Pub Date : 2023-11-03DOI: 10.1080/17458080.2023.2276278
Bruska Azhdar
Nanocrystalline magnesium oxide powders (MgO) were prepared using a hydrothermal method. In various fuel-to-oxidizer ratios (F/O) and precursor solutions with pH levels from 8 to 12, magnesium nitrate hexahydrate Mg(NO3)2 was utilized as an oxidizer and polyvinyl alcohol (PVA) as a fuel. To improve crystallinity and phase purity, these materials were annealed for two hours at varied temperatures. XRD, FTIR, EDS, FESEM and DRS were used to study the MgO nanopowders’ structure, vibration, elemental and optical properties. The fuel-to-oxidizer ratios, annealing temperatures and pH values greatly affected the samples’ properties. The synthesized powders had a particle size distribution in the range of 18–49 nm. The XRD results showed that the crystallite percent of the MgO phase grew with an increase in the F/O from 0.5 to 0.75, and then, it decreased at F/O = 1. The maximum percent of crystallites was observed at pH = 8. By increasing the annealing temperatures, the crystallite size of the samples increased from 22.82 nm to 49.06 nm, while the specific surface area and dislocation density decreased from 20.59 m2/g to 7.83 m2/g and 0.0006 nm−2 to 0.0001 nm−2, respectively. FTIR spectra results indicated that the MgO band peaking at (418–688 cm−1) was high at pH value 8, then it reduced at pH 10 and finally, this peak had the smallest size at pH = 12. Further confirmation of MgO presence and its homogeneity in the final product was approved through EDS measurements. DRS spectra were used to obtain energy gap using Kubelka–Munk relation and noticed in the range of 5.72–5.89 eV for MgO NPs.
{"title":"Influence of fuel-to-oxidizer ratio, potential of hydrogen and annealing temperature on the structural and optical properties of nanocrystalline MgO powders synthesized by the hydrothermal method","authors":"Bruska Azhdar","doi":"10.1080/17458080.2023.2276278","DOIUrl":"https://doi.org/10.1080/17458080.2023.2276278","url":null,"abstract":"Nanocrystalline magnesium oxide powders (MgO) were prepared using a hydrothermal method. In various fuel-to-oxidizer ratios (F/O) and precursor solutions with pH levels from 8 to 12, magnesium nitrate hexahydrate Mg(NO3)2 was utilized as an oxidizer and polyvinyl alcohol (PVA) as a fuel. To improve crystallinity and phase purity, these materials were annealed for two hours at varied temperatures. XRD, FTIR, EDS, FESEM and DRS were used to study the MgO nanopowders’ structure, vibration, elemental and optical properties. The fuel-to-oxidizer ratios, annealing temperatures and pH values greatly affected the samples’ properties. The synthesized powders had a particle size distribution in the range of 18–49 nm. The XRD results showed that the crystallite percent of the MgO phase grew with an increase in the F/O from 0.5 to 0.75, and then, it decreased at F/O = 1. The maximum percent of crystallites was observed at pH = 8. By increasing the annealing temperatures, the crystallite size of the samples increased from 22.82 nm to 49.06 nm, while the specific surface area and dislocation density decreased from 20.59 m2/g to 7.83 m2/g and 0.0006 nm−2 to 0.0001 nm−2, respectively. FTIR spectra results indicated that the MgO band peaking at (418–688 cm−1) was high at pH value 8, then it reduced at pH 10 and finally, this peak had the smallest size at pH = 12. Further confirmation of MgO presence and its homogeneity in the final product was approved through EDS measurements. DRS spectra were used to obtain energy gap using Kubelka–Munk relation and noticed in the range of 5.72–5.89 eV for MgO NPs.","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":"37 22","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135820049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-26DOI: 10.1080/17458080.2023.2267183
Sumit K. Shrivastava, Asita Kulshreshtha, Rajesh K. Gangwar, Shikha Srivastava, Abhishek P. Tiwari, Santpal Singh, Saurabh Kumar, Shama Parveen, Monisha Banerjee, Dhirendra K. Chaudhary
In this study, we have developed an environment friendly and novel approach for the synthesis of silver nanoparticles utilising plumeria pudica leaf extract. In this technique, the leaf extract was employed as both a reducing agent for the reduction of a silver nitrate (AgNO3) solution and a capping agent, leading to the synthesis of silver nanoparticles (Ag NPs). The outcomes of these analyses revealed an average particle size of ∼19 nm as determined by SEM, while XRD measurements indicated a crystalline domain size of ∼12 nm and a lattice parameter of approximately 4.087467 Å. Furthermore, the anti-cancer potential of the synthesised silver nanoparticles was evaluated, unveiling an IC50 value of around 28 µM. This suggests that the introduced silver nanoparticles may have triggered apoptosis, consequently inducing cell death. These findings underscore the potential of utilising environmentally benign silver nanoparticles in lung cancer chemotherapy.
{"title":"Phyto-synthesis of silver nanoparticles from Plumeria pudica leaf extract and its application in anti-cancerous activity","authors":"Sumit K. Shrivastava, Asita Kulshreshtha, Rajesh K. Gangwar, Shikha Srivastava, Abhishek P. Tiwari, Santpal Singh, Saurabh Kumar, Shama Parveen, Monisha Banerjee, Dhirendra K. Chaudhary","doi":"10.1080/17458080.2023.2267183","DOIUrl":"https://doi.org/10.1080/17458080.2023.2267183","url":null,"abstract":"In this study, we have developed an environment friendly and novel approach for the synthesis of silver nanoparticles utilising plumeria pudica leaf extract. In this technique, the leaf extract was employed as both a reducing agent for the reduction of a silver nitrate (AgNO3) solution and a capping agent, leading to the synthesis of silver nanoparticles (Ag NPs). The outcomes of these analyses revealed an average particle size of ∼19 nm as determined by SEM, while XRD measurements indicated a crystalline domain size of ∼12 nm and a lattice parameter of approximately 4.087467 Å. Furthermore, the anti-cancer potential of the synthesised silver nanoparticles was evaluated, unveiling an IC50 value of around 28 µM. This suggests that the introduced silver nanoparticles may have triggered apoptosis, consequently inducing cell death. These findings underscore the potential of utilising environmentally benign silver nanoparticles in lung cancer chemotherapy.","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136381660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-17DOI: 10.1080/17458080.2023.2175817
Tahani H. Flemban
Nanoparticles (NPs) find widespread applications in detectors, catalysis, optoelectronics, and medical devices, owing to their high surface-to-volume ratio and zero-dimensional confinement. However, addressing environmental concerns is crucial during the creation of novel nanostructured materials. Herein, ZnO NPs of different sizes were prepared via the pulsed laser ablation in liquid (PLAL) method at energies of 70, 90, and 130 mJ. The morphology and structural properties of the synthesized NPs were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and transmission electron microscopy. zeta-sizer and zeta-potential were used to ensure the physical stability of NPs. UV-Vis spectrophotometry measurement showed a blue shift in the band gaps with an increase in the pulsed laser energy leading to a decrease in the size of the NPs. Fourier-transform infrared spectroscopy technique confirmed the formation of ZnO NPs.
{"title":"Synthesis, characterization, and analysis of zinc oxide nanoparticles using varying pulsed laser ablation energies in liquid","authors":"Tahani H. Flemban","doi":"10.1080/17458080.2023.2175817","DOIUrl":"https://doi.org/10.1080/17458080.2023.2175817","url":null,"abstract":"Nanoparticles (NPs) find widespread applications in detectors, catalysis, optoelectronics, and medical devices, owing to their high surface-to-volume ratio and zero-dimensional confinement. However, addressing environmental concerns is crucial during the creation of novel nanostructured materials. Herein, ZnO NPs of different sizes were prepared via the pulsed laser ablation in liquid (PLAL) method at energies of 70, 90, and 130 mJ. The morphology and structural properties of the synthesized NPs were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and transmission electron microscopy. zeta-sizer and zeta-potential were used to ensure the physical stability of NPs. UV-Vis spectrophotometry measurement showed a blue shift in the band gaps with an increase in the pulsed laser energy leading to a decrease in the size of the NPs. Fourier-transform infrared spectroscopy technique confirmed the formation of ZnO NPs.","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136037923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-17DOI: 10.1080/17458080.2023.2170356
Jianfeng Liao
With the acceleration of the global modern industrialisation process and the increasingly serious environmental problems, the development of low energy consumption, high efficiency electrochemical energy conversion equipment and separation system has become a research hotspot in the scientific and industrial circles. At present, machine learning has become an important research method to explore and expand two-dimensional material family. Traditional experimental and computational methods have low fault tolerance when studying two-dimensional materials, which requires a lot of time and research and development costs. Machine learning, due to its powerful data processing capability and flexible algorithm model, can help reduce the time and cost of discovering and understanding two-dimensional materials, and can effectively predict and expand two-dimensional material systems based on data and explore their potential for experimental synthesis and application. This paper will focus on the methods of machine learning, the exploration of machine learning in 2D material design and synthesis, and the exploration of machine learning in 2D material properties and applications. Finally, this paper uses ML algorithm to test the synthesised polymer. The experimental data points and prediction data points have relatively good consistency with each other, which indicates that ML model can be used as a prediction tool to identify the undeveloped polymer for gas separation.
{"title":"Machine learning aided evaluation and design based on polymer membrane materials","authors":"Jianfeng Liao","doi":"10.1080/17458080.2023.2170356","DOIUrl":"https://doi.org/10.1080/17458080.2023.2170356","url":null,"abstract":"With the acceleration of the global modern industrialisation process and the increasingly serious environmental problems, the development of low energy consumption, high efficiency electrochemical energy conversion equipment and separation system has become a research hotspot in the scientific and industrial circles. At present, machine learning has become an important research method to explore and expand two-dimensional material family. Traditional experimental and computational methods have low fault tolerance when studying two-dimensional materials, which requires a lot of time and research and development costs. Machine learning, due to its powerful data processing capability and flexible algorithm model, can help reduce the time and cost of discovering and understanding two-dimensional materials, and can effectively predict and expand two-dimensional material systems based on data and explore their potential for experimental synthesis and application. This paper will focus on the methods of machine learning, the exploration of machine learning in 2D material design and synthesis, and the exploration of machine learning in 2D material properties and applications. Finally, this paper uses ML algorithm to test the synthesised polymer. The experimental data points and prediction data points have relatively good consistency with each other, which indicates that ML model can be used as a prediction tool to identify the undeveloped polymer for gas separation.","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136037761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.1080/17458080.2023.2264521
Guodong Zheng, Wuxia Liu, Qian Zhang, Tuo Shen, Jingfeng Zhang, Lei Jiang, Wenqi Liang, Bin Zhou, Ling Liu, Shenqian Xu, Minyu Li
Fibroblast growth factor receptor 2 (FGFR2), as a transmembrane receptor tyrosine kinase, is implicated in a plethora of human cancers, including intrahepatic cholangiocarcinomas, breast cancers, and non-small cell lung cancer. The clinically relevant V564F gatekeeper mutation conferred resistance to current FGFR2 drug − Infigratinib. In this study, the protein − ligand interactions between FGFR2 kinase domain (wild-type and V564F) and Infigratinib were compared through an integrated computational method. The multiple, large-scale molecular dynamics (MD) simulations, together with dynamic cross-correlation analysis and binding free energy calculations suggested that the resistant mutation may not trigger the conformational changes of the FGFR2 kinase domain. The simulation results also indicated that the driving force to decrease the binding affinity of Infigratinib to the FGFR2 V564F variant derived from the difference in the protein − ligand hydrogen bonding interactions. Moreover, the per-residue free energy decomposition analysis revealed that the reduced contributions from several residues in the ATP-binding site of FGFR2, especially Glu565 and Ala567 located at the kinase hinge domain, were the key residues responsible for the loss of binding affinity of Infigratinib to the V564F variant. This study may offer useful information for the design of novel selective kinase inhibitors targeting FGFR2.
{"title":"Molecular docking and molecular dynamics simulations reveal the clinical resistance of the gatekeeper mutation V564F of FGFR2 against Infigratinib","authors":"Guodong Zheng, Wuxia Liu, Qian Zhang, Tuo Shen, Jingfeng Zhang, Lei Jiang, Wenqi Liang, Bin Zhou, Ling Liu, Shenqian Xu, Minyu Li","doi":"10.1080/17458080.2023.2264521","DOIUrl":"https://doi.org/10.1080/17458080.2023.2264521","url":null,"abstract":"Fibroblast growth factor receptor 2 (FGFR2), as a transmembrane receptor tyrosine kinase, is implicated in a plethora of human cancers, including intrahepatic cholangiocarcinomas, breast cancers, and non-small cell lung cancer. The clinically relevant V564F gatekeeper mutation conferred resistance to current FGFR2 drug − Infigratinib. In this study, the protein − ligand interactions between FGFR2 kinase domain (wild-type and V564F) and Infigratinib were compared through an integrated computational method. The multiple, large-scale molecular dynamics (MD) simulations, together with dynamic cross-correlation analysis and binding free energy calculations suggested that the resistant mutation may not trigger the conformational changes of the FGFR2 kinase domain. The simulation results also indicated that the driving force to decrease the binding affinity of Infigratinib to the FGFR2 V564F variant derived from the difference in the protein − ligand hydrogen bonding interactions. Moreover, the per-residue free energy decomposition analysis revealed that the reduced contributions from several residues in the ATP-binding site of FGFR2, especially Glu565 and Ala567 located at the kinase hinge domain, were the key residues responsible for the loss of binding affinity of Infigratinib to the V564F variant. This study may offer useful information for the design of novel selective kinase inhibitors targeting FGFR2.","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":"301 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135483555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-11DOI: 10.1080/17458080.2023.2254006
Meng Yue, Rui Yang, Yakun Jiang, Xiuhua Yang
Regorafenib (Reg) inhibits the growth of liver cancer cells in vitro and animal model. However, due to its poor bioavailability, its potential as a chemopreventive or therapeutic drug is severely restricted. In this work, we developed two environmentally friendly delivery systems by synthesizing Regorafenib-gold nanoparticles conjugates Reg@GNPs1 and Reg@GNPs2, employing a dual role of Reg to reduce Au3+ and stabilize the synthesized GNPs. UV-Vis’s spectroscopy, Fourier transform infrared spectroscopy, and Powder-XRD verified the fabrication of Reg@GNPs. Reg@GNPs1 and Reg@GNPs2 were both found to be spherical and uniform in size (10 ± 2 and 2 ± 33 nm, respectively) using transmission electron microscopy. Similar negative zeta potential (−35.0 ± 2.5 and −37.0 ± 1.6 mV) was observed by dynamic light scattering analysis, even though the hydrodynamic diameter of the nanoconjugates ranged from 65.0 ± 1.7 to 153.0 ± 2.2 nm. Reg@GNPs1 and Reg@GNPs2 were calculated to have a Reg loading of 46% and 48%, respectively. Selectivity towards the non-cancerous cell line (L929) cells, whereas the MTT assay in vitro showed the antiproliferative effects of Reg@GNPs on three liver carcinoma (Hep3B, BEL7402, and HepG2) cell lines. Several fluorescent staining techniques were used to examine liver cancer cell morphology. Flow cytometric analysis confirmed that the effects of the superior Reg@GNPs nanoconjugate on cell proliferation than free Reg. In conclusion, the acquired results show that the novel synthesized GNPs loaded with Reg are stable as an anticancer agent, with minimal toxicity against non-cancerous cells, as determined by cytotoxicity and IC50 evaluations.
{"title":"Precise construction of Regorafenib-loaded gold nanoparticles: investigation of antiproliferative activity and apoptosis induction in liver cancer cells","authors":"Meng Yue, Rui Yang, Yakun Jiang, Xiuhua Yang","doi":"10.1080/17458080.2023.2254006","DOIUrl":"https://doi.org/10.1080/17458080.2023.2254006","url":null,"abstract":"Regorafenib (Reg) inhibits the growth of liver cancer cells in vitro and animal model. However, due to its poor bioavailability, its potential as a chemopreventive or therapeutic drug is severely restricted. In this work, we developed two environmentally friendly delivery systems by synthesizing Regorafenib-gold nanoparticles conjugates Reg@GNPs1 and Reg@GNPs2, employing a dual role of Reg to reduce Au3+ and stabilize the synthesized GNPs. UV-Vis’s spectroscopy, Fourier transform infrared spectroscopy, and Powder-XRD verified the fabrication of Reg@GNPs. Reg@GNPs1 and Reg@GNPs2 were both found to be spherical and uniform in size (10 ± 2 and 2 ± 33 nm, respectively) using transmission electron microscopy. Similar negative zeta potential (−35.0 ± 2.5 and −37.0 ± 1.6 mV) was observed by dynamic light scattering analysis, even though the hydrodynamic diameter of the nanoconjugates ranged from 65.0 ± 1.7 to 153.0 ± 2.2 nm. Reg@GNPs1 and Reg@GNPs2 were calculated to have a Reg loading of 46% and 48%, respectively. Selectivity towards the non-cancerous cell line (L929) cells, whereas the MTT assay in vitro showed the antiproliferative effects of Reg@GNPs on three liver carcinoma (Hep3B, BEL7402, and HepG2) cell lines. Several fluorescent staining techniques were used to examine liver cancer cell morphology. Flow cytometric analysis confirmed that the effects of the superior Reg@GNPs nanoconjugate on cell proliferation than free Reg. In conclusion, the acquired results show that the novel synthesized GNPs loaded with Reg are stable as an anticancer agent, with minimal toxicity against non-cancerous cells, as determined by cytotoxicity and IC50 evaluations.","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135980848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-26DOI: 10.1080/17458080.2023.2249241
Larica Mohanta, B. S. Jena
{"title":"Dillenia indica bark extract mediated bio-fabrication of copper nanoparticles: characterisation, antioxidant and anticancer activity in vitro","authors":"Larica Mohanta, B. S. Jena","doi":"10.1080/17458080.2023.2249241","DOIUrl":"https://doi.org/10.1080/17458080.2023.2249241","url":null,"abstract":"","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45603090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-25DOI: 10.1080/17458080.2023.2246662
N. Chaudhary, Mithilesh K. Dikshit, C. L. Kumar, Pankaj Sonia, V. Pathak, K. K. Saxena, S. S. Hamid, N. U. Salmaan
{"title":"Sustainable mechanical properties evaluation for graphene reinforced Epoxy/Kevlar fiber using MD simulations","authors":"N. Chaudhary, Mithilesh K. Dikshit, C. L. Kumar, Pankaj Sonia, V. Pathak, K. K. Saxena, S. S. Hamid, N. U. Salmaan","doi":"10.1080/17458080.2023.2246662","DOIUrl":"https://doi.org/10.1080/17458080.2023.2246662","url":null,"abstract":"","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44451492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-12DOI: 10.1080/17458080.2023.2241997
Zhan Li, Tiantian Du, Wen Yang, S. Yi, Na Zhang
{"title":"One-pot construction of gemcitabine loaded zeolitic imidazole framework for the treatment of lung cancer and its apoptosis induction","authors":"Zhan Li, Tiantian Du, Wen Yang, S. Yi, Na Zhang","doi":"10.1080/17458080.2023.2241997","DOIUrl":"https://doi.org/10.1080/17458080.2023.2241997","url":null,"abstract":"","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49580467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-08DOI: 10.1080/17458080.2023.2238129
Limin Zhu, Shuangyan Wang
{"title":"Facile engineering of chitosan-coated aminopterin loaded zeolitic imidazolate framework: promising drug delivery system for breast cancer","authors":"Limin Zhu, Shuangyan Wang","doi":"10.1080/17458080.2023.2238129","DOIUrl":"https://doi.org/10.1080/17458080.2023.2238129","url":null,"abstract":"","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42836309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}