首页 > 最新文献

Journal of Functional Analysis最新文献

英文 中文
A Campanato regularity theory for multi-valued functions with applications to minimal surface regularity theory
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2025-03-03 DOI: 10.1016/j.jfa.2025.110908
Paul Minter
The regularity theory of the Campanato space Lk(q,λ)(Ω) has found many applications within the regularity theory of solutions to various geometric variational problems. Here we extend this theory from single-valued functions to multi-valued functions, adapting for the most part Campanato's original ideas ([4]). We also give an application of this theory within the regularity theory of stationary integral varifolds. More precisely, we prove a regularity theorem for certain blow-up classes of multi-valued functions, which typically arise when studying blow-ups of sequences of stationary integral varifolds converging to higher multiplicity planes or unions of half-planes. In such a setting, based in part on ideas in [16], [11], and [3], we are able to deduce a boundary regularity theory for multi-valued harmonic functions; such a boundary regularity result would appear to be the first of its kind for the multi-valued setting. In conjunction with [9], the results presented here establish a regularity theorem for stable codimension one stationary integral varifolds near classical cones of density 52.
{"title":"A Campanato regularity theory for multi-valued functions with applications to minimal surface regularity theory","authors":"Paul Minter","doi":"10.1016/j.jfa.2025.110908","DOIUrl":"10.1016/j.jfa.2025.110908","url":null,"abstract":"<div><div>The regularity theory of the Campanato space <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>λ</mi><mo>)</mo></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> has found many applications within the regularity theory of solutions to various geometric variational problems. Here we extend this theory from single-valued functions to multi-valued functions, adapting for the most part Campanato's original ideas (<span><span>[4]</span></span>). We also give an application of this theory within the regularity theory of stationary integral varifolds. More precisely, we prove a regularity theorem for certain <em>blow-up classes</em> of multi-valued functions, which typically arise when studying blow-ups of sequences of stationary integral varifolds converging to higher multiplicity planes or unions of half-planes. In such a setting, based in part on ideas in <span><span>[16]</span></span>, <span><span>[11]</span></span>, and <span><span>[3]</span></span>, we are able to deduce a boundary regularity theory for multi-valued harmonic functions; such a boundary regularity result would appear to be the first of its kind for the multi-valued setting. In conjunction with <span><span>[9]</span></span>, the results presented here establish a regularity theorem for stable codimension one stationary integral varifolds near classical cones of density <span><math><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 1","pages":"Article 110908"},"PeriodicalIF":1.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143562740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperinvariant subspaces for trace class perturbations of normal operators and decomposability
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2025-03-03 DOI: 10.1016/j.jfa.2025.110903
Eva A. Gallardo-Gutiérrez , F. Javier González-Doña
We prove that a large class of trace-class perturbations of diagonalizable normal operators on a separable, infinite dimensional complex Hilbert space have non-trivial closed hyperinvariant subspaces. Moreover, a large subclass consists of decomposable operators in the sense of Colojoară and Foiaş [3].
{"title":"Hyperinvariant subspaces for trace class perturbations of normal operators and decomposability","authors":"Eva A. Gallardo-Gutiérrez ,&nbsp;F. Javier González-Doña","doi":"10.1016/j.jfa.2025.110903","DOIUrl":"10.1016/j.jfa.2025.110903","url":null,"abstract":"<div><div>We prove that a large class of trace-class perturbations of diagonalizable normal operators on a separable, infinite dimensional complex Hilbert space have non-trivial closed hyperinvariant subspaces. Moreover, a large subclass consists of decomposable operators in the sense of Colojoară and Foiaş <span><span>[3]</span></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 2","pages":"Article 110903"},"PeriodicalIF":1.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimal surface equation and Bernstein property on RCD spaces
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2025-03-03 DOI: 10.1016/j.jfa.2025.110907
Alessandro Cucinotta
We show that if (X,d,m) is an RCD(K,N) space and uWloc1,1(X) is a solution of the minimal surface equation, then u is harmonic on its graph (which has a natural metric measure space structure). If K=0 this allows to obtain an Harnack inequality for u, which in turn implies the Bernstein property, meaning that any positive solution to the minimal surface equation must be constant. As an application, we obtain oscillation estimates and a Bernstein Theorem for minimal graphs in products M×R, where M is a smooth manifold (possibly weighted and with boundary) with non-negative Ricci curvature.
{"title":"Minimal surface equation and Bernstein property on RCD spaces","authors":"Alessandro Cucinotta","doi":"10.1016/j.jfa.2025.110907","DOIUrl":"10.1016/j.jfa.2025.110907","url":null,"abstract":"<div><div>We show that if <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> is an <span><math><mrow><mi>RCD</mi></mrow><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span> space and <span><math><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is a solution of the minimal surface equation, then <em>u</em> is harmonic on its graph (which has a natural metric measure space structure). If <span><math><mi>K</mi><mo>=</mo><mn>0</mn></math></span> this allows to obtain an Harnack inequality for <em>u</em>, which in turn implies the Bernstein property, meaning that any positive solution to the minimal surface equation must be constant. As an application, we obtain oscillation estimates and a Bernstein Theorem for minimal graphs in products <span><math><mi>M</mi><mo>×</mo><mi>R</mi></math></span>, where <span><math><mi>M</mi></math></span> is a smooth manifold (possibly weighted and with boundary) with non-negative Ricci curvature.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 2","pages":"Article 110907"},"PeriodicalIF":1.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A characterisation of the Daugavet property in spaces of vector-valued Lipschitz functions
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2025-03-03 DOI: 10.1016/j.jfa.2025.110896
Rubén Medina , Abraham Rueda Zoca
Let M be a metric space and X be a Banach space. In this paper we address several questions about the structure of F(M)ˆπX and Lip0(M,X). Our results are the following:
  • (1)
    We prove that if M is a length metric space then Lip0(M,X) has the Daugavet property. As a consequence, if M is length we obtain that F(M)ˆπX has the Daugavet property. This gives an affirmative answer to [9, Question 1] (also asked in [16, Remark 3.8]).
  • (2)
    We prove that if M is a non-uniformly discrete metric space or an unbounded metric space then the norm of F(M)ˆπX is octahedral, which solves [4, Question 3.2 (1)].
  • (3)
    We characterise all the Banach spaces X such that L(X,Y) is octahedral for every Banach space Y, which solves a question by Johann Langemets.
{"title":"A characterisation of the Daugavet property in spaces of vector-valued Lipschitz functions","authors":"Rubén Medina ,&nbsp;Abraham Rueda Zoca","doi":"10.1016/j.jfa.2025.110896","DOIUrl":"10.1016/j.jfa.2025.110896","url":null,"abstract":"<div><div>Let <em>M</em> be a metric space and <em>X</em> be a Banach space. In this paper we address several questions about the structure of <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> and <span><math><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span>. Our results are the following:<ul><li><span>(1)</span><span><div>We prove that if <em>M</em> is a length metric space then <span><math><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> has the Daugavet property. As a consequence, if <em>M</em> is length we obtain that <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> has the Daugavet property. This gives an affirmative answer to <span><span>[9, Question 1]</span></span> (also asked in <span><span>[16, Remark 3.8]</span></span>).</div></span></li><li><span>(2)</span><span><div>We prove that if <em>M</em> is a non-uniformly discrete metric space or an unbounded metric space then the norm of <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> is octahedral, which solves <span><span>[4, Question 3.2 (1)]</span></span>.</div></span></li><li><span>(3)</span><span><div>We characterise all the Banach spaces <em>X</em> such that <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> is octahedral for every Banach space <em>Y</em>, which solves a question by Johann Langemets.</div></span></li></ul></div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 1","pages":"Article 110896"},"PeriodicalIF":1.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143562739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a kinetic Poincaré inequality and beyond
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2025-03-03 DOI: 10.1016/j.jfa.2025.110899
Lukas Niebel , Rico Zacher
In this article, we give a trajectorial proof of a kinetic Poincaré inequality which plays an important role in the De Giorgi-Nash-Moser theory for kinetic equations. The present work improves a result due to J. Guerand and C. Mouhot [12] in several directions. We use kinetic trajectories along the vector fields t+vx and vi, i=1,,d and do not rely on higher-order commutators such as [vi,t+vx]=xi or on the fundamental solution. The presented method also applies to more general hypoelliptic equations. We illustrate this by investigating a Kolmogorov equation with k steps.
{"title":"On a kinetic Poincaré inequality and beyond","authors":"Lukas Niebel ,&nbsp;Rico Zacher","doi":"10.1016/j.jfa.2025.110899","DOIUrl":"10.1016/j.jfa.2025.110899","url":null,"abstract":"<div><div>In this article, we give a trajectorial proof of a kinetic Poincaré inequality which plays an important role in the De Giorgi-Nash-Moser theory for kinetic equations. The present work improves a result due to J. Guerand and C. Mouhot <span><span>[12]</span></span> in several directions. We use kinetic trajectories along the vector fields <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>v</mi><mo>⋅</mo><msub><mrow><mi>∇</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>∂</mo></mrow><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>d</mi></math></span> and do not rely on higher-order commutators such as <span><math><mo>[</mo><msub><mrow><mo>∂</mo></mrow><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>,</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>v</mi><mo>⋅</mo><msub><mrow><mi>∇</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>]</mo><mo>=</mo><msub><mrow><mo>∂</mo></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span> or on the fundamental solution. The presented method also applies to more general hypoelliptic equations. We illustrate this by investigating a Kolmogorov equation with <em>k</em> steps.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 1","pages":"Article 110899"},"PeriodicalIF":1.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143562742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schauder-type estimates for fully nonlinear degenerate elliptic equations
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2025-03-03 DOI: 10.1016/j.jfa.2025.110900
Thialita M. Nascimento
In this paper, we examine regularity estimates for solutions to fully nonlinear, degenerated elliptic equations, at interior vanishing source points. By means of a geometric approach, we obtain, at such points, Schauder-type regularity estimates, which depend on the Hölder-like source-ellipticity vanishing rate.
{"title":"Schauder-type estimates for fully nonlinear degenerate elliptic equations","authors":"Thialita M. Nascimento","doi":"10.1016/j.jfa.2025.110900","DOIUrl":"10.1016/j.jfa.2025.110900","url":null,"abstract":"<div><div>In this paper, we examine regularity estimates for solutions to fully nonlinear, degenerated elliptic equations, at interior vanishing source points. By means of a geometric approach, we obtain, at such points, Schauder-type regularity estimates, which depend on the Hölder-like source-ellipticity vanishing rate.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 1","pages":"Article 110900"},"PeriodicalIF":1.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of abstract coupled systems
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2025-03-03 DOI: 10.1016/j.jfa.2025.110909
Serge Nicaise , Lassi Paunonen , David Seifert
We study stability of abstract differential equations coupled by means of a general algebraic condition. Our approach is based on techniques from operator theory and systems theory, and it allows us to study coupled systems by exploiting properties of the components, which are typically much simpler to analyse. As our main results we establish resolvent estimates and decay rates for abstract boundary-coupled systems. We illustrate the power of the general results by using them to obtain rates of energy decay in coupled systems of one-dimensional wave and heat equations, and in a multi-dimensional wave equation with an acoustic boundary condition.
{"title":"Stability of abstract coupled systems","authors":"Serge Nicaise ,&nbsp;Lassi Paunonen ,&nbsp;David Seifert","doi":"10.1016/j.jfa.2025.110909","DOIUrl":"10.1016/j.jfa.2025.110909","url":null,"abstract":"<div><div>We study stability of abstract differential equations coupled by means of a general algebraic condition. Our approach is based on techniques from operator theory and systems theory, and it allows us to study coupled systems by exploiting properties of the components, which are typically much simpler to analyse. As our main results we establish resolvent estimates and decay rates for abstract boundary-coupled systems. We illustrate the power of the general results by using them to obtain rates of energy decay in coupled systems of one-dimensional wave and heat equations, and in a multi-dimensional wave equation with an acoustic boundary condition.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 2","pages":"Article 110909"},"PeriodicalIF":1.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The asymptotic stability on the line of ground states of the pure power NLS with 0 < |p − 3| ≪ 1
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2025-02-11 DOI: 10.1016/j.jfa.2025.110861
Scipio Cuccagna , Masaya Maeda
For exponents p satisfying 0<|p3|1 and only in the context of spatially even solutions we prove that the ground states of the nonlinear Schrödinger equation (NLS) with pure power nonlinearity of exponent p in the line are asymptotically stable. The proof is similar to a related result of Martel [45] for a cubic quintic NLS. Here we modify the second part of Martel's argument, replacing the second virial inequality for a transformed problem with a smoothing estimate on the initial problem, appropriately tamed by multiplying the initial variables and equations by a cutoff.
{"title":"The asymptotic stability on the line of ground states of the pure power NLS with 0 < |p − 3| ≪ 1","authors":"Scipio Cuccagna ,&nbsp;Masaya Maeda","doi":"10.1016/j.jfa.2025.110861","DOIUrl":"10.1016/j.jfa.2025.110861","url":null,"abstract":"<div><div>For exponents <em>p</em> satisfying <span><math><mn>0</mn><mo>&lt;</mo><mo>|</mo><mi>p</mi><mo>−</mo><mn>3</mn><mo>|</mo><mo>≪</mo><mn>1</mn></math></span> and only in the context of spatially even solutions we prove that the ground states of the nonlinear Schrödinger equation (NLS) with pure power nonlinearity of exponent <em>p</em> in the line are asymptotically stable. The proof is similar to a related result of Martel <span><span>[45]</span></span> for a cubic quintic NLS. Here we modify the second part of Martel's argument, replacing the second virial inequality for a transformed problem with a smoothing estimate on the initial problem, appropriately tamed by multiplying the initial variables and equations by a cutoff.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 11","pages":"Article 110861"},"PeriodicalIF":1.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143421998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upper bounds for solutions of Leibenson's equation on Riemannian manifolds
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2025-02-11 DOI: 10.1016/j.jfa.2025.110878
Alexander Grigor'yan, Philipp Sürig
We consider on Riemannian manifolds the Leibenson equationtu=Δpuqthat is also known as a doubly nonlinear evolution equation. We prove upper estimates of weak subsolutions to this equation on Riemannian manifolds with non-negative Ricci curvature in the case when p and q satisfy the conditions1<p<2and1q<1p1. We show that these estimates are optimal in terms of long time behavior and near-optimal in terms of long distance behavior.
{"title":"Upper bounds for solutions of Leibenson's equation on Riemannian manifolds","authors":"Alexander Grigor'yan,&nbsp;Philipp Sürig","doi":"10.1016/j.jfa.2025.110878","DOIUrl":"10.1016/j.jfa.2025.110878","url":null,"abstract":"<div><div>We consider on Riemannian manifolds the Leibenson equation<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span></span></span>that is also known as a doubly nonlinear evolution equation. We prove upper estimates of weak subsolutions to this equation on Riemannian manifolds with non-negative Ricci curvature in the case when <em>p</em> and <em>q</em> satisfy the conditions<span><span><span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>2</mn><mspace></mspace><mtext>and</mtext><mspace></mspace><mn>1</mn><mo>≤</mo><mi>q</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>.</mo></math></span></span></span> We show that these estimates are optimal in terms of long time behavior and near-optimal in terms of long distance behavior.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 10","pages":"Article 110878"},"PeriodicalIF":1.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Littlewood-type theorems for random Dirichlet multipliers
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2025-02-11 DOI: 10.1016/j.jfa.2025.110851
Guozheng Cheng , Xiang Fang , Chao Liu , Yufeng Lu
<div><div>In this paper we present a systematic study of random Dirichlet functions. In 1993, Cochran-Shapiro-Ullrich proved the following elegant result on random Dirichlet multipliers <span><span>[21]</span></span>: For any <span><math><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>∈</mo><mi>D</mi></math></span>, the Dirichlet space over the unit disk, almost all of its randomizations<span><span><span><math><mo>(</mo><mi>R</mi><mi>f</mi><mo>)</mo><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mo>±</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span></span></span> are multipliers of <span><math><mi>D</mi></math></span>. The purpose of this paper is to exploit this result and to extend it in three directions, inspired by the 1930 theorem of Littlewood on random Hardy functions:<ul><li><span>(A)</span><span><div>We introduce a symbol space <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⋆</mo></mrow></msub></math></span> for random multipliers on <span><math><mi>D</mi></math></span> and reformulate (and strengthen) the problem as the characterization of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⋆</mo></mrow></msub></math></span>. We then characterize <span><math><msub><mrow><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>)</mo></mrow><mrow><mo>⋆</mo></mrow></msub></math></span> for all <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>,</mo><mi>α</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> when <span><math><mi>α</mi><mo>≠</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> (<span><span>Theorem 55</span></span>). The case <span><math><mi>p</mi><mo>=</mo><mn>2</mn><mo>,</mo><mi>α</mi><mo>=</mo><mn>0</mn></math></span> recovers the 1993 result.</div></span></li><li><span>(B)</span><span><div>We obtain a two-parameter version by formulating and solving a Littlewood-type problem for all <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>∈</mo><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> (<span><span>Theorem 69</span></span>). The case <span><math><mi>p</mi><mo>=</mo><mi>q</mi><mo>=</mo><mn>2</mn></math></span> recovers the 1993 result.</div></span></li><li><span>(C)</span><span><div>We consider <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow><mrow><m
{"title":"Littlewood-type theorems for random Dirichlet multipliers","authors":"Guozheng Cheng ,&nbsp;Xiang Fang ,&nbsp;Chao Liu ,&nbsp;Yufeng Lu","doi":"10.1016/j.jfa.2025.110851","DOIUrl":"10.1016/j.jfa.2025.110851","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper we present a systematic study of random Dirichlet functions. In 1993, Cochran-Shapiro-Ullrich proved the following elegant result on random Dirichlet multipliers &lt;span&gt;&lt;span&gt;[21]&lt;/span&gt;&lt;/span&gt;: For any &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, the Dirichlet space over the unit disk, almost all of its randomizations&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;munderover&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; are multipliers of &lt;span&gt;&lt;math&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. The purpose of this paper is to exploit this result and to extend it in three directions, inspired by the 1930 theorem of Littlewood on random Hardy functions:&lt;ul&gt;&lt;li&gt;&lt;span&gt;(A)&lt;/span&gt;&lt;span&gt;&lt;div&gt;We introduce a symbol space &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⋆&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; for random multipliers on &lt;span&gt;&lt;math&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and reformulate (and strengthen) the problem as the characterization of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⋆&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. We then characterize &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⋆&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; when &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; (&lt;span&gt;&lt;span&gt;Theorem 55&lt;/span&gt;&lt;/span&gt;). The case &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; recovers the 1993 result.&lt;/div&gt;&lt;/span&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;(B)&lt;/span&gt;&lt;span&gt;&lt;div&gt;We obtain a two-parameter version by formulating and solving a Littlewood-type problem for all &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; (&lt;span&gt;&lt;span&gt;Theorem 69&lt;/span&gt;&lt;/span&gt;). The case &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; recovers the 1993 result.&lt;/div&gt;&lt;/span&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;(C)&lt;/span&gt;&lt;span&gt;&lt;div&gt;We consider &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;m","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 12","pages":"Article 110851"},"PeriodicalIF":1.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Functional Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1