pentad, corresponding to an abrupt northeastward extension of strong convection. This study investigates the process of convection jump from a local perspective. Composite analyses are performed based on the onset dates that are identified in individual years. The results show that the convective inhibition (CIN) decreases dramatically around the onset dates, while the convective available potential energy (CAPE) reaches its maximum long before the onset, suggesting that the CIN, rather than CAPE, plays a dominant role in triggering convection. Further analysis indicates that the reduction of CIN is induced by the increased low-lever relative humidity, which is the result of enhanced water vapor convergence. The moisture transportation is primarily contributed by the wind transfer from easterlies to southeasterlies or southerlies along the southern boundary of convection jump region, in accordance with the monsoon trough establishment. The present observational results may be used to evaluate climate models in simulating stepwise evolution of summer monsoon.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"12 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Climate
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1