The COVID-19 pandemic generated interest in the medicinal applications of messenger RNA (mRNA). It is expected that mRNA will be applied, not only to vaccines, but also to regenerative medicine. The purity of mRNA is important for its medicinal applications. However, the current mRNA synthesis techniques exhibit problems, including the contamination of undesired 5'-uncapped mRNA and double-stranded RNA. Recently, our group developed a completely capped mRNA synthesis technology that contributes to the progress of mRNA research. The introduction of chemically modified nucleosides, such as N1-methylpseudouridine and 5-methylcytidine, has been reported by Karikó and Weissman, opening a path for the practical application of mRNA for vaccines and regenerative medicine. Yamanaka reported the production of induced pluripotent stem cells (iPSCs) by introducing four types of genes using a retrovirus vector. iPSCs are widely used for research on regenerative medicine and the preparation of disease models to screen new drug candidates. Among the Yamanaka factors, Klf4 and c-Myc are oncogenes, and there is a risk of tumor development if these are integrated into genomic DNA. Therefore, regenerative medicine using mRNA, which poses no risk of genome insertion, has attracted attention. In this review, the author summarizes techniques for synthesizing mRNA and its application in regenerative medicine.
The aim of this study was to provide the first systematic description of human placental cytology appearances and to investigate syncytiotrophoblast nuclear organisation patterns using cytology techniques. Term placentas from normal pregnancies were sampled using fine-needle aspiration (FNA) and direct scrapes. Standard histological examination was also performed to exclude pathological changes in the placentas being studied. Both Papanicolaou-stained cytospin preparations and air-dried Giemsa slides from FNA provided high-quality material for cytological assessment with good cellularity. Among the key features of the cytology preparations were villous "microbiopsies" that allowed for the three-dimensional appreciation of villous branching patterns. Cytological appearances, including nuclear characteristics of villous cytotrophoblast and syncytiotrophoblast, were also well demonstrated. In microbiopsies and detached villous trophoblast sheets, complex patterns of syncytiotrophoblast nuclear organisation, not previously described cytologically, were observed, including irregular spacing of nuclei, syncytioplasm windows and linear nuclear arrangements. This study showed that placental cytology (a) provides technically excellent material for cytological evaluation, (b) confirms the presence of complex nuclear organisational patterns in the syncytiotrophoblast by eliminating the possibility of tangential sectioning artefact, (c) provides superior nuclear detail over standard histological sections and (d) may be an untapped research resource for the investigation of normal and pathological processes because of its ability to look at the placenta in a novel way and through its potential for both ex vivo and in vivo placental sampling.
A properly organized subcellular composition is essential to cell function. The canonical organizing principle within eukaryotic cells involves membrane-bound organelles; yet, such structures do not fully explain cellular complexity. Furthermore, discrete non-membrane-bound structures have been known for over a century. Liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mode of cellular organization without the need for formal lipid membranes, with an ever-expanding and diverse list of cellular functions that appear to be regulated by this process. In comparison to traditional organelles, LLPS can occur across wider spatial and temporal scales and involves more distinct protein and RNA complexes. In this review, we discuss the impacts of LLPS on the organization of stem cells and their function during development. Specifically, the roles of LLPS in developmental signaling pathways, chromatin organization, and gene expression will be detailed, as well as its impacts on essential processes of asymmetric cell division. We will also discuss how the dynamic and regulated nature of LLPS may afford stem cells an adaptable mode of organization throughout the developmental time to control cell fate. Finally, we will discuss how aberrant LLPS in these processes may contribute to developmental defects and disease.
The karyosphere (karyosome) is a structure that forms in the oocyte nucleus-germinal vesicle (GV)-at the diplotene stage of meiotic prophase due to the assembly of all chromosomes in a limited portion of the GV. In some organisms, the karyosphere has an extrachromosomal external capsule, the marker protein of which is nuclear F-actin. Despite many years of theories about the formation of the karyosphere capsule (KC) in the GV of the common frog Rana temporaria, we present data that cast doubt on its existence, at least in this species. Specific extrachromosomal strands, which had been considered the main elements of the frog's KC, do not form a continuous layer around the karyosphere and, according to immunogold labeling, do not contain structural proteins, such as actin and lamin B. At the same time, F-actin is indeed noticeably concentrated around the karyosphere, creating the illusion of a capsule at the light microscopy/fluorescence level. The barrier-to-autointegration factor (BAF) and one of its functional partners-LEMD2, an inner nuclear membrane protein-are not localized in the strands, suggesting that the strands are not functional counterparts of the nuclear envelope. The presence of characteristic strands in the GV of R. temporaria late oocytes may reflect an excess of SMC1 involved in the structural maintenance of diplotene oocyte chromosomes at the karyosphere stage, since SMC1 has been shown to be the most abundant protein in the strands. Other characteristic microstructures-the so-called annuli, very similar in ultrastructure to the nuclear pore complexes-do not contain nucleoporins Nup35 and Nup93, and, therefore, they cannot be considered autonomous pore complexes, as previously thought. Taken together, our data indicate that traditional ideas about the existence of the R. temporaria KC as a special structural compartment of the GV are to be revisited.
Epidermal development is responsible for the formation of the outermost layer of the skin, the epidermis. The establishment of the epidermal barrier is a critical aspect of mammalian development. Proper formation of the epidermis, which is composed of stratified squamous epithelial cells, is essential for the survival of terrestrial vertebrates because it acts as a crucial protective barrier against external threats such as pathogens, toxins, and physical trauma. In mammals, epidermal development begins from the embryonic surface ectoderm, which gives rise to the basal layer of the epidermis. This layer undergoes a series of complex processes that lead to the formation of subsequent layers, including the stratum intermedium, stratum spinosum, stratum granulosum, and stratum corneum. The stratum corneum, which is the topmost layer of the epidermis, is formed by corneoptosis, a specialized form of cell death. This process involves the transformation of epidermal keratinocytes in the granular layer into flattened dead cells, which constitute the protective barrier. In this review, we focus on the intricate mechanisms that drive the development and establishment of the mammalian epidermis to gain insight into the complex processes that govern this vital biological system.
This review focuses on SARS-CoV-2 infection in placental and fetal tissues. Viremia is rare in infected pregnant women, and the virus is seldom amplified from placental tissues. Definite and probable placental infection requires the demonstration of viral RNA or proteins using in situ hybridization (ISH) and immunohistochemistry (IHC). Small subsets (1.0-7.9%, median 2.8%) of placentas of SARS-CoV-2-positive women showed definite infection accompanied by a characteristic histopathology named SARS-CoV-2 placentitis (SP). The conventionally accepted histopathological criteria for SP include the triad of intervillositis, perivillous fibrin deposition, and trophoblast necrosis. SP was shown to be independent of the clinical severity of the infection, but associated with stillbirth in cases where destructive lesions affecting more than 75% of the placental tissue resulted in placental insufficiency and severe fetal hypoxic-ischemic injury. An association between maternal thrombophilia and SP was shown in a subset of cases, suggesting a synergy of the infection and deficient coagulation cascade as one of the mechanisms of the pathologic accumulation of fibrin in affected placentas. The virus was amplified from fetal tissues in approximately 40% of SP cases, but definite fetal involvement demonstrated using ISH or IHC is exceptionally rare. The placental pathology in SARS-CoV-2-positive women also includes chronic lesions associated with placental malperfusion in the absence of definite or probable placental infection. The direct viral causation of the vascular malperfusion of the placenta in COVID-19 is debatable, and common predispositions (hypertension, diabetes, and obesity) may play a role.
Today, agriculture around the world is challenged by parasitic nematode infections. Plant-parasitic nematodes (PPNs) can cause significant damage and crop loss and are a threat to food security. For a long time, the management of PPN infection has relied on nematicides that impact not only parasitic nematodes but also other organisms. More recently, new nematicides have been developed that appear to specifically target PPN. Cyclobutrifluram belongs to this new category of nematicides. Using the nematode Caenorhabditis elegans as a model organism, we show here that cyclobutrifluram strongly impacts the survival and fertility rates of the worm by decreasing the number of germ cells. Furthermore, using a genetic approach, we demonstrate that cyclobutrifluram functions by inhibiting the mitochondrial succinate dehydrogenase (SDH) complex. Transcriptomic analysis revealed a strong response to cyclobutrifluram exposure. Among the deregulated genes, we found genes coding for detoxifying proteins, such as cytochrome P450s and UDP-glucuronosyl transferases (UGTs). Overall, our study contributes to the understanding of the molecular mode of action of cyclobutrifluram, to the finding of new approaches against nematicide resistance, and to the discovery of novel nematicides. Furthermore, this study confirms that C. elegans is a suitable model organism to study the mode of action of nematicides.