Antibody-drug conjugates (ADCs) have emerged as a novel class of targeted cancer therapies and been successfully applied in the treatment of breast cancer (BC). Discoidin domain receptor 1 (DDR1) is a single transmembrane receptor tyrosine kinase and has been identified as a possible target for cancer. In this study, we explored the potential of an anti-DDR1 ADC, named T4H11-DM4, for the treatment of DDR1-positive BC. We demonstrated that high protein expression and RNA expression of DDR1 in BC tissues. In vitro, T4H11-DM4 was potently cytotoxic to DDR1-expressing BC cells, with IC50 in the nanomolar range. In mice BC xenograft models, T4H11-DM4 dramatically eliminated BC tumours, without observable toxicity. Taken together, our findings demonstrated that DDR1 can serve as a promising therapeutic target for BC.
抗体-药物共轭物(ADC)已成为一类新型的癌症靶向疗法,并已成功应用于乳腺癌(BC)的治疗。盘状蛋白结构域受体 1(DDR1)是一种单跨膜受体酪氨酸激酶,已被确定为可能的癌症靶点。在这项研究中,我们探索了一种名为 T4H11-DM4 的抗 DDR1 ADC 治疗 DDR1 阳性 BC 的潜力。我们证实,在 BC 组织中,DDR1 蛋白表达和 RNA 表达均很高。在体外,T4H11-DM4对表达DDR1的BC细胞具有强效细胞毒性,IC50在纳摩尔范围内。在小鼠BC异种移植模型中,T4H11-DM4能显著消除BC肿瘤,且无明显毒性。综上所述,我们的研究结果表明,DDR1 可以作为一种很有前景的治疗靶点用于治疗 BC。
{"title":"Antibody-drug conjugates targeting DDR1 as a novel strategy for treatment of breast cancer.","authors":"Yiran Tao, Ying Lu, Ting Xue, Qinhuai Lai, Hengrui Song, Xiaofeng Chen, Cuiyu Guo, Jinliang Yang, Yuxi Wang","doi":"10.1080/1061186X.2024.2386621","DOIUrl":"10.1080/1061186X.2024.2386621","url":null,"abstract":"<p><p>Antibody-drug conjugates (ADCs) have emerged as a novel class of targeted cancer therapies and been successfully applied in the treatment of breast cancer (BC). Discoidin domain receptor 1 (DDR1) is a single transmembrane receptor tyrosine kinase and has been identified as a possible target for cancer. In this study, we explored the potential of an anti-DDR1 ADC, named T<sub>4</sub>H<sub>11</sub>-DM4, for the treatment of DDR1-positive BC. We demonstrated that high protein expression and RNA expression of DDR1 in BC tissues. <i>In vitro</i>, T<sub>4</sub>H<sub>11</sub>-DM4 was potently cytotoxic to DDR1-expressing BC cells, with IC50 in the nanomolar range. In mice BC xenograft models, T<sub>4</sub>H<sub>11</sub>-DM4 dramatically eliminated BC tumours, without observable toxicity. Taken together, our findings demonstrated that DDR1 can serve as a promising therapeutic target for BC.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1295-1304"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phototherapy can cause autophagy while killing tumour cells, leading to tumour recurrence and metastasis. Here, we constructed a laser and enzyme dual responsive nanodrug delivery system Tf-Te@CTSL-HCQ (TT@CH) to precisely regulate autophagy in synergy with phototherapy to inhibit the proliferation and metastasis of melanoma. Firstly, transferrin (Tf) was used as a nanoreactor to synthesise phototherapy agent Tf-Te by the biological template mineralisation method. Then, the thermosensitive liposome modified with FAP-α-responsive peptide (CAP) was used as a carrier to encapsulate autophagy inhibitor hydroxychloroquine (HCQ) and Tf-Te, to obtain an intelligent TT@CH delivery system. Once arriving at the tumour site, TT@CH can be cleaved by FAP-α overexpressed on cancer-associated fibroblasts (CAFs), and release Tf-Te and HCQ. Then Tf-Te can target melanoma cells and exert PTT/PDT anti-tumour effect. What's more, hyperpyrexia induced by PTT can further promote drugs release from TT@CH. Meanwhile, HCQ simultaneously inhibited autophagy of CAFs and melanoma cells, and down-regulated IL-6 and HMGB1 secretion, thus effectively inhibiting melanoma metastasis. Pharmacodynamic results exhibited the best anti-tumour effect of TT@CH with the highest tumour inhibition rate of 91.3%. Meanwhile, lung metastatic nodules of TT@CH treated mice reduced by 124.33 compared with that of mice in control group. Overall, TT@CH provided an effective therapy strategy for melanoma.
{"title":"Laser-enzyme dual responsive liposomes to regulate autophagy in synergy with phototherapy for melanoma treatment.","authors":"Mingli Sui, Chaoqun Wang, Yingmei Tian, Huijuan Zhang","doi":"10.1080/1061186X.2024.2386624","DOIUrl":"10.1080/1061186X.2024.2386624","url":null,"abstract":"<p><p>Phototherapy can cause autophagy while killing tumour cells, leading to tumour recurrence and metastasis. Here, we constructed a laser and enzyme dual responsive nanodrug delivery system Tf-Te@CTSL-HCQ (TT@CH) to precisely regulate autophagy in synergy with phototherapy to inhibit the proliferation and metastasis of melanoma. Firstly, transferrin (Tf) was used as a nanoreactor to synthesise phototherapy agent Tf-Te by the biological template mineralisation method. Then, the thermosensitive liposome modified with FAP-α-responsive peptide (CAP) was used as a carrier to encapsulate autophagy inhibitor hydroxychloroquine (HCQ) and Tf-Te, to obtain an intelligent TT@CH delivery system. Once arriving at the tumour site, TT@CH can be cleaved by FAP-α overexpressed on cancer-associated fibroblasts (CAFs), and release Tf-Te and HCQ. Then Tf-Te can target melanoma cells and exert PTT/PDT anti-tumour effect. What's more, hyperpyrexia induced by PTT can further promote drugs release from TT@CH. Meanwhile, HCQ simultaneously inhibited autophagy of CAFs and melanoma cells, and down-regulated IL-6 and HMGB1 secretion, thus effectively inhibiting melanoma metastasis. Pharmacodynamic results exhibited the best anti-tumour effect of TT@CH with the highest tumour inhibition rate of 91.3%. Meanwhile, lung metastatic nodules of TT@CH treated mice reduced by 124.33 compared with that of mice in control group. Overall, TT@CH provided an effective therapy strategy for melanoma.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1305-1319"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-31DOI: 10.1080/1061186X.2024.2386416
Jiaqi Chen, Yingrui Yao, Xiaoran Mao, Yuzhou Chen, Feng Ni
Background: The liver, a central organ in human metabolism, is often the primary target for drugs. However, conditions such as viral hepatitis, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC) present substantial health challenges worldwide. Existing treatments, which suffer from the non-specific distribution of drugs, frequently fail to achieve desired efficacy and safety, risking unnecessary liver harm and systemic side effects.
Purpose: The aim of this review is to synthesise the latest progress in the design of liver-targeted prodrugs, with a focus on passive and active targeting strategies, providing new insights into the development of liver-targeted therapeutic approaches.
Methods: This study conducted an extensive literature search through databases like Google Scholar, PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI), systematically collecting and selecting recent research on liver-targeted prodrugs. The focus was on targeting mechanisms, including the Enhanced Permeability and Retention (EPR) effect, the unique microenvironment of liver cancer, and active targeting through specific transporters and receptors.
Results: Active targeting strategies achieve precise drug delivery by binding specific ligands to liver surface receptors. Passive targeting takes advantage of the EPR effect and tumour characteristics to enrich drugs in liver tumours. The review details successful cases of using small molecule ligands, peptides, antibodies and nanoparticles as drug carriers.
Conclusion: Liver-targeted prodrug strategies show great potential in enhancing the efficacy of drug treatment and reducing side effects for liver diseases. Future research should balance the advantages and limitations of both targeting strategies, focusing on optimising drug design and targeting efficiency, especially for clinical application. In-depth research on liver-specific receptors and the development of innovative targeting molecules are crucial for advancing the field of liver-targeted prodrugs.
背景:肝脏是人体新陈代谢的核心器官,通常是药物的主要靶点。然而,病毒性肝炎、肝硬化、非酒精性脂肪肝(NAFLD)和肝细胞癌(HCC)等疾病给全球健康带来了巨大挑战。目的:本综述旨在总结肝脏靶向原药设计的最新进展,重点关注被动和主动靶向策略,为肝脏靶向治疗方法的开发提供新见解:本研究通过 Google Scholar、PubMed、Web of Science 和中国国家知识基础设施(CNKI)等数据库进行了广泛的文献检索,系统地收集和筛选了近期有关肝脏靶向原药的研究。研究重点是靶向机制,包括增强渗透性和滞留(EPR)效应、肝癌独特的微环境以及通过特定转运体和受体的主动靶向:主动靶向策略通过将特异性配体与肝脏表面受体结合实现精确给药。被动靶向利用 EPR 效应和肿瘤特征在肝脏肿瘤中富集药物。综述详细介绍了使用小分子配体、多肽、抗体和纳米颗粒作为药物载体的成功案例:结论:肝脏靶向原药策略在提高药物治疗效果和减少肝脏疾病副作用方面显示出巨大潜力。未来的研究应平衡两种靶向策略的优势和局限性,重点优化药物设计和靶向效率,尤其是在临床应用方面。对肝脏特异性受体的深入研究和创新性靶向分子的开发对于推动肝脏靶向原药领域的发展至关重要。
{"title":"Liver-targeted delivery based on prodrug: passive and active approaches.","authors":"Jiaqi Chen, Yingrui Yao, Xiaoran Mao, Yuzhou Chen, Feng Ni","doi":"10.1080/1061186X.2024.2386416","DOIUrl":"10.1080/1061186X.2024.2386416","url":null,"abstract":"<p><strong>Background: </strong>The liver, a central organ in human metabolism, is often the primary target for drugs. However, conditions such as viral hepatitis, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC) present substantial health challenges worldwide. Existing treatments, which suffer from the non-specific distribution of drugs, frequently fail to achieve desired efficacy and safety, risking unnecessary liver harm and systemic side effects.</p><p><strong>Purpose: </strong>The aim of this review is to synthesise the latest progress in the design of liver-targeted prodrugs, with a focus on passive and active targeting strategies, providing new insights into the development of liver-targeted therapeutic approaches.</p><p><strong>Methods: </strong>This study conducted an extensive literature search through databases like Google Scholar, PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI), systematically collecting and selecting recent research on liver-targeted prodrugs. The focus was on targeting mechanisms, including the Enhanced Permeability and Retention (EPR) effect, the unique microenvironment of liver cancer, and active targeting through specific transporters and receptors.</p><p><strong>Results: </strong>Active targeting strategies achieve precise drug delivery by binding specific ligands to liver surface receptors. Passive targeting takes advantage of the EPR effect and tumour characteristics to enrich drugs in liver tumours. The review details successful cases of using small molecule ligands, peptides, antibodies and nanoparticles as drug carriers.</p><p><strong>Conclusion: </strong>Liver-targeted prodrug strategies show great potential in enhancing the efficacy of drug treatment and reducing side effects for liver diseases. Future research should balance the advantages and limitations of both targeting strategies, focusing on optimising drug design and targeting efficiency, especially for clinical application. In-depth research on liver-specific receptors and the development of innovative targeting molecules are crucial for advancing the field of liver-targeted prodrugs.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1155-1168"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Long contact of UV causes skin damage. Glycolic acid (GA) as an alpha hydroxy acid is used to treat photodamaged skin. However, GA leads to side effects including; burning, erythema and peeling.Purpose: The aim of this study was to develop a controlled delivery systems loading GA in order to increasing its efficacy and lowering its side effects.Methods: Liposomes were evaluated for encapsulation efficiency, size and morphology. Optimized formulation was dispersed in HPMC gel bases and drug release kinetics were also studied. Clinical efficacy and safety of GA-loaded liposomal gel and GA gel formulation were evaluated in patients with photodamaged skin.Results: The EE% and average particle size of liposomes were 64 ±2.1 % and 317±3.6 nm, respectively. SEM image showed that liposomes were spherical in shape. In vitro release kinetics of GA from both formulations followed Weibull model. Clinical evaluation revealed that GA-loaded liposomal gel was more effective than GA gel formulation. Treatment with GA-loaded liposomal gel resulted in a statistically significant reduction in the scores of hyperpigmentation, fine wrinkling and lentigines. Moreover, liposomal gel formulation was able to minimize side effects of GA.Conclusion: According to the obtained results, the liposome-based gel formulation can be used as potential drug delivery system to enhance permeation of GA through skin layers and also reduce its side effects.
{"title":"Clinical evaluation of liposome-based gel formulation containing glycolic acid for the treatment of photodamaged skin.","authors":"Eskandar Moghimipour, Ali Gorji, Reza Yaghoobi, Anayatollah Salimi, Mahmoud Latifi, Maryam Aghakouchakzadeh, Somayeh Handali","doi":"10.1080/1061186X.2023.2288998","DOIUrl":"10.1080/1061186X.2023.2288998","url":null,"abstract":"<p><p><b>Background:</b> Long contact of UV causes skin damage. Glycolic acid (GA) as an alpha hydroxy acid is used to treat photodamaged skin. However, GA leads to side effects including; burning, erythema and peeling.<b>Purpose:</b> The aim of this study was to develop a controlled delivery systems loading GA in order to increasing its efficacy and lowering its side effects.<b>Methods:</b> Liposomes were evaluated for encapsulation efficiency, size and morphology. Optimized formulation was dispersed in HPMC gel bases and drug release kinetics were also studied. Clinical efficacy and safety of GA-loaded liposomal gel and GA gel formulation were evaluated in patients with photodamaged skin.<b>Results:</b> The EE% and average particle size of liposomes were 64 ±2.1 % and 317±3.6 nm, respectively. SEM image showed that liposomes were spherical in shape. In vitro release kinetics of GA from both formulations followed Weibull model. Clinical evaluation revealed that GA-loaded liposomal gel was more effective than GA gel formulation. Treatment with GA-loaded liposomal gel resulted in a statistically significant reduction in the scores of hyperpigmentation, fine wrinkling and lentigines. Moreover, liposomal gel formulation was able to minimize side effects of GA.<b>Conclusion:</b> According to the obtained results, the liposome-based gel formulation can be used as potential drug delivery system to enhance permeation of GA through skin layers and also reduce its side effects.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"74-79"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138444876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Non-small cell lung cancer (NSCLC) accounting for about 80-85% of all lung cancer cases is one of the fastest-growing malignancies in terms of incidence and mortality worldwide and is commonly treated with cisplatin (DDP). Although treatment may initially be effective, the DDP therapy often leads to the development of chemoresistance and treatment failure. Disulphiram (DSF), an old alcohol-aversion drug, has been revealed to help reverse drug resistance in several cancers. In addition, several studies have shown a close relationship between drug resistance and cancer cell stemness.Methods: In this study, DDP and DSF were embedded in hydroxypropyl-β-cyclodextrin (CD) to prepare a co-loaded inclusion complex of DDP and DSF (DDP-DSF/CD) with enhanced solubility and therapeutic effects. The effects and mechanism of DSF on the DDP resistance from the perspective of cancer cell stemness were determined.Results: Our data show that DDP-DSF/CD increased cytotoxicity and apoptosis of DDP-resistant A549 (A549/DDP) cells, inhibited stem cell transcriptional regulatory genes and drug resistance-associated proteins and reversed the DDP resistance in vitro and in vivo.Discussion: Overall, DDP-DSF/CD could be a promising formulation for the reversal of DDP resistance in NSCLC by inhibiting cancer cell stemness.
{"title":"A cisplatin and disulphiram co-loaded inclusion complex overcomes drug resistance by inhibiting cancer cell stemness in non-small cell lung cancer.","authors":"Wenhui Ye, Huaiyou Lv, Qinxiu Zhang, Jianxiong Zhao, Xin Zhao, Guozhi Zhao, Chongzheng Yan, Fengqin Sun, Zhongxi Zhao, Xiumei Jia","doi":"10.1080/1061186X.2023.2298844","DOIUrl":"10.1080/1061186X.2023.2298844","url":null,"abstract":"<p><p><b>Introduction:</b> Non-small cell lung cancer (NSCLC) accounting for about 80-85% of all lung cancer cases is one of the fastest-growing malignancies in terms of incidence and mortality worldwide and is commonly treated with cisplatin (DDP). Although treatment may initially be effective, the DDP therapy often leads to the development of chemoresistance and treatment failure. Disulphiram (DSF), an old alcohol-aversion drug, has been revealed to help reverse drug resistance in several cancers. In addition, several studies have shown a close relationship between drug resistance and cancer cell stemness.<b>Methods:</b> In this study, DDP and DSF were embedded in hydroxypropyl-β-cyclodextrin (CD) to prepare a co-loaded inclusion complex of DDP and DSF (DDP-DSF/CD) with enhanced solubility and therapeutic effects. The effects and mechanism of DSF on the DDP resistance from the perspective of cancer cell stemness were determined.<b>Results:</b> Our data show that DDP-DSF/CD increased cytotoxicity and apoptosis of DDP-resistant A549 (A549/DDP) cells, inhibited stem cell transcriptional regulatory genes and drug resistance-associated proteins and reversed the DDP resistance <i>in vitro</i> and <i>in vivo</i>.<b>Discussion:</b> Overall, DDP-DSF/CD could be a promising formulation for the reversal of DDP resistance in NSCLC by inhibiting cancer cell stemness.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"159-171"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138830040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The boom in cancer immunotherapy has provided many patients with a better chance of survival, but opportunities often come with challenges. Single immunotherapy is not good enough to eradicate tumours, and often fails to achieve the desired therapeutic effect because of the low targeting of immunotherapy drugs, and causes more side effects. As a solution to this problem, researchers have developed several nano Drug Delivery Systems (NDDS) to deliver immunotherapeutic agents to achieve good therapeutic outcomes. However, traditional drug delivery systems (DDS) have disadvantages such as poor bioavailability, high cytotoxicity, and difficulty in synthesis, etc. Herbal Polysaccharides (HPS), derived from natural Chinese herbs, inherently possess low toxicity. Furthermore, the biocompatibility, biodegradability, hydrophilicity, ease of modification, and immunomodulatory activities of HPS offer unique advantages in substituting traditional DDS. This review initially addresses the current developments and challenges in immunotherapy. Subsequently, it focuses on the immunomodulatory mechanisms of HPS and their design as nanomedicines for targeted drug delivery in tumour immunotherapy. Our findings reveal that HPS-based nanomedicines exhibit significant potential in enhancing the efficacy of cancer immunotherapy, providing crucial theoretical foundations and practical guidelines for future clinical applications.
{"title":"Advances in herbal polysaccharides-based nano-drug delivery systems for cancer immunotherapy.","authors":"Miao-Miao Han, Yi-Kai Fan, Yun Zhang, Zheng-Qi Dong","doi":"10.1080/1061186X.2024.2309661","DOIUrl":"10.1080/1061186X.2024.2309661","url":null,"abstract":"<p><p>The boom in cancer immunotherapy has provided many patients with a better chance of survival, but opportunities often come with challenges. Single immunotherapy is not good enough to eradicate tumours, and often fails to achieve the desired therapeutic effect because of the low targeting of immunotherapy drugs, and causes more side effects. As a solution to this problem, researchers have developed several nano Drug Delivery Systems (NDDS) to deliver immunotherapeutic agents to achieve good therapeutic outcomes. However, traditional drug delivery systems (DDS) have disadvantages such as poor bioavailability, high cytotoxicity, and difficulty in synthesis, etc. Herbal Polysaccharides (HPS), derived from natural Chinese herbs, inherently possess low toxicity. Furthermore, the biocompatibility, biodegradability, hydrophilicity, ease of modification, and immunomodulatory activities of HPS offer unique advantages in substituting traditional DDS. This review initially addresses the current developments and challenges in immunotherapy. Subsequently, it focuses on the immunomodulatory mechanisms of HPS and their design as nanomedicines for targeted drug delivery in tumour immunotherapy. Our findings reveal that HPS-based nanomedicines exhibit significant potential in enhancing the efficacy of cancer immunotherapy, providing crucial theoretical foundations and practical guidelines for future clinical applications.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"311-324"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139545667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-01-12DOI: 10.1080/1061186X.2023.2288996
Mirza Muhammad Faran Ashraf Baig, Lok Yin Wong, Hongkai Wu
This review has focused on the development of mRNA nano-vaccine and the biochemical interactions of anti-COVID-19 mRNA vaccines with various disease conditions and age groups. It studied five major groups of individuals with different disease conditions and ages, including allergic background, infarction background, adolescent, and adult (youngsters), pregnant women, and elderly. All five groups had been reported to have background-related adverse effects. Allergic background individuals were observed to have higher chances of experiencing allergic reactions and even anaphylaxis. Individuals with an infarction background had a higher risk of vaccine-induced diseases, e.g. pneumonitis and interstitial lung diseases. Pregnant women were seen to suffer from obstetric and gynecological adverse effects after receiving vaccinations. However, interestingly, the elderly individuals (> 65 years old) had experienced milder and less frequent adverse effects compared to the adolescent (<19 and >9 years old) and young adulthood (19-39 years old), or middle adulthood (40-59 years old) age groups, while middle to late adolescent (14-17 years old) was the riskiest age group to vaccine-induced cardiovascular manifestations.
{"title":"Development of mRNA nano-vaccines for COVID-19 prevention and its biochemical interactions with various disease conditions and age groups.","authors":"Mirza Muhammad Faran Ashraf Baig, Lok Yin Wong, Hongkai Wu","doi":"10.1080/1061186X.2023.2288996","DOIUrl":"10.1080/1061186X.2023.2288996","url":null,"abstract":"<p><p>This review has focused on the development of mRNA nano-vaccine and the biochemical interactions of anti-COVID-19 mRNA vaccines with various disease conditions and age groups. It studied five major groups of individuals with different disease conditions and ages, including allergic background, infarction background, adolescent, and adult (youngsters), pregnant women, and elderly. All five groups had been reported to have background-related adverse effects. Allergic background individuals were observed to have higher chances of experiencing allergic reactions and even anaphylaxis. Individuals with an infarction background had a higher risk of vaccine-induced diseases, e.g. pneumonitis and interstitial lung diseases. Pregnant women were seen to suffer from obstetric and gynecological adverse effects after receiving vaccinations. However, interestingly, the elderly individuals (> 65 years old) had experienced milder and less frequent adverse effects compared to the adolescent (<19 and >9 years old) and young adulthood (19-39 years old), or middle adulthood (40-59 years old) age groups, while middle to late adolescent (14-17 years old) was the riskiest age group to vaccine-induced cardiovascular manifestations.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"21-32"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138444877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-01-12DOI: 10.1080/1061186X.2023.2284097
Lingyun Zhao, Qingze Wu, Yiying Long, Qirui Qu, Fang Qi, Li Liu, Liang Zhang, Kun Ai
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
{"title":"microRNAs: critical targets for treating rheumatoid arthritis angiogenesis.","authors":"Lingyun Zhao, Qingze Wu, Yiying Long, Qirui Qu, Fang Qi, Li Liu, Liang Zhang, Kun Ai","doi":"10.1080/1061186X.2023.2284097","DOIUrl":"10.1080/1061186X.2023.2284097","url":null,"abstract":"<p><p>Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-20"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138047014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-02-06DOI: 10.1080/1061186X.2024.2309577
Yu-Xin Xie, Hui Yao, Jin-Fu Peng, Dan Ni, Wan-Ting Liu, Chao-Quan Li, Guang-Hui Yi
Cardiovascular disease is the leading cause of death worldwide, and it's of great importance to understand its underlying mechanisms and find new treatments. Sphingosine 1-phosphate (S1P) is an active lipid that exerts its effects through S1P receptors on the cell surface or intracellular signal, and regulates many cellular processes such as cell growth, cell proliferation, cell migration, cell survival, and so on. S1PR modulators are a class of modulators that can interact with S1PR subtypes to activate receptors or block their activity, exerting either agonist or functional antagonist effects. Many studies have shown that S1P plays a protective role in the cardiovascular system and regulates cardiac physiological functions mainly through interaction with cell surface S1P receptors (S1PRs). Therefore, S1PR modulators may play a therapeutic role in cardiovascular diseases. Here, we review five S1PRs and their functions and the progress of S1PR modulators. In addition, we focus on the effects of S1PR modulators on atherosclerosis, myocardial infarction, myocardial ischaemia/reperfusion injury, diabetic cardiovascular diseases, and myocarditis, which may provide valuable insights into potential therapeutic strategies for cardiovascular disease.
{"title":"Insight into modulators of sphingosine-1-phosphate receptor and implications for cardiovascular therapeutics.","authors":"Yu-Xin Xie, Hui Yao, Jin-Fu Peng, Dan Ni, Wan-Ting Liu, Chao-Quan Li, Guang-Hui Yi","doi":"10.1080/1061186X.2024.2309577","DOIUrl":"10.1080/1061186X.2024.2309577","url":null,"abstract":"<p><p>Cardiovascular disease is the leading cause of death worldwide, and it's of great importance to understand its underlying mechanisms and find new treatments. Sphingosine 1-phosphate (S1P) is an active lipid that exerts its effects through S1P receptors on the cell surface or intracellular signal, and regulates many cellular processes such as cell growth, cell proliferation, cell migration, cell survival, and so on. S1PR modulators are a class of modulators that can interact with S1PR subtypes to activate receptors or block their activity, exerting either agonist or functional antagonist effects. Many studies have shown that S1P plays a protective role in the cardiovascular system and regulates cardiac physiological functions mainly through interaction with cell surface S1P receptors (S1PRs). Therefore, S1PR modulators may play a therapeutic role in cardiovascular diseases. Here, we review five S1PRs and their functions and the progress of S1PR modulators. In addition, we focus on the effects of S1PR modulators on atherosclerosis, myocardial infarction, myocardial ischaemia/reperfusion injury, diabetic cardiovascular diseases, and myocarditis, which may provide valuable insights into potential therapeutic strategies for cardiovascular disease.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"300-310"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139545674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Efferocytosis refers to the process by which phagocytes remove apoptotic cells and related apoptotic products. It is essential for the growth and development of the body, the repair of damaged or inflamed tissues, and the balance of the immune system. Damaged efferocytosis will cause a variety of chronic inflammation and immune system diseases. Many studies show that efferocytosis is a process mediated by mitochondria. Mitochondrial metabolism, mitochondrial dynamics, and communication between mitochondria and other organelles can all affect phagocytes' clearance of apoptotic cells. Therefore, targeting mitochondria to modulate phagocyte efferocytosis is an anticipated strategy to prevent and treat chronic inflammatory diseases and autoimmune diseases. In this review, we introduced the mechanism of efferocytosis and the pivoted role of mitochondria in efferocytosis. In addition, we focused on the therapeutic implication of drugs targeting mitochondria in diseases related to efferocytosis dysfunction.
{"title":"Therapeutic implication of targeting mitochondrial drugs designed for efferocytosis dysfunction.","authors":"Wan-Ting Liu, Chao-Quan Li, Ao-Ni Fu, Hao-Tian Yang, Yu-Xin Xie, Hui Yao, Guang-Hui Yi","doi":"10.1080/1061186X.2024.2386620","DOIUrl":"10.1080/1061186X.2024.2386620","url":null,"abstract":"<p><p>Efferocytosis refers to the process by which phagocytes remove apoptotic cells and related apoptotic products. It is essential for the growth and development of the body, the repair of damaged or inflamed tissues, and the balance of the immune system. Damaged efferocytosis will cause a variety of chronic inflammation and immune system diseases. Many studies show that efferocytosis is a process mediated by mitochondria. Mitochondrial metabolism, mitochondrial dynamics, and communication between mitochondria and other organelles can all affect phagocytes' clearance of apoptotic cells. Therefore, targeting mitochondria to modulate phagocyte efferocytosis is an anticipated strategy to prevent and treat chronic inflammatory diseases and autoimmune diseases. In this review, we introduced the mechanism of efferocytosis and the pivoted role of mitochondria in efferocytosis. In addition, we focused on the therapeutic implication of drugs targeting mitochondria in diseases related to efferocytosis dysfunction.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1169-1185"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}