Tim Wollesen, Sonia V. Rodriguez Monje, Adam P. Oel, Detlev Arendt
The phylogenetic position of chaetognaths, or arrow worms, has been debated for decades, however recently they have been grouped into the Gnathifera, a sister clade to all other Spiralia. Chaetognath photoreceptor cells are anatomically unique by exhibiting a highly modified cilium and are arranged differently in the eyes of the various species. Studies investigating eye development and underlying gene regulatory networks are so far missing. To gain insights into the development and the molecular toolkit of chaetognath photoreceptors and eyes a new transcriptome of the epibenthic species Spadella cephaloptera was searched for opsins. Our screen revealed two copies of xenopsin and a single copy of peropsin. Gene expression analyses demonstrated that only xenopsin1 is expressed in photoreceptor cells of the developing lateral eyes. Adults likewise exhibit two xenopsin1 + photoreceptor cells in each of their lateral eyes. Beyond that, a single cryptochrome gene was uncovered and found to be expressed in photoreceptor cells of the lateral developing eye. In addition, cryptochrome is also expressed in the cerebral ganglia in a region in which also peropsin expression was observed. This condition is reminiscent of a nonvisual photoreceptive zone in the apical nervous system of the annelid Platynereis dumerilii that performs circadian entrainment and melatonin release. Cryptochrome is also expressed in cells of the corona ciliata, an organ in the posterior dorsal head region, indicating a role in circadian entrainment. Our study highlights the importance of the Gnathifera for unraveling the evolution of photoreceptors and eyes in Spiralia and Bilateria.
{"title":"Characterization of eyes, photoreceptors, and opsins in developmental stages of the arrow worm Spadella cephaloptera (Chaetognatha)","authors":"Tim Wollesen, Sonia V. Rodriguez Monje, Adam P. Oel, Detlev Arendt","doi":"10.1002/jez.b.23193","DOIUrl":"10.1002/jez.b.23193","url":null,"abstract":"<p>The phylogenetic position of chaetognaths, or arrow worms, has been debated for decades, however recently they have been grouped into the Gnathifera, a sister clade to all other Spiralia. Chaetognath photoreceptor cells are anatomically unique by exhibiting a highly modified cilium and are arranged differently in the eyes of the various species. Studies investigating eye development and underlying gene regulatory networks are so far missing. To gain insights into the development and the molecular toolkit of chaetognath photoreceptors and eyes a new transcriptome of the epibenthic species <i>Spadella cephaloptera</i> was searched for opsins. Our screen revealed two copies of <i>xenopsin</i> and a single copy of <i>peropsin</i>. Gene expression analyses demonstrated that only <i>xenopsin1</i> is expressed in photoreceptor cells of the developing lateral eyes. Adults likewise exhibit two <i>xenopsin1</i> + photoreceptor cells in each of their lateral eyes. Beyond that, a single <i>cryptochrome</i> gene was uncovered and found to be expressed in photoreceptor cells of the lateral developing eye. In addition, <i>cryptochrome</i> is also expressed in the cerebral ganglia in a region in which also <i>peropsin</i> expression was observed. This condition is reminiscent of a nonvisual photoreceptive zone in the apical nervous system of the annelid <i>Platynereis dumerilii</i> that performs circadian entrainment and melatonin release. <i>Cryptochrome</i> is also expressed in cells of the corona ciliata, an organ in the posterior dorsal head region, indicating a role in circadian entrainment. Our study highlights the importance of the Gnathifera for unraveling the evolution of photoreceptors and eyes in Spiralia and Bilateria.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"340 5","pages":"342-353"},"PeriodicalIF":2.2,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23193","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9985119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In the Spotlight—Established Researcher","authors":"Cliff Tabin","doi":"10.1002/jez.b.23191","DOIUrl":"10.1002/jez.b.23191","url":null,"abstract":"","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"342 1","pages":"5-6"},"PeriodicalIF":2.2,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10721802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In the Spotlight—Established researcher","authors":"Marianne Bronner","doi":"10.1002/jez.b.23190","DOIUrl":"10.1002/jez.b.23190","url":null,"abstract":"","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"340 7","pages":"435-436"},"PeriodicalIF":2.2,"publicationDate":"2023-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10632270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"JEZB special issue on animal gene regulatory network evolution","authors":"Thomas M. Williams, Mark Rebeiz","doi":"10.1002/jez.b.23186","DOIUrl":"10.1002/jez.b.23186","url":null,"abstract":"","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"340 2","pages":"89-91"},"PeriodicalIF":2.2,"publicationDate":"2023-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9230907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David M. Linz, Yuichiro Hara, Kevin D. Deem, Shigehiro Kuraku, Shigeo Hayashi, Yoshinori Tomoyasu
The acquisition of novel traits is central to organismal evolution, yet the molecular mechanisms underlying this process are elusive. The beetle forewings (elytra) are evolutionarily modified to serve as a protective shield, providing a unique opportunity to study these mechanisms. In the past, the orthologs of genes within the wing gene network from Drosophila studies served as the starting point when studying the evolution of elytra (candidate genes). Although effective, candidate gene lists are finite and only explore genes conserved across species. To go beyond candidate genes, we used RNA sequencing and explored the wing transcriptomes of two Coleopteran species, the red flour beetle (Tribolium castaneum) and the Japanese stag beetle (Dorcus hopei). Our analysis revealed sets of genes enriched in Tribolium elytra (57 genes) and genes unique to the hindwings, which possess more “typical” insect wing morphologies (29 genes). Over a third of the hindwing-enriched genes were “candidate genes” whose functions were previously analyzed in Tribolium, demonstrating the robustness of our sequencing. Although the overlap was limited, transcriptomic comparison between the beetle species found a common set of genes, including key wing genes, enriched in either elytra or hindwings. Our RNA interference analysis for elytron-enriched genes in Tribolium uncovered novel genes with roles in forming various aspects of morphology that are unique to elytra, such as pigmentation, hardening, sensory development, and vein formation. Our analyses deepen our understanding of how gene network evolution facilitated the emergence of the elytron, a unique structure critical to the evolutionary success of beetles.
{"title":"Transcriptomic exploration of the Coleopteran wings reveals insight into the evolution of novel structures associated with the beetle elytron","authors":"David M. Linz, Yuichiro Hara, Kevin D. Deem, Shigehiro Kuraku, Shigeo Hayashi, Yoshinori Tomoyasu","doi":"10.1002/jez.b.23188","DOIUrl":"10.1002/jez.b.23188","url":null,"abstract":"<p>The acquisition of novel traits is central to organismal evolution, yet the molecular mechanisms underlying this process are elusive. The beetle forewings (elytra) are evolutionarily modified to serve as a protective shield, providing a unique opportunity to study these mechanisms. In the past, the orthologs of genes within the wing gene network from <i>Drosophila</i> studies served as the starting point when studying the evolution of elytra (candidate genes). Although effective, candidate gene lists are finite and only explore genes conserved across species. To go beyond candidate genes, we used RNA sequencing and explored the wing transcriptomes of two Coleopteran species, the red flour beetle (<i>Tribolium castaneum</i>) and the Japanese stag beetle (<i>Dorcus hopei</i>). Our analysis revealed sets of genes enriched in <i>Tribolium</i> elytra (57 genes) and genes unique to the hindwings, which possess more “typical” insect wing morphologies (29 genes). Over a third of the hindwing-enriched genes were “candidate genes” whose functions were previously analyzed in <i>Tribolium</i>, demonstrating the robustness of our sequencing. Although the overlap was limited, transcriptomic comparison between the beetle species found a common set of genes, including key wing genes, enriched in either elytra or hindwings. Our RNA interference analysis for elytron-enriched genes in <i>Tribolium</i> uncovered novel genes with roles in forming various aspects of morphology that are unique to elytra, such as pigmentation, hardening, sensory development, and vein formation. Our analyses deepen our understanding of how gene network evolution facilitated the emergence of the elytron, a unique structure critical to the evolutionary success of beetles.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"340 2","pages":"197-213"},"PeriodicalIF":2.2,"publicationDate":"2023-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/11/c8/JEZ-340-197.PMC10107685.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9320325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Goutham Shankar, Thumbala A. Gagan, Titus R. S. Kumari, Gopal K. Marathe
Long-term sperm storage by females in various regions of the oviduct is documented across many invertebrate and vertebrate species. Although, many reports emphasize on the histology, histochemistry and ultrastructural features of sperm storage, very little is known about the mechanisms underlying the sperm storage. The current review documents the occurrence of sperm storage by females in a wide array of invertebrate and vertebrate species. This review also provides an insight on the presence of various molecular factors of the sperm storage tubules presumably responsible for the prolonged sperm storage with an emphasis on a model reptile, the Indian garden lizard, Calotes versicolor which contains a unique approximately 55-kDa protein in its utero-vaginal lavage and found to inhibit washed epididymal sperm motility in a concentration and time-dependent manner in a reversible fashion.
{"title":"Sperm storage by females across the animal phyla: A survey on the occurrence and biomolecules involved in sperm storage","authors":"Goutham Shankar, Thumbala A. Gagan, Titus R. S. Kumari, Gopal K. Marathe","doi":"10.1002/jez.b.23189","DOIUrl":"10.1002/jez.b.23189","url":null,"abstract":"<p>Long-term sperm storage by females in various regions of the oviduct is documented across many invertebrate and vertebrate species. Although, many reports emphasize on the histology, histochemistry and ultrastructural features of sperm storage, very little is known about the mechanisms underlying the sperm storage. The current review documents the occurrence of sperm storage by females in a wide array of invertebrate and vertebrate species. This review also provides an insight on the presence of various molecular factors of the sperm storage tubules presumably responsible for the prolonged sperm storage with an emphasis on a model reptile, the Indian garden lizard, <i>Calotes versicolor</i> which contains a unique approximately 55-kDa protein in its utero-vaginal lavage and found to inhibit washed epididymal sperm motility in a concentration and time-dependent manner in a reversible fashion.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"340 4","pages":"283-297"},"PeriodicalIF":2.2,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9631991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mina Motamedi, Azad Teimori, Mohammad Reza Esmaeili, Hossein Mostafavi
Scale development and its regeneration potency were evaluated in a desert killifish Aphaniops hormuzensis (family Aphaniidae) in laboratory conditions by using light and scanning electron microscopy. Scale development in A. hormuzensis took 156 days at room temperature. Four specific regions of scale formation were detected. The first scale development began 13 days post-hatching (dph) (total length [TL] = 8.5 mm) at the caudal peduncle region and is extended anteriorly 26 dph (TL = 13.6 mm) at the area below the dorsal fin. Scales began forming independently in the head region at 33 dph (TL = 21.7 mm), and in the abdominal region, began at 41 dph (TL = 25.8 mm). Additional points of scale origin were detected on the sides of the operculum or behind and below the eyes. Scale regeneration in the caudal peduncle started 6 days after removal (dar). In 16 dar, the microstructural features appeared and the growth circles, a wide and oblong focus (focus length = 0.6 ± 0.05 µm), and lepidonts were also formed. In 36 dar, the scale shape was gradually changed from circular to a polygon, and radii were distinguishable in the anterior field. The pattern of scale formation could be useful in enhancing the understanding of systematics and phylogeny, functional morphology, and habitat use. It could also be useful in helping to define the Larval/juvenile transition period.
{"title":"Evaluation of scale development and its regeneration potency in the desert killifish under laboratory conditions","authors":"Mina Motamedi, Azad Teimori, Mohammad Reza Esmaeili, Hossein Mostafavi","doi":"10.1002/jez.b.23185","DOIUrl":"10.1002/jez.b.23185","url":null,"abstract":"<p>Scale development and its regeneration potency were evaluated in a desert killifish <i>Aphaniops hormuzensis</i> (family Aphaniidae) in laboratory conditions by using light and scanning electron microscopy. Scale development in <i>A. hormuzensis</i> took 156 days at room temperature. Four specific regions of scale formation were detected. The first scale development began 13 days post-hatching (dph) (total length [TL] = 8.5 mm) at the caudal peduncle region and is extended anteriorly 26 dph (TL = 13.6 mm) at the area below the dorsal fin. Scales began forming independently in the head region at 33 dph (TL = 21.7 mm), and in the abdominal region, began at 41 dph (TL = 25.8 mm). Additional points of scale origin were detected on the sides of the operculum or behind and below the eyes. Scale regeneration in the caudal peduncle started 6 days after removal (dar). In 16 dar, the microstructural features appeared and the growth circles, a wide and oblong focus (focus length = 0.6 ± 0.05 µm), and lepidonts were also formed. In 36 dar, the scale shape was gradually changed from circular to a polygon, and radii were distinguishable in the anterior field. The pattern of scale formation could be useful in enhancing the understanding of systematics and phylogeny, functional morphology, and habitat use. It could also be useful in helping to define the Larval/juvenile transition period.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"340 4","pages":"329-336"},"PeriodicalIF":2.2,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9682546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In the Spotlight—Established Researcher","authors":"Laura Nuño de la Rosa","doi":"10.1002/jez.b.23187","DOIUrl":"10.1002/jez.b.23187","url":null,"abstract":"","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"340 6","pages":"389-391"},"PeriodicalIF":2.2,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10403585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The environment plays an important role in an individual's development during early life, however, parents may also influence offspring development through so called “parental effects.” We examined the effects of environmental enrichment in zebrafish (Danio rerio) across two generations through the paternal lineage. Fathers and grandfathers were exposed to either standard or high levels of housing enrichment for 4-weeks during adulthood. First-generation (F1) and second-generation (F2) offspring were obtained from controlled breeding and tested as larvae for changes in morphology at hatching stage (72hpf), and in locomotor activity at larval stage (120hpf) in both generations. We found paternal experience of enrichment resulted in changes in trunk length of F1 offspring and changes in spine curvature and dorsal length of F2 offspring, while changes in snout morphology of F2 offspring seemed to be driven by whether grandpaternal and paternal experience of the environment was matched or not. We found that while paternal enrichment increased the frequency of spontaneous movement in F1 and F2 offspring, interacting effects of paternal and grandpaternal enrichment on movement distance were seen in F2 offspring, and that spontaneous movement and the distance that larvae swam are thus distinct phenotypes that were differentially affected by the experiences of previous paternal generations. Taken together, these findings suggest that the parental and grandparental environment influence zebrafish behavior and morphology. The nature of these effects and the design of this study mean that these phenotypes were likely the result of nongenetic transmission through the paternal germline.
{"title":"Interacting effects of environmental enrichment across multiple generations on early life phenotypes in zebrafish","authors":"Michael R. Green, William T. Swaney","doi":"10.1002/jez.b.23184","DOIUrl":"10.1002/jez.b.23184","url":null,"abstract":"<p>The environment plays an important role in an individual's development during early life, however, parents may also influence offspring development through so called “parental effects.” We examined the effects of environmental enrichment in zebrafish (<i>Danio rerio</i>) across two generations through the paternal lineage. Fathers and grandfathers were exposed to either standard or high levels of housing enrichment for 4-weeks during adulthood. First-generation (F1) and second-generation (F2) offspring were obtained from controlled breeding and tested as larvae for changes in morphology at hatching stage (72hpf), and in locomotor activity at larval stage (120hpf) in both generations. We found paternal experience of enrichment resulted in changes in trunk length of F1 offspring and changes in spine curvature and dorsal length of F2 offspring, while changes in snout morphology of F2 offspring seemed to be driven by whether grandpaternal and paternal experience of the environment was matched or not. We found that while paternal enrichment increased the frequency of spontaneous movement in F1 and F2 offspring, interacting effects of paternal and grandpaternal enrichment on movement distance were seen in F2 offspring, and that spontaneous movement and the distance that larvae swam are thus distinct phenotypes that were differentially affected by the experiences of previous paternal generations. Taken together, these findings suggest that the parental and grandparental environment influence zebrafish behavior and morphology. The nature of these effects and the design of this study mean that these phenotypes were likely the result of nongenetic transmission through the paternal germline.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"340 5","pages":"354-365"},"PeriodicalIF":2.2,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23184","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9631982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gars and bichirs develop scales and teeth with ancient actinopterygian characteristics. Their scale surface and tooth collar are covered with enamel, also known as ganoin, whereas the tooth cap is equipped with an enamel-like tissue, acrodin. Here, we investigated the formation and mineralization of the ganoin and acrodin matrices in spotted gar, and the evolution of the scpp5, ameloblastin (ambn), and enamelin (enam) genes, which encode matrix proteins of ganoin. Results suggest that, in bichirs and gars, all these genes retain structural characteristics of their orthologs in stem actinopterygians, presumably reflecting the presence of ganoin on scales and teeth. During scale formation, Scpp5 and Enam were initially found in the incipient ganoin matrix and the underlying collagen matrix, whereas Ambn was detected mostly in a surface region of the well-developed ganoin matrix. Although collagen is the principal acrodin matrix protein, Scpp5 was detected within the matrix. Similarities in timings of mineralization and the secretion of Scpp5 suggest that acrodin evolved by the loss of the matrix secretory stage of ganoin formation: dentin formation is immediately followed by the maturation stage. The late onset of Ambn secretion during ganoin formation implies that Ambn is not essential for mineral ribbon formation, the hallmark of the enamel matrix. Furthermore, Scpp5 resembles amelogenin that is not important for the initial formation of mineral ribbons in mammals. It is thus likely that the evolution of ENAM was vital to the origin of the unique mineralization process of the enamel matrix.
{"title":"Ganoin and acrodin formation on scales and teeth in spotted gar: A vital role of enamelin in the unique process of enamel mineralization","authors":"Kazuhiko Kawasaki, Ichiro Sasagawa, Masato Mikami, Mitsushiro Nakatomi, Mikio Ishiyama","doi":"10.1002/jez.b.23183","DOIUrl":"10.1002/jez.b.23183","url":null,"abstract":"<p>Gars and bichirs develop scales and teeth with ancient actinopterygian characteristics. Their scale surface and tooth collar are covered with enamel, also known as ganoin, whereas the tooth cap is equipped with an enamel-like tissue, acrodin. Here, we investigated the formation and mineralization of the ganoin and acrodin matrices in spotted gar, and the evolution of the <i>scpp5</i>, ameloblastin (<i>ambn</i>), and enamelin (<i>enam</i>) genes, which encode matrix proteins of ganoin. Results suggest that, in bichirs and gars, all these genes retain structural characteristics of their orthologs in stem actinopterygians, presumably reflecting the presence of ganoin on scales and teeth. During scale formation, Scpp5 and Enam were initially found in the incipient ganoin matrix and the underlying collagen matrix, whereas Ambn was detected mostly in a surface region of the well-developed ganoin matrix. Although collagen is the principal acrodin matrix protein, Scpp5 was detected within the matrix. Similarities in timings of mineralization and the secretion of Scpp5 suggest that acrodin evolved by the loss of the matrix secretory stage of ganoin formation: dentin formation is immediately followed by the maturation stage. The late onset of Ambn secretion during ganoin formation implies that Ambn is not essential for mineral ribbon formation, the hallmark of the enamel matrix. Furthermore, Scpp5 resembles amelogenin that is not important for the initial formation of mineral ribbons in mammals. It is thus likely that the evolution of <i>ENAM</i> was vital to the origin of the unique mineralization process of the enamel matrix.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"340 7","pages":"455-468"},"PeriodicalIF":2.2,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9570429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}