M Perilli, N Franceschini, G Bonfiglio, B Segatore, S Stefani, G Nicoletti, M M Perez, C Bianchi, A Zollo, G Amicosante
The interaction between tazobactam and several chromosome- and plasmid-encoded (TEM, SHV, PSE types) class A and C beta-lactamases was studied by spectrophotometry. Tazobactam behaved as a competitive inhibitor or inactivator able to restore in several cases the efficiency of piperacillin as a partner beta-lactam. A detailed kinetic analysis permitted measurement of the acylation efficiency for some cephalosporinases and broad-spectrum beta-lactamases; the presence of a turn-over of acyl-enzyme complex was also evaluated.
{"title":"A kinetic study on the interaction between tazobactam (a penicillanic acid sulphone derivative) and active-site serine beta-lactamases.","authors":"M Perilli, N Franceschini, G Bonfiglio, B Segatore, S Stefani, G Nicoletti, M M Perez, C Bianchi, A Zollo, G Amicosante","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The interaction between tazobactam and several chromosome- and plasmid-encoded (TEM, SHV, PSE types) class A and C beta-lactamases was studied by spectrophotometry. Tazobactam behaved as a competitive inhibitor or inactivator able to restore in several cases the efficiency of piperacillin as a partner beta-lactam. A detailed kinetic analysis permitted measurement of the acylation efficiency for some cephalosporinases and broad-spectrum beta-lactamases; the presence of a turn-over of acyl-enzyme complex was also evaluated.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21693829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2000-01-01DOI: 10.1080/14756360009030348
M U Javed, T Naru, F Michelangeli
Intracellular free calcium is regulated by Ca(++)-ATPase, one form present on the plasma membrane (PM Ca(++)-ATPase) and the other on sarcoplasmic (endoplasmic) reticulum (SR/ER Ca(++)-ATPase). An endogenous inhibitor of SR Ca(++)-ATPase from human placenta was shown to be present in normal placenta and the activity was not detectable in placenta from preeclamptic patients. The inhibitor was distributed in cytosol and microsomes. The inhibition of Ca(++)-ATPase by this inhibitor was concentration- and time-dependent. The inhibitor neither bound to DEAE- nor CM-sepharose resins at pH 7.5 and 8.5. Furthermore, it was heat stable for 15 min up to 55 degrees C and completely destroyed at 80 degrees C in a few minutes. It was also observed to be stable at room temperature for at least 3 months. The purification and characterization of this inhibitor would be valuable in achieving an understanding of the normal regulation of Ca(++)-ATPase in the placenta during pregnancy.
{"title":"An endogenous inhibitor of Ca++-ATPase from human placenta.","authors":"M U Javed, T Naru, F Michelangeli","doi":"10.1080/14756360009030348","DOIUrl":"https://doi.org/10.1080/14756360009030348","url":null,"abstract":"<p><p>Intracellular free calcium is regulated by Ca(++)-ATPase, one form present on the plasma membrane (PM Ca(++)-ATPase) and the other on sarcoplasmic (endoplasmic) reticulum (SR/ER Ca(++)-ATPase). An endogenous inhibitor of SR Ca(++)-ATPase from human placenta was shown to be present in normal placenta and the activity was not detectable in placenta from preeclamptic patients. The inhibitor was distributed in cytosol and microsomes. The inhibition of Ca(++)-ATPase by this inhibitor was concentration- and time-dependent. The inhibitor neither bound to DEAE- nor CM-sepharose resins at pH 7.5 and 8.5. Furthermore, it was heat stable for 15 min up to 55 degrees C and completely destroyed at 80 degrees C in a few minutes. It was also observed to be stable at room temperature for at least 3 months. The purification and characterization of this inhibitor would be valuable in achieving an understanding of the normal regulation of Ca(++)-ATPase in the placenta during pregnancy.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 2","pages":"163-70"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14756360009030348","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21777232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2000-01-01DOI: 10.3109/14756360009040688
J Drsata, M Netopilová, V Tolman
Inhibition of rat brain glutamate decarboxylase (GAD, EC 4.1.1.15) by individual stereoisomers of 4-fluoroglutamate (4-F-Glu) and 2-fluoro-4-aminobutyrate (2-F-GABA) was studied. All stereoisomers of 4-F-Glu inhibited decarboxylation of L-glutamate catalysed by the enzyme preparation. At 1 x 10(-2) M concentration, the most potent inhibitor of GAD was D-erythro-4-F-Glu with about 70% inhibition in the presence of 1.23 x 10(-2)M L-glutamate. The inhibition by all stereoisomers was of the competitive type. Ki values ranged from 2 x 10(-3)M for the D-erythro isomer to 1.1 x 10(-2)M for the D-threo and L-erythro isomers. The influence of all stereoisomers was reversible as shown by dialysis except for a small amount in the case of the D-erythro isomer. The inhibition was independent of external pyridoxal-5'-phosphate added. No inhibition of rat brain GAD was found with 2-fluoro-4-aminobutyrate stereoisomers.
研究了4-氟谷氨酸酯(4-F-Glu)和2-氟-4-氨基丁酸酯(2-F-GABA)立体异构体对大鼠脑谷氨酸脱羧酶(GAD, EC 4.1.1.15)的抑制作用。4- f -谷氨酸的所有立体异构体均抑制酶制剂催化的l -谷氨酸脱羧。在1 × 10(-2)M浓度下,最有效的GAD抑制剂是d - red -4- f -glu,在1.23 × 10(-2)M l -谷氨酸存在时,其抑制率约为70%。所有立体异构体的抑制均为竞争性抑制。Ki值从d - thro异构体的2 × 10(-3)M到d - thro和l - thro异构体的1.1 × 10(-2)M不等。除少量的d -红细胞异构体外,所有立体异构体的影响都是可逆的。抑制作用不受外源吡哆醛-5′-磷酸的影响。2-氟-4-氨基丁酸酯立体异构体对大鼠脑GAD无抑制作用。
{"title":"Influence of stereoisomers of 4-fluoroglutamate on rat brain glutamate decarboxylase.","authors":"J Drsata, M Netopilová, V Tolman","doi":"10.3109/14756360009040688","DOIUrl":"https://doi.org/10.3109/14756360009040688","url":null,"abstract":"<p><p>Inhibition of rat brain glutamate decarboxylase (GAD, EC 4.1.1.15) by individual stereoisomers of 4-fluoroglutamate (4-F-Glu) and 2-fluoro-4-aminobutyrate (2-F-GABA) was studied. All stereoisomers of 4-F-Glu inhibited decarboxylation of L-glutamate catalysed by the enzyme preparation. At 1 x 10(-2) M concentration, the most potent inhibitor of GAD was D-erythro-4-F-Glu with about 70% inhibition in the presence of 1.23 x 10(-2)M L-glutamate. The inhibition by all stereoisomers was of the competitive type. Ki values ranged from 2 x 10(-3)M for the D-erythro isomer to 1.1 x 10(-2)M for the D-threo and L-erythro isomers. The influence of all stereoisomers was reversible as shown by dialysis except for a small amount in the case of the D-erythro isomer. The inhibition was independent of external pyridoxal-5'-phosphate added. No inhibition of rat brain GAD was found with 2-fluoro-4-aminobutyrate stereoisomers.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 3","pages":"273-82"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/14756360009040688","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21657657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Padiglia, R Medda, A Lorrai, B Murgia, J Z Pedersen, A F Agrò, G Floris
The effect of guanidinium compounds on the catalytic mechanism of pig kidney and lentil seedling amine oxidases has been investigated by polarographic techniques and spectroscopy. Guanidine does not inhibit the lentil enzyme and is a weak inhibitor for pig kidney amine oxidase (Ki=1 mM), whereas aminoguanidine is an irreversible inhibitor of both enzymes, with a Ki value of 10(-6) M. 1,4-Diguanidino butane (arcaine) is a competitive inhibitor for both pig and lentil amine oxidases. Amiloride is a competitive inhibitor for pig enzyme, but upon prolonged incubation with this drug the enzyme gradually loses its activity in an irreversible manner.
{"title":"Interaction of pig kidney and lentil seedling copper-containing amine oxidases with guanidinium compounds.","authors":"A Padiglia, R Medda, A Lorrai, B Murgia, J Z Pedersen, A F Agrò, G Floris","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The effect of guanidinium compounds on the catalytic mechanism of pig kidney and lentil seedling amine oxidases has been investigated by polarographic techniques and spectroscopy. Guanidine does not inhibit the lentil enzyme and is a weak inhibitor for pig kidney amine oxidase (Ki=1 mM), whereas aminoguanidine is an irreversible inhibitor of both enzymes, with a Ki value of 10(-6) M. 1,4-Diguanidino butane (arcaine) is a competitive inhibitor for both pig and lentil amine oxidases. Amiloride is a competitive inhibitor for pig enzyme, but upon prolonged incubation with this drug the enzyme gradually loses its activity in an irreversible manner.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 1","pages":"91-100"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21694296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2000-01-01DOI: 10.1080/14756360009030345
C T Supuran, F Briganti, G Mincione, A Scozzafava
L-alanine hydroxamate derivatives were obtained by reaction of alkyl/arylsulfonyl halides with L-alanine, followed by treatment with benzyl chloride, and conversion of the COOH moiety to the CONHOH group with hydroxylamine in the presence of carbodiimides. Other derivatives were obtained by reaction of N-benzyl-alanine with aryl isocyanates, arylsulfonyl isocyanates or benzoyl isothiocyanate, followed by a similar conversion of the COOH to the CONHOH moiety. The obtained compounds were assayed as inhibitors of Clostridium histolyticum collagenase, ChC (EC 3.4.24.3), a zinc enzyme which degrades triple helical collagen. The hydroxamate derivatives were generally 100-500 times more active than the corresponding carboxylates. In the series of synthesized derivatives, substitution patterns leading to the most potent ChC inhibitors were those involving perfluoroalkylsulfonyl- and substituted-arylsulfonyl moieties, such as pentafluorophenylsulfonyl, 3- and 4-protected-aminophenylsulfonyl-, 3- and 4-carboxy-phenylsulfonyl-, 3-trifluoromethyl-phenylsulfonyl-, or 1- and 2-naphthylsulfonyl among others. Similarly to the matrix metalloproteinase (MMP) hydroxamate inhibitors, ChC inhibitors of the type reported here must incorporate hydrophobic moieties at the P(2') and P(3') sites, in order to achieve tight binding to the enzyme.
{"title":"Protease inhibitors: Synthesis of L-alanine hydroxamate sulfonylated derivatives as inhibitors of clostridium histolyticum collagenase.","authors":"C T Supuran, F Briganti, G Mincione, A Scozzafava","doi":"10.1080/14756360009030345","DOIUrl":"https://doi.org/10.1080/14756360009030345","url":null,"abstract":"<p><p>L-alanine hydroxamate derivatives were obtained by reaction of alkyl/arylsulfonyl halides with L-alanine, followed by treatment with benzyl chloride, and conversion of the COOH moiety to the CONHOH group with hydroxylamine in the presence of carbodiimides. Other derivatives were obtained by reaction of N-benzyl-alanine with aryl isocyanates, arylsulfonyl isocyanates or benzoyl isothiocyanate, followed by a similar conversion of the COOH to the CONHOH moiety. The obtained compounds were assayed as inhibitors of Clostridium histolyticum collagenase, ChC (EC 3.4.24.3), a zinc enzyme which degrades triple helical collagen. The hydroxamate derivatives were generally 100-500 times more active than the corresponding carboxylates. In the series of synthesized derivatives, substitution patterns leading to the most potent ChC inhibitors were those involving perfluoroalkylsulfonyl- and substituted-arylsulfonyl moieties, such as pentafluorophenylsulfonyl, 3- and 4-protected-aminophenylsulfonyl-, 3- and 4-carboxy-phenylsulfonyl-, 3-trifluoromethyl-phenylsulfonyl-, or 1- and 2-naphthylsulfonyl among others. Similarly to the matrix metalloproteinase (MMP) hydroxamate inhibitors, ChC inhibitors of the type reported here must incorporate hydrophobic moieties at the P(2') and P(3') sites, in order to achieve tight binding to the enzyme.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 2","pages":"111-28"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14756360009030345","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21777229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2000-01-01DOI: 10.3109/14756360009040702
D Perrin, S Gras, B van Hille, B T Hill
Human poly(ADP-ribose)polymerase (PARP) was expressed in the yeast line JEL1 under the control of a GAL promoter. Proteins were extracted and human recombinant PARP purified to apparent homogeneity. The pharmacological profile of this human enzyme was characterised in terms of the effects of known inhibitors of PARP belonging to various chemical families and this was compared with that of the rat enzyme purified from rat testes, using the same purification protocol. The rat and the human enzymes appeared very similar in terms of their sensitivities to those selected inhibitors.
{"title":"Expression in yeast and purification of functional recombinant human poly(ADP-ribose)polymerase (PARP). Comparative pharmacological profile with that of the rat enzyme.","authors":"D Perrin, S Gras, B van Hille, B T Hill","doi":"10.3109/14756360009040702","DOIUrl":"https://doi.org/10.3109/14756360009040702","url":null,"abstract":"<p><p>Human poly(ADP-ribose)polymerase (PARP) was expressed in the yeast line JEL1 under the control of a GAL promoter. Proteins were extracted and human recombinant PARP purified to apparent homogeneity. The pharmacological profile of this human enzyme was characterised in terms of the effects of known inhibitors of PARP belonging to various chemical families and this was compared with that of the rat enzyme purified from rat testes, using the same purification protocol. The rat and the human enzymes appeared very similar in terms of their sensitivities to those selected inhibitors.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 5","pages":"461-9"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/14756360009040702","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21860708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2000-01-01DOI: 10.3109/14756360009040690
I Fenesan, R Popescu, A Scozzafava, V Crucin, E Mateiciuc, R Bauer, M A Ilies, C T Supuran
A series of phosphorylated aromatic/heterocyclic sulfonamides with the general formula ArSO2NHPO3H2 have been prepared by condensing ArSO2NH2 with phosphorus pentachloride, followed by controlled hydrolysis in the presence of formic acid. The new derivatives generally act as stronger inhibitors of two carbonic anhydrase (CA) isozymes, CA I and CA II, as compared to the parent unsubstituted sulfonamides from which they were obtained. The inhibition mechanism by this new class of CA inhibitors, as well as structure activity correlations for the series of investigated derivatives, are also discussed.
{"title":"Carbonic anhydrase inhibitors; phosphoryl-sulfonamides--a new class of high affinity inhibitors of isozymes I and II.","authors":"I Fenesan, R Popescu, A Scozzafava, V Crucin, E Mateiciuc, R Bauer, M A Ilies, C T Supuran","doi":"10.3109/14756360009040690","DOIUrl":"https://doi.org/10.3109/14756360009040690","url":null,"abstract":"<p><p>A series of phosphorylated aromatic/heterocyclic sulfonamides with the general formula ArSO2NHPO3H2 have been prepared by condensing ArSO2NH2 with phosphorus pentachloride, followed by controlled hydrolysis in the presence of formic acid. The new derivatives generally act as stronger inhibitors of two carbonic anhydrase (CA) isozymes, CA I and CA II, as compared to the parent unsubstituted sulfonamides from which they were obtained. The inhibition mechanism by this new class of CA inhibitors, as well as structure activity correlations for the series of investigated derivatives, are also discussed.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 3","pages":"297-310"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/14756360009040690","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21657660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C C Woodroofe, R Mostashari, X Lu, R R Ramsay, R B Silverman
Aminoethyl 3-chlorobenzyl ether was shown previously (Ding, C.Z. and Silverman, R.B. (1993). Bioorg. Med. Chem. Lett., 3, 2077-2078) to be a potent and selective time-dependent, but reversible inhibitor of monoamine oxidase B (MAO B). Based on this result, a series of novel aminoethyl substituted benzyl ethers was synthesized and the compounds were examined as potential inhibitors of both isozymic forms of MAO. Each compound in the series inhibits both MAO A and MAO B competitively, and IC50 values for each compound were determined. In general, the B isozyme is much more sensitive to these inhibitors than the A isozyme (except for the o- and p-substituted nitro analogues), in some cases by more than two orders of magnitude. The selectivity in favor of MAO B inhibition is relatively high for all of the meta-substituted analogues and quite low for all of the ortho-substituted analogues. Having the substituent at the ortho-position is most favorable for MAO A inhibition. With MAO B the meta-analogues were, in general, more potent than the corresponding ortho- and para-analogues with respect to their reversible binding constants. The meta-iodo analogue is the most potent analogue.
{"title":"Selective inhibition of monoamine oxidase B by aminoethyl substituted benzyl ethers.","authors":"C C Woodroofe, R Mostashari, X Lu, R R Ramsay, R B Silverman","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Aminoethyl 3-chlorobenzyl ether was shown previously (Ding, C.Z. and Silverman, R.B. (1993). Bioorg. Med. Chem. Lett., 3, 2077-2078) to be a potent and selective time-dependent, but reversible inhibitor of monoamine oxidase B (MAO B). Based on this result, a series of novel aminoethyl substituted benzyl ethers was synthesized and the compounds were examined as potential inhibitors of both isozymic forms of MAO. Each compound in the series inhibits both MAO A and MAO B competitively, and IC50 values for each compound were determined. In general, the B isozyme is much more sensitive to these inhibitors than the A isozyme (except for the o- and p-substituted nitro analogues), in some cases by more than two orders of magnitude. The selectivity in favor of MAO B inhibition is relatively high for all of the meta-substituted analogues and quite low for all of the ortho-substituted analogues. Having the substituent at the ortho-position is most favorable for MAO A inhibition. With MAO B the meta-analogues were, in general, more potent than the corresponding ortho- and para-analogues with respect to their reversible binding constants. The meta-iodo analogue is the most potent analogue.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 1","pages":"11-21"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21693830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oxidative stress induced by catecholamines is a well recognized toxic event. This effect has been extensively observed in the heart, where high levels of catecholamines cause enzyme inhibition, lipid peroxidation, energy depletion and myocardial necrosis. Catecholamines can be converted into o-quinones and undergo cyclization into aminochromes. This process can occur enzymatically or through autoxidation and involves the formation of free radicals. Aminochromes are highly reactive molecules that can cause oxidation of protein sulfhydryl groups and deamination catalysis, among other deleterious effects; in addition, inhibition of some enzymes has been also reported. We have studied the effects of isoproterenol oxidation products (IOP) on glutathione reductase (GR) activity in vitro. Isoproterenol (ISO) autoxidation was conducted at 37 degrees C in the dark, for 4 h at pH 7.0 and this process was monitored by UV spectrophotometry at both 340 and 490nm. Addition of the autoxidized solution to GR in the presence of oxidized glutathione (GSSG) and NADPH showed that IOP inhibits GR in a competitive mode and that this effect increases during the 4 h incubation period. This inhibitory effect of IOP was partially prevented by the addition of reduced glutathione (GSH), L-cysteine and ascorbic acid to the reaction mixtures.
{"title":"Inhibition of glutathione reductase by isoproterenol oxidation products.","authors":"F Remião, H Carmo, F D Carvalho, M L Bastos","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Oxidative stress induced by catecholamines is a well recognized toxic event. This effect has been extensively observed in the heart, where high levels of catecholamines cause enzyme inhibition, lipid peroxidation, energy depletion and myocardial necrosis. Catecholamines can be converted into o-quinones and undergo cyclization into aminochromes. This process can occur enzymatically or through autoxidation and involves the formation of free radicals. Aminochromes are highly reactive molecules that can cause oxidation of protein sulfhydryl groups and deamination catalysis, among other deleterious effects; in addition, inhibition of some enzymes has been also reported. We have studied the effects of isoproterenol oxidation products (IOP) on glutathione reductase (GR) activity in vitro. Isoproterenol (ISO) autoxidation was conducted at 37 degrees C in the dark, for 4 h at pH 7.0 and this process was monitored by UV spectrophotometry at both 340 and 490nm. Addition of the autoxidized solution to GR in the presence of oxidized glutathione (GSSG) and NADPH showed that IOP inhibits GR in a competitive mode and that this effect increases during the 4 h incubation period. This inhibitory effect of IOP was partially prevented by the addition of reduced glutathione (GSH), L-cysteine and ascorbic acid to the reaction mixtures.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 1","pages":"47-61"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21693836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2000-01-01DOI: 10.1080/14756360009040693
K Suzuki, F Shono, H Kai, T Uno, M Uyeda
The inhibitory effects of various fatty acids on topoisomerases were examined, and their structure activity relationships and mechanism of action were studied. Saturated fatty acids (C6:0 to C22:0) did not inhibit topoisomerase I, but cis-unsaturated fatty acids (C16:1 to C22:1) with one double bond showed strong inhibition of the enzyme. The inhibitory potency depended on the carbon chain length and the position of the double bond in the fatty acid molecule. The trans-isomer, methyl ester and hydroxyl derivative of oleic acid had no or little inhibitory effect on topoisomerases I and II. Among the compounds studied petroselinic acid and vaccenic acid (C18:1) with a cis-double bond were the potent inhibitors. Petroselinic acid was a topoisomerase inhibitor of the cleavable complex-nonforming type and acted directly on the enzyme molecule in a noncompetitive manner without DNA intercalation.
{"title":"Inhibition of topoisomerases by fatty acids.","authors":"K Suzuki, F Shono, H Kai, T Uno, M Uyeda","doi":"10.1080/14756360009040693","DOIUrl":"https://doi.org/10.1080/14756360009040693","url":null,"abstract":"<p><p>The inhibitory effects of various fatty acids on topoisomerases were examined, and their structure activity relationships and mechanism of action were studied. Saturated fatty acids (C6:0 to C22:0) did not inhibit topoisomerase I, but cis-unsaturated fatty acids (C16:1 to C22:1) with one double bond showed strong inhibition of the enzyme. The inhibitory potency depended on the carbon chain length and the position of the double bond in the fatty acid molecule. The trans-isomer, methyl ester and hydroxyl derivative of oleic acid had no or little inhibitory effect on topoisomerases I and II. Among the compounds studied petroselinic acid and vaccenic acid (C18:1) with a cis-double bond were the potent inhibitors. Petroselinic acid was a topoisomerase inhibitor of the cleavable complex-nonforming type and acted directly on the enzyme molecule in a noncompetitive manner without DNA intercalation.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 4","pages":"357-66"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14756360009040693","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21829022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}