首页 > 最新文献

Journal of Developmental Biology最新文献

英文 中文
Proteomic Approaches to Unravel the Molecular Dynamics of Early Pregnancy in Farm Animals: An In-Depth Review 揭示农场动物早期妊娠分子动态的蛋白质组学方法:深入评述
IF 2.7 Q3 DEVELOPMENTAL BIOLOGY Pub Date : 2023-12-30 DOI: 10.3390/jdb12010002
Shradha Jamwal, M. Jena, Nikunj Tyagi, Sudhakar Kancharla, Prachetha Kolli, Gowtham Mandadapu, Sudarshan Kumar, A. K. Mohanty
Infertility is a major problem in farm animals, which has a negative economic effect on farm industries. Infertility can be defined as the inability of animals to achieve a successful pregnancy. Early pregnancy is crucial to establish a successful pregnancy, and it is reported that 70–80% and 20–30% of total embryonic loss occur in cattle and pigs, respectively, during the first month of pregnancy. The advanced high-throughput proteomics techniques provide valuable tools for in-depth understanding of the implantation process in farm animals. In the present review, our goal was to compile, assess, and integrate the latest proteomic research on farm animals, specifically focused on female reproduction, which involves endometrial tissues, uterine fluids, oviductal fluids, and microRNAs. The series of studies has provided in-depth insights into the events of the implantation process by unfolding the molecular landscape of the uterine tract. The discussed data are related to pregnant vs. non-pregnant animals, pregnancy vs. oestrous cycle, different days of the early pregnancy phase, and animals with uterine infections affecting reproduction health. Some of the studies have utilized non-invasive methods and in vitro models to decipher the molecular events of embryo-maternal interaction. The proteomics data are valuable sources for discovering biomarkers for infertility in ruminants and new regulatory pathways governing embryo-uterine interaction, endometrium receptivity, and embryonic development. Here, we envisage that the identified protein signatures can serve as potential therapeutic targets and biomarkers to develop new therapeutics against pregnancy diseases.
不孕症是农场动物的一个主要问题,对农场产业造成了负面的经济影响。不孕症可定义为动物无法成功怀孕。据报道,牛和猪的胚胎损失分别有 70-80% 和 20-30% 发生在怀孕的第一个月。先进的高通量蛋白质组学技术为深入了解农场动物的植入过程提供了宝贵的工具。在本综述中,我们的目标是汇编、评估和整合有关农场动物的最新蛋白质组学研究,特别是针对雌性繁殖的研究,其中涉及子宫内膜组织、宫腔液、输卵管液和 microRNA。这一系列研究通过展开子宫道的分子图谱,深入揭示了植入过程中发生的事件。所讨论的数据涉及妊娠与非妊娠动物、妊娠与发情周期、早孕阶段的不同天数以及患有影响生殖健康的子宫感染的动物。其中一些研究利用非侵入性方法和体外模型来破译胚胎与母体相互作用的分子事件。蛋白质组学数据是发现反刍动物不孕症生物标志物以及胚胎与子宫相互作用、子宫内膜接受能力和胚胎发育的新调控途径的宝贵来源。在此,我们设想已确定的蛋白质特征可作为潜在的治疗靶点和生物标志物,用于开发针对妊娠疾病的新疗法。
{"title":"Proteomic Approaches to Unravel the Molecular Dynamics of Early Pregnancy in Farm Animals: An In-Depth Review","authors":"Shradha Jamwal, M. Jena, Nikunj Tyagi, Sudhakar Kancharla, Prachetha Kolli, Gowtham Mandadapu, Sudarshan Kumar, A. K. Mohanty","doi":"10.3390/jdb12010002","DOIUrl":"https://doi.org/10.3390/jdb12010002","url":null,"abstract":"Infertility is a major problem in farm animals, which has a negative economic effect on farm industries. Infertility can be defined as the inability of animals to achieve a successful pregnancy. Early pregnancy is crucial to establish a successful pregnancy, and it is reported that 70–80% and 20–30% of total embryonic loss occur in cattle and pigs, respectively, during the first month of pregnancy. The advanced high-throughput proteomics techniques provide valuable tools for in-depth understanding of the implantation process in farm animals. In the present review, our goal was to compile, assess, and integrate the latest proteomic research on farm animals, specifically focused on female reproduction, which involves endometrial tissues, uterine fluids, oviductal fluids, and microRNAs. The series of studies has provided in-depth insights into the events of the implantation process by unfolding the molecular landscape of the uterine tract. The discussed data are related to pregnant vs. non-pregnant animals, pregnancy vs. oestrous cycle, different days of the early pregnancy phase, and animals with uterine infections affecting reproduction health. Some of the studies have utilized non-invasive methods and in vitro models to decipher the molecular events of embryo-maternal interaction. The proteomics data are valuable sources for discovering biomarkers for infertility in ruminants and new regulatory pathways governing embryo-uterine interaction, endometrium receptivity, and embryonic development. Here, we envisage that the identified protein signatures can serve as potential therapeutic targets and biomarkers to develop new therapeutics against pregnancy diseases.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":" 21","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139139461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell Reprogramming and Differentiation Utilizing Messenger RNA for Regenerative Medicine. 利用信使核糖核酸进行细胞重编程和分化,促进再生医学。
IF 2.7 Q3 DEVELOPMENTAL BIOLOGY Pub Date : 2023-12-20 DOI: 10.3390/jdb12010001
Masahito Inagaki

The COVID-19 pandemic generated interest in the medicinal applications of messenger RNA (mRNA). It is expected that mRNA will be applied, not only to vaccines, but also to regenerative medicine. The purity of mRNA is important for its medicinal applications. However, the current mRNA synthesis techniques exhibit problems, including the contamination of undesired 5'-uncapped mRNA and double-stranded RNA. Recently, our group developed a completely capped mRNA synthesis technology that contributes to the progress of mRNA research. The introduction of chemically modified nucleosides, such as N1-methylpseudouridine and 5-methylcytidine, has been reported by Karikó and Weissman, opening a path for the practical application of mRNA for vaccines and regenerative medicine. Yamanaka reported the production of induced pluripotent stem cells (iPSCs) by introducing four types of genes using a retrovirus vector. iPSCs are widely used for research on regenerative medicine and the preparation of disease models to screen new drug candidates. Among the Yamanaka factors, Klf4 and c-Myc are oncogenes, and there is a risk of tumor development if these are integrated into genomic DNA. Therefore, regenerative medicine using mRNA, which poses no risk of genome insertion, has attracted attention. In this review, the author summarizes techniques for synthesizing mRNA and its application in regenerative medicine.

COVID-19 大流行引起了人们对信使核糖核酸 (mRNA) 医学应用的兴趣。预计 mRNA 将不仅应用于疫苗,还将应用于再生医学。mRNA 的纯度对其医疗应用非常重要。然而,目前的 mRNA 合成技术存在一些问题,包括 5'-uncapped mRNA 和双链 RNA 的污染。最近,我们的研究小组开发了一种完全封顶的 mRNA 合成技术,为 mRNA 研究的进展做出了贡献。Karikó 和 Weissman 报道了化学修饰核苷(如 N1-甲基假尿苷和 5-甲基胞苷)的引入,为 mRNA 在疫苗和再生医学中的实际应用开辟了道路。山中(Yamanaka)报道了利用逆转录病毒载体导入四种基因制备诱导多能干细胞(iPSCs)的方法,iPSCs 被广泛用于再生医学研究和制备疾病模型以筛选候选新药。在山中因子中,Klf4 和 c-Myc 是致癌基因,如果这些基因整合到基因组 DNA 中,就有可能发展成肿瘤。因此,利用没有基因组插入风险的 mRNA 进行再生医学研究备受关注。在这篇综述中,作者总结了 mRNA 的合成技术及其在再生医学中的应用。
{"title":"Cell Reprogramming and Differentiation Utilizing Messenger RNA for Regenerative Medicine.","authors":"Masahito Inagaki","doi":"10.3390/jdb12010001","DOIUrl":"10.3390/jdb12010001","url":null,"abstract":"<p><p>The COVID-19 pandemic generated interest in the medicinal applications of messenger RNA (mRNA). It is expected that mRNA will be applied, not only to vaccines, but also to regenerative medicine. The purity of mRNA is important for its medicinal applications. However, the current mRNA synthesis techniques exhibit problems, including the contamination of undesired 5'-uncapped mRNA and double-stranded RNA. Recently, our group developed a completely capped mRNA synthesis technology that contributes to the progress of mRNA research. The introduction of chemically modified nucleosides, such as N1-methylpseudouridine and 5-methylcytidine, has been reported by Karikó and Weissman, opening a path for the practical application of mRNA for vaccines and regenerative medicine. Yamanaka reported the production of induced pluripotent stem cells (iPSCs) by introducing four types of genes using a retrovirus vector. iPSCs are widely used for research on regenerative medicine and the preparation of disease models to screen new drug candidates. Among the Yamanaka factors, Klf4 and c-Myc are oncogenes, and there is a risk of tumor development if these are integrated into genomic DNA. Therefore, regenerative medicine using mRNA, which poses no risk of genome insertion, has attracted attention. In this review, the author summarizes techniques for synthesizing mRNA and its application in regenerative medicine.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"12 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140293604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytology Techniques Can Provide Insight into Human Placental Structure Including Syncytiotrophoblast Nuclear Spatial Organisation. 细胞学技术可深入了解人类胎盘结构,包括合胞母细胞核空间组织。
IF 2.7 Q3 DEVELOPMENTAL BIOLOGY Pub Date : 2023-12-15 DOI: 10.3390/jdb11040046
Cassie Fives, André Toulouse, Louise Kenny, Therese Brosnan, Julie McCarthy, Brendan Fitzgerald

The aim of this study was to provide the first systematic description of human placental cytology appearances and to investigate syncytiotrophoblast nuclear organisation patterns using cytology techniques. Term placentas from normal pregnancies were sampled using fine-needle aspiration (FNA) and direct scrapes. Standard histological examination was also performed to exclude pathological changes in the placentas being studied. Both Papanicolaou-stained cytospin preparations and air-dried Giemsa slides from FNA provided high-quality material for cytological assessment with good cellularity. Among the key features of the cytology preparations were villous "microbiopsies" that allowed for the three-dimensional appreciation of villous branching patterns. Cytological appearances, including nuclear characteristics of villous cytotrophoblast and syncytiotrophoblast, were also well demonstrated. In microbiopsies and detached villous trophoblast sheets, complex patterns of syncytiotrophoblast nuclear organisation, not previously described cytologically, were observed, including irregular spacing of nuclei, syncytioplasm windows and linear nuclear arrangements. This study showed that placental cytology (a) provides technically excellent material for cytological evaluation, (b) confirms the presence of complex nuclear organisational patterns in the syncytiotrophoblast by eliminating the possibility of tangential sectioning artefact, (c) provides superior nuclear detail over standard histological sections and (d) may be an untapped research resource for the investigation of normal and pathological processes because of its ability to look at the placenta in a novel way and through its potential for both ex vivo and in vivo placental sampling.

本研究旨在首次系统地描述人类胎盘细胞学外观,并利用细胞学技术研究合胞滋养细胞核组织模式。研究人员使用细针抽吸(FNA)和直接刮取法对正常妊娠的足月胎盘进行取样。同时还进行了标准的组织学检查,以排除胎盘的病理变化。从 FNA 中提取的巴氏染色细胞片制备物和风干的吉氏切片都为细胞学评估提供了高质量的细胞。细胞学制备物的主要特征之一是绒毛 "微生物切片",可用于三维观察绒毛分支模式。细胞学外观,包括绒毛细胞滋养层和合胞滋养层的核特征,也得到了很好的展示。在微生物切片和分离的绒毛滋养层薄片中,观察到了合胞滋养层细胞核组织的复杂模式,包括核间距不规则、合胞浆窗和线性核排列等,这些在以前的细胞学中都没有描述过。这项研究表明,胎盘细胞学(a)为细胞学评估提供了技术上极佳的材料;(b)通过消除切向切片假象的可能性,证实了合胞滋养细胞中存在复杂的核组织模式;(c)提供了优于标准组织学切片的核细节;(d)由于能以新颖的方式观察胎盘,并通过其体内外胎盘取样的潜力,可能成为研究正常和病理过程的一种尚未开发的研究资源。
{"title":"Cytology Techniques Can Provide Insight into Human Placental Structure Including Syncytiotrophoblast Nuclear Spatial Organisation.","authors":"Cassie Fives, André Toulouse, Louise Kenny, Therese Brosnan, Julie McCarthy, Brendan Fitzgerald","doi":"10.3390/jdb11040046","DOIUrl":"10.3390/jdb11040046","url":null,"abstract":"<p><p>The aim of this study was to provide the first systematic description of human placental cytology appearances and to investigate syncytiotrophoblast nuclear organisation patterns using cytology techniques. Term placentas from normal pregnancies were sampled using fine-needle aspiration (FNA) and direct scrapes. Standard histological examination was also performed to exclude pathological changes in the placentas being studied. Both Papanicolaou-stained cytospin preparations and air-dried Giemsa slides from FNA provided high-quality material for cytological assessment with good cellularity. Among the key features of the cytology preparations were villous \"microbiopsies\" that allowed for the three-dimensional appreciation of villous branching patterns. Cytological appearances, including nuclear characteristics of villous cytotrophoblast and syncytiotrophoblast, were also well demonstrated. In microbiopsies and detached villous trophoblast sheets, complex patterns of syncytiotrophoblast nuclear organisation, not previously described cytologically, were observed, including irregular spacing of nuclei, syncytioplasm windows and linear nuclear arrangements. This study showed that placental cytology (a) provides technically excellent material for cytological evaluation, (b) confirms the presence of complex nuclear organisational patterns in the syncytiotrophoblast by eliminating the possibility of tangential sectioning artefact, (c) provides superior nuclear detail over standard histological sections and (d) may be an untapped research resource for the investigation of normal and pathological processes because of its ability to look at the placenta in a novel way and through its potential for both ex vivo and in vivo placental sampling.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 4","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10743966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138830036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase Separation as a Driver of Stem Cell Organization and Function during Development. 相分离是发育过程中干细胞组织和功能的驱动力
IF 2.7 Q3 DEVELOPMENTAL BIOLOGY Pub Date : 2023-12-12 DOI: 10.3390/jdb11040045
Amalia S Parra, Christopher A Johnston

A properly organized subcellular composition is essential to cell function. The canonical organizing principle within eukaryotic cells involves membrane-bound organelles; yet, such structures do not fully explain cellular complexity. Furthermore, discrete non-membrane-bound structures have been known for over a century. Liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mode of cellular organization without the need for formal lipid membranes, with an ever-expanding and diverse list of cellular functions that appear to be regulated by this process. In comparison to traditional organelles, LLPS can occur across wider spatial and temporal scales and involves more distinct protein and RNA complexes. In this review, we discuss the impacts of LLPS on the organization of stem cells and their function during development. Specifically, the roles of LLPS in developmental signaling pathways, chromatin organization, and gene expression will be detailed, as well as its impacts on essential processes of asymmetric cell division. We will also discuss how the dynamic and regulated nature of LLPS may afford stem cells an adaptable mode of organization throughout the developmental time to control cell fate. Finally, we will discuss how aberrant LLPS in these processes may contribute to developmental defects and disease.

组织合理的亚细胞构成对细胞功能至关重要。真核细胞内的典型组织原则包括膜结合细胞器;然而,这种结构并不能完全解释细胞的复杂性。此外,一个多世纪以来,人们已经知道离散的非膜结合结构。液-液相分离(LLPS)已成为一种无处不在的细胞组织模式,不需要正式的脂质膜,越来越多的细胞功能似乎都是由这一过程调控的。与传统的细胞器相比,LLPS 可在更大的空间和时间范围内发生,并涉及更多不同的蛋白质和 RNA 复合物。在这篇综述中,我们讨论了LLPS对干细胞组织的影响及其在发育过程中的功能。具体而言,我们将详细介绍LLPS在发育信号通路、染色质组织和基因表达中的作用,以及它对不对称细胞分裂基本过程的影响。我们还将讨论LLPS的动态调控性质如何在整个发育过程中为干细胞提供一种可适应的组织模式,以控制细胞命运。最后,我们将讨论LLPS在这些过程中的失常如何导致发育缺陷和疾病。
{"title":"Phase Separation as a Driver of Stem Cell Organization and Function during Development.","authors":"Amalia S Parra, Christopher A Johnston","doi":"10.3390/jdb11040045","DOIUrl":"10.3390/jdb11040045","url":null,"abstract":"<p><p>A properly organized subcellular composition is essential to cell function. The canonical organizing principle within eukaryotic cells involves membrane-bound organelles; yet, such structures do not fully explain cellular complexity. Furthermore, discrete non-membrane-bound structures have been known for over a century. Liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mode of cellular organization without the need for formal lipid membranes, with an ever-expanding and diverse list of cellular functions that appear to be regulated by this process. In comparison to traditional organelles, LLPS can occur across wider spatial and temporal scales and involves more distinct protein and RNA complexes. In this review, we discuss the impacts of LLPS on the organization of stem cells and their function during development. Specifically, the roles of LLPS in developmental signaling pathways, chromatin organization, and gene expression will be detailed, as well as its impacts on essential processes of asymmetric cell division. We will also discuss how the dynamic and regulated nature of LLPS may afford stem cells an adaptable mode of organization throughout the developmental time to control cell fate. Finally, we will discuss how aberrant LLPS in these processes may contribute to developmental defects and disease.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 4","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10743522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138830038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Nuclear Structures in the Germinal Vesicle of the Common Frog with Emphasis on the So-Called Karyosphere Capsule. 普通青蛙生殖泡中的特殊核结构,重点是所谓的 "核膜囊"。
IF 2.7 Q3 DEVELOPMENTAL BIOLOGY Pub Date : 2023-12-12 DOI: 10.3390/jdb11040044
Dmitry S Bogolyubov, Sergey V Shabelnikov, Alexandra O Travina, Maksim I Sulatsky, Irina O Bogolyubova

The karyosphere (karyosome) is a structure that forms in the oocyte nucleus-germinal vesicle (GV)-at the diplotene stage of meiotic prophase due to the assembly of all chromosomes in a limited portion of the GV. In some organisms, the karyosphere has an extrachromosomal external capsule, the marker protein of which is nuclear F-actin. Despite many years of theories about the formation of the karyosphere capsule (KC) in the GV of the common frog Rana temporaria, we present data that cast doubt on its existence, at least in this species. Specific extrachromosomal strands, which had been considered the main elements of the frog's KC, do not form a continuous layer around the karyosphere and, according to immunogold labeling, do not contain structural proteins, such as actin and lamin B. At the same time, F-actin is indeed noticeably concentrated around the karyosphere, creating the illusion of a capsule at the light microscopy/fluorescence level. The barrier-to-autointegration factor (BAF) and one of its functional partners-LEMD2, an inner nuclear membrane protein-are not localized in the strands, suggesting that the strands are not functional counterparts of the nuclear envelope. The presence of characteristic strands in the GV of R. temporaria late oocytes may reflect an excess of SMC1 involved in the structural maintenance of diplotene oocyte chromosomes at the karyosphere stage, since SMC1 has been shown to be the most abundant protein in the strands. Other characteristic microstructures-the so-called annuli, very similar in ultrastructure to the nuclear pore complexes-do not contain nucleoporins Nup35 and Nup93, and, therefore, they cannot be considered autonomous pore complexes, as previously thought. Taken together, our data indicate that traditional ideas about the existence of the R. temporaria KC as a special structural compartment of the GV are to be revisited.

核球(核体)是在减数分裂前期的二分裂阶段,由于所有染色体都聚集在核球的有限部分而在卵母细胞核--胚珠囊(GV)中形成的一种结构。在某些生物体中,核球具有染色体外的外囊,其标志蛋白是核 F-肌动蛋白。尽管多年来一直有关于普通蛙类 Rana temporaria 的 GV 中形成核外囊(KC)的理论,但我们现在提供的数据却让人对其存在产生怀疑,至少在该物种中是如此。特定的染色体外链一直被认为是蛙类 KC 的主要元素,但它们并没有在核球周围形成一个连续的层,而且根据免疫金标记,它们不含结构蛋白,如肌动蛋白和层粘连蛋白 B。屏障自整合因子(BAF)及其功能伙伴之一--核内膜蛋白 LEMD2--并未定位在核链中,这表明核链并非核膜的功能对应物。在 R. temporaria 晚期卵母细胞的 GV 中存在特征股,这可能反映了在核球阶段参与双核卵母细胞染色体结构维持的 SMC1 过量,因为 SMC1 已被证明是股中最丰富的蛋白质。其他特征性微结构--所谓的环状结构(在超微结构上与核孔复合体非常相似)--不包含核蛋白 Nup35 和 Nup93,因此不能像以前认为的那样将其视为自主核孔复合体。综上所述,我们的数据表明,关于 R. temporaria KC 作为龙胆紫特殊结构区存在的传统观点需要重新审视。
{"title":"Special Nuclear Structures in the Germinal Vesicle of the Common Frog with Emphasis on the So-Called Karyosphere Capsule.","authors":"Dmitry S Bogolyubov, Sergey V Shabelnikov, Alexandra O Travina, Maksim I Sulatsky, Irina O Bogolyubova","doi":"10.3390/jdb11040044","DOIUrl":"10.3390/jdb11040044","url":null,"abstract":"<p><p>The karyosphere (karyosome) is a structure that forms in the oocyte nucleus-germinal vesicle (GV)-at the diplotene stage of meiotic prophase due to the assembly of all chromosomes in a limited portion of the GV. In some organisms, the karyosphere has an extrachromosomal external capsule, the marker protein of which is nuclear F-actin. Despite many years of theories about the formation of the karyosphere capsule (KC) in the GV of the common frog <i>Rana temporaria</i>, we present data that cast doubt on its existence, at least in this species. Specific extrachromosomal strands, which had been considered the main elements of the frog's KC, do not form a continuous layer around the karyosphere and, according to immunogold labeling, do not contain structural proteins, such as actin and lamin B. At the same time, F-actin is indeed noticeably concentrated around the karyosphere, creating the illusion of a capsule at the light microscopy/fluorescence level. The barrier-to-autointegration factor (BAF) and one of its functional partners-LEMD2, an inner nuclear membrane protein-are not localized in the strands, suggesting that the strands are not functional counterparts of the nuclear envelope. The presence of characteristic strands in the GV of <i>R. temporaria</i> late oocytes may reflect an excess of SMC1 involved in the structural maintenance of diplotene oocyte chromosomes at the karyosphere stage, since SMC1 has been shown to be the most abundant protein in the strands. Other characteristic microstructures-the so-called <i>annuli</i>, very similar in ultrastructure to the nuclear pore complexes-do not contain nucleoporins Nup35 and Nup93, and, therefore, they cannot be considered autonomous pore complexes, as previously thought. Taken together, our data indicate that traditional ideas about the existence of the <i>R. temporaria</i> KC as a special structural compartment of the GV are to be revisited.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 4","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10744300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138830039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epidermal Barrier Development via Corneoptosis: A Unique Form of Cell Death in Stratum Granulosum Cells. 通过角质凋亡发展表皮屏障:角质层细胞的一种独特细胞死亡形式
IF 2.7 Q3 DEVELOPMENTAL BIOLOGY Pub Date : 2023-11-30 DOI: 10.3390/jdb11040043
Takeshi Matsui

Epidermal development is responsible for the formation of the outermost layer of the skin, the epidermis. The establishment of the epidermal barrier is a critical aspect of mammalian development. Proper formation of the epidermis, which is composed of stratified squamous epithelial cells, is essential for the survival of terrestrial vertebrates because it acts as a crucial protective barrier against external threats such as pathogens, toxins, and physical trauma. In mammals, epidermal development begins from the embryonic surface ectoderm, which gives rise to the basal layer of the epidermis. This layer undergoes a series of complex processes that lead to the formation of subsequent layers, including the stratum intermedium, stratum spinosum, stratum granulosum, and stratum corneum. The stratum corneum, which is the topmost layer of the epidermis, is formed by corneoptosis, a specialized form of cell death. This process involves the transformation of epidermal keratinocytes in the granular layer into flattened dead cells, which constitute the protective barrier. In this review, we focus on the intricate mechanisms that drive the development and establishment of the mammalian epidermis to gain insight into the complex processes that govern this vital biological system.

表皮发育负责形成皮肤的最外层--表皮。表皮屏障的建立是哺乳动物发育的一个重要方面。表皮由分层的鳞状上皮细胞组成,表皮的正确形成对陆生脊椎动物的生存至关重要,因为它是抵御病原体、毒素和物理创伤等外部威胁的重要保护屏障。在哺乳动物中,表皮的发育始于胚胎表面的外胚层,它产生了表皮的基底层。这层表皮经过一系列复杂的过程,最终形成随后的表皮层,包括中间层、棘层、颗粒层和角质层。角质层是表皮的最上层,由角质凋亡形成,这是一种特殊的细胞死亡形式。这一过程包括颗粒层的表皮角质细胞转变为扁平的死细胞,构成保护屏障。在这篇综述中,我们将重点探讨驱动哺乳动物表皮发育和形成的复杂机制,以深入了解这一重要生物系统的复杂过程。
{"title":"Epidermal Barrier Development via Corneoptosis: A Unique Form of Cell Death in Stratum Granulosum Cells.","authors":"Takeshi Matsui","doi":"10.3390/jdb11040043","DOIUrl":"10.3390/jdb11040043","url":null,"abstract":"<p><p>Epidermal development is responsible for the formation of the outermost layer of the skin, the epidermis. The establishment of the epidermal barrier is a critical aspect of mammalian development. Proper formation of the epidermis, which is composed of stratified squamous epithelial cells, is essential for the survival of terrestrial vertebrates because it acts as a crucial protective barrier against external threats such as pathogens, toxins, and physical trauma. In mammals, epidermal development begins from the embryonic surface ectoderm, which gives rise to the basal layer of the epidermis. This layer undergoes a series of complex processes that lead to the formation of subsequent layers, including the stratum intermedium, stratum spinosum, stratum granulosum, and stratum corneum. The stratum corneum, which is the topmost layer of the epidermis, is formed by corneoptosis, a specialized form of cell death. This process involves the transformation of epidermal keratinocytes in the granular layer into flattened dead cells, which constitute the protective barrier. In this review, we focus on the intricate mechanisms that drive the development and establishment of the mammalian epidermis to gain insight into the complex processes that govern this vital biological system.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 4","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10744242/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138830037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SARS-CoV-2 Infection in Late Pregnancy and Childbirth from the Perspective of Perinatal Pathology. 从围产期病理学角度看妊娠晚期和分娩时SARS-CoV-2感染
IF 2.7 Q3 DEVELOPMENTAL BIOLOGY Pub Date : 2023-11-16 DOI: 10.3390/jdb11040042
Larisa Debelenko

This review focuses on SARS-CoV-2 infection in placental and fetal tissues. Viremia is rare in infected pregnant women, and the virus is seldom amplified from placental tissues. Definite and probable placental infection requires the demonstration of viral RNA or proteins using in situ hybridization (ISH) and immunohistochemistry (IHC). Small subsets (1.0-7.9%, median 2.8%) of placentas of SARS-CoV-2-positive women showed definite infection accompanied by a characteristic histopathology named SARS-CoV-2 placentitis (SP). The conventionally accepted histopathological criteria for SP include the triad of intervillositis, perivillous fibrin deposition, and trophoblast necrosis. SP was shown to be independent of the clinical severity of the infection, but associated with stillbirth in cases where destructive lesions affecting more than 75% of the placental tissue resulted in placental insufficiency and severe fetal hypoxic-ischemic injury. An association between maternal thrombophilia and SP was shown in a subset of cases, suggesting a synergy of the infection and deficient coagulation cascade as one of the mechanisms of the pathologic accumulation of fibrin in affected placentas. The virus was amplified from fetal tissues in approximately 40% of SP cases, but definite fetal involvement demonstrated using ISH or IHC is exceptionally rare. The placental pathology in SARS-CoV-2-positive women also includes chronic lesions associated with placental malperfusion in the absence of definite or probable placental infection. The direct viral causation of the vascular malperfusion of the placenta in COVID-19 is debatable, and common predispositions (hypertension, diabetes, and obesity) may play a role.

本文综述了SARS-CoV-2在胎盘和胎儿组织中的感染。病毒血症在感染的孕妇中很少见,而且病毒很少从胎盘组织中扩增出来。确定和可能的胎盘感染需要使用原位杂交(ISH)和免疫组织化学(IHC)证明病毒RNA或蛋白质。一小部分(1.0-7.9%,中位数2.8%)SARS-CoV-2阳性妇女的胎盘显示明确的感染,并伴有称为SARS-CoV-2胎盘炎(SP)的特征性组织病理学。通常接受的SP的组织病理学标准包括绒毛间炎、绒毛周围纤维蛋白沉积和滋养细胞坏死。研究表明,SP与感染的临床严重程度无关,但在破坏性病变影响超过75%的胎盘组织导致胎盘功能不全和胎儿严重缺氧缺血性损伤的情况下,SP与死产有关。在一部分病例中,母体血栓病和SP之间存在关联,这表明感染和凝血缺陷级联的协同作用是受影响胎盘中纤维蛋白病理性积累的机制之一。在大约40%的SP病例中,病毒从胎儿组织中扩增,但使用ISH或IHC证实明确的胎儿受累极为罕见。在没有明确或可能的胎盘感染的情况下,sars - cov -2阳性妇女的胎盘病理还包括与胎盘灌注不良相关的慢性病变。COVID-19患者胎盘血管灌注不良的直接病毒病因尚存在争议,常见的易感性(高血压、糖尿病和肥胖)可能起作用。
{"title":"SARS-CoV-2 Infection in Late Pregnancy and Childbirth from the Perspective of Perinatal Pathology.","authors":"Larisa Debelenko","doi":"10.3390/jdb11040042","DOIUrl":"10.3390/jdb11040042","url":null,"abstract":"<p><p>This review focuses on SARS-CoV-2 infection in placental and fetal tissues. Viremia is rare in infected pregnant women, and the virus is seldom amplified from placental tissues. Definite and probable placental infection requires the demonstration of viral RNA or proteins using in situ hybridization (ISH) and immunohistochemistry (IHC). Small subsets (1.0-7.9%, median 2.8%) of placentas of SARS-CoV-2-positive women showed definite infection accompanied by a characteristic histopathology named SARS-CoV-2 placentitis (SP). The conventionally accepted histopathological criteria for SP include the triad of intervillositis, perivillous fibrin deposition, and trophoblast necrosis. SP was shown to be independent of the clinical severity of the infection, but associated with stillbirth in cases where destructive lesions affecting more than 75% of the placental tissue resulted in placental insufficiency and severe fetal hypoxic-ischemic injury. An association between maternal thrombophilia and SP was shown in a subset of cases, suggesting a synergy of the infection and deficient coagulation cascade as one of the mechanisms of the pathologic accumulation of fibrin in affected placentas. The virus was amplified from fetal tissues in approximately 40% of SP cases, but definite fetal involvement demonstrated using ISH or IHC is exceptionally rare. The placental pathology in SARS-CoV-2-positive women also includes chronic lesions associated with placental malperfusion in the absence of definite or probable placental infection. The direct viral causation of the vascular malperfusion of the placenta in COVID-19 is debatable, and common predispositions (hypertension, diabetes, and obesity) may play a role.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 4","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138176347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Andy Golden: Mentorship through the Years 安迪·戈尔登:多年的导师
Q3 DEVELOPMENTAL BIOLOGY Pub Date : 2023-11-03 DOI: 10.3390/jdb11040041
Anna K. Allen, Xiaofei Bai, Edward S. Davis, Amy Fabritius, Aimee Jaramillo-Lambert, Peter A. Kropp, Christopher T. Richie, Jill M. Schumacher, Sanjay Shrestha, Kathryn Stein, Ann K. Corsi
The C [...]
C[…]
{"title":"Andy Golden: Mentorship through the Years","authors":"Anna K. Allen, Xiaofei Bai, Edward S. Davis, Amy Fabritius, Aimee Jaramillo-Lambert, Peter A. Kropp, Christopher T. Richie, Jill M. Schumacher, Sanjay Shrestha, Kathryn Stein, Ann K. Corsi","doi":"10.3390/jdb11040041","DOIUrl":"https://doi.org/10.3390/jdb11040041","url":null,"abstract":"The C [...]","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"6 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135818654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of Farnesyl Transferase Inhibitors in an Ageing Model in Drosophila 法尼基转移酶抑制剂在果蝇衰老模型中的应用
Q3 DEVELOPMENTAL BIOLOGY Pub Date : 2023-10-29 DOI: 10.3390/jdb11040040
Annely Brandt, Roman Petrovsky, Maria Kriebel, Jörg Großhans
The presence of farnesylated proteins at the inner nuclear membrane (INM), such as the Lamins or Kugelkern in Drosophila, leads to specific changes in the nuclear morphology and accelerated ageing on the organismal level reminiscent of the Hutchinson–Gilford progeria syndrome (HGPS). Farnesyl transferase inhibitors (FTIs) can suppress the phenotypes of the nuclear morphology in cultured fibroblasts from HGPS patients and cultured cells overexpressing farnesylated INM proteins. Similarly, FTIs have been reported to suppress the shortened lifespan in model organisms. Here, we report an experimental system combining cell culture and Drosophila flies for testing the activity of substances on the HGPS-like nuclear morphology and lifespan, with FTIs as an experimental example. Consistent with previous reports, we show that FTIs were able to ameliorate the nuclear phenotypes induced by the farnesylated nuclear proteins Progerin, Kugelkern, or truncated Lamin B in cultured cells. The subsequent validation in Drosophila lifespan assays demonstrated the applicability of the experimental system: treating adult Drosophila with the FTI ABT-100 reversed the nuclear phenotypes and extended the lifespan of experimentally induced short-lived flies. Since kugelkern-expressing flies have a significantly shorter average lifespan, half the time is needed for testing substances in the lifespan assay.
内核膜(INM)上的法尼基化蛋白的存在,如果蝇的Lamins或Kugelkern,导致核形态的特定变化,并在机体水平上加速衰老,让人想起哈钦森-吉尔福德早衰综合征(HGPS)。法尼基转移酶抑制剂(FTIs)可以抑制HGPS患者培养成纤维细胞和过表达法尼基化INM蛋白的培养细胞的核形态表型。同样,据报道,fti抑制了模式生物寿命的缩短。在这里,我们报告了一个结合细胞培养和果蝇的实验系统,用于测试物质对hgps样核形态和寿命的活性,并以FTIs为实验例。与之前的报道一致,我们发现FTIs能够改善培养细胞中由法酰化的核蛋白Progerin, Kugelkern或截断的Lamin B诱导的核表型。随后在果蝇寿命分析中的验证证明了实验系统的适用性:用FTI ABT-100处理成年果蝇逆转了核表型并延长了实验诱导的短寿命果蝇的寿命。由于表达kugelkern的果蝇的平均寿命明显较短,因此在寿命测定中需要一半的时间来测试物质。
{"title":"Use of Farnesyl Transferase Inhibitors in an Ageing Model in Drosophila","authors":"Annely Brandt, Roman Petrovsky, Maria Kriebel, Jörg Großhans","doi":"10.3390/jdb11040040","DOIUrl":"https://doi.org/10.3390/jdb11040040","url":null,"abstract":"The presence of farnesylated proteins at the inner nuclear membrane (INM), such as the Lamins or Kugelkern in Drosophila, leads to specific changes in the nuclear morphology and accelerated ageing on the organismal level reminiscent of the Hutchinson–Gilford progeria syndrome (HGPS). Farnesyl transferase inhibitors (FTIs) can suppress the phenotypes of the nuclear morphology in cultured fibroblasts from HGPS patients and cultured cells overexpressing farnesylated INM proteins. Similarly, FTIs have been reported to suppress the shortened lifespan in model organisms. Here, we report an experimental system combining cell culture and Drosophila flies for testing the activity of substances on the HGPS-like nuclear morphology and lifespan, with FTIs as an experimental example. Consistent with previous reports, we show that FTIs were able to ameliorate the nuclear phenotypes induced by the farnesylated nuclear proteins Progerin, Kugelkern, or truncated Lamin B in cultured cells. The subsequent validation in Drosophila lifespan assays demonstrated the applicability of the experimental system: treating adult Drosophila with the FTI ABT-100 reversed the nuclear phenotypes and extended the lifespan of experimentally induced short-lived flies. Since kugelkern-expressing flies have a significantly shorter average lifespan, half the time is needed for testing substances in the lifespan assay.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136135846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The New Nematicide Cyclobutrifluram Targets the Mitochondrial Succinate Dehydrogenase Complex in Caenorhabditis elegans. 新型线虫环丁氟仑靶向秀丽隐杆线虫线粒体琥珀酸脱氢酶复合体。
IF 2.7 Q3 DEVELOPMENTAL BIOLOGY Pub Date : 2023-10-19 DOI: 10.3390/jdb11040039
Fariba Heydari, David Rodriguez-Crespo, Chantal Wicky

Today, agriculture around the world is challenged by parasitic nematode infections. Plant-parasitic nematodes (PPNs) can cause significant damage and crop loss and are a threat to food security. For a long time, the management of PPN infection has relied on nematicides that impact not only parasitic nematodes but also other organisms. More recently, new nematicides have been developed that appear to specifically target PPN. Cyclobutrifluram belongs to this new category of nematicides. Using the nematode Caenorhabditis elegans as a model organism, we show here that cyclobutrifluram strongly impacts the survival and fertility rates of the worm by decreasing the number of germ cells. Furthermore, using a genetic approach, we demonstrate that cyclobutrifluram functions by inhibiting the mitochondrial succinate dehydrogenase (SDH) complex. Transcriptomic analysis revealed a strong response to cyclobutrifluram exposure. Among the deregulated genes, we found genes coding for detoxifying proteins, such as cytochrome P450s and UDP-glucuronosyl transferases (UGTs). Overall, our study contributes to the understanding of the molecular mode of action of cyclobutrifluram, to the finding of new approaches against nematicide resistance, and to the discovery of novel nematicides. Furthermore, this study confirms that C. elegans is a suitable model organism to study the mode of action of nematicides.

今天,世界各地的农业都受到寄生线虫感染的挑战。植物寄生线虫(PPNs)可造成严重破坏和作物损失,并对粮食安全构成威胁。长期以来,PPN感染的管理依赖于杀线虫剂,这种杀线虫剂不仅影响寄生线虫,还影响其他生物体。最近,新的杀线虫剂已经被开发出来,似乎专门针对PPN。环丁氟仑属于这种新型杀线虫剂。使用线虫秀丽隐杆线虫作为模式生物,我们在这里表明,环丁氟仑通过减少生殖细胞的数量,对蠕虫的存活率和生育率产生了强烈影响。此外,使用遗传学方法,我们证明环丁氟仑通过抑制线粒体琥珀酸脱氢酶(SDH)复合物发挥作用。转录组学分析显示对环丁氟仑暴露有强烈反应。在失调的基因中,我们发现了编码解毒蛋白的基因,如细胞色素P450和UDP葡萄糖醛酸基转移酶(UGTs)。总的来说,我们的研究有助于理解环丁氟仑的分子作用模式,有助于发现对抗杀线虫剂耐药性的新方法,也有助于新杀线虫剂的发现。此外,本研究证实秀丽隐杆线虫是研究杀线虫剂作用模式的合适模式生物。
{"title":"The New Nematicide Cyclobutrifluram Targets the Mitochondrial Succinate Dehydrogenase Complex in <i>Caenorhabditis elegans</i>.","authors":"Fariba Heydari, David Rodriguez-Crespo, Chantal Wicky","doi":"10.3390/jdb11040039","DOIUrl":"10.3390/jdb11040039","url":null,"abstract":"<p><p>Today, agriculture around the world is challenged by parasitic nematode infections. Plant-parasitic nematodes (PPNs) can cause significant damage and crop loss and are a threat to food security. For a long time, the management of PPN infection has relied on nematicides that impact not only parasitic nematodes but also other organisms. More recently, new nematicides have been developed that appear to specifically target PPN. Cyclobutrifluram belongs to this new category of nematicides. Using the nematode <i>Caenorhabditis elegans</i> as a model organism, we show here that cyclobutrifluram strongly impacts the survival and fertility rates of the worm by decreasing the number of germ cells. Furthermore, using a genetic approach, we demonstrate that cyclobutrifluram functions by inhibiting the mitochondrial succinate dehydrogenase (SDH) complex. Transcriptomic analysis revealed a strong response to cyclobutrifluram exposure. Among the deregulated genes, we found genes coding for detoxifying proteins, such as cytochrome P450s and UDP-glucuronosyl transferases (UGTs). Overall, our study contributes to the understanding of the molecular mode of action of cyclobutrifluram, to the finding of new approaches against nematicide resistance, and to the discovery of novel nematicides. Furthermore, this study confirms that <i>C. elegans</i> is a suitable model organism to study the mode of action of nematicides.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 4","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49690788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Developmental Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1