R Colominas-Ciuró, A Kowalczewska, M Jefimow, M S Wojciechowski
Animals initiate physiological mechanisms to re-establish homeostasis following environmental stress. To understand how bird physiology responds to abiotic stress, we quantified changes in hematological markers of chronic stress response and body condition of male zebra finches (Taeniopygia guttata) acclimated for 18 weeks to hot and cool temperatures (daytime temperature: 40°C and 23°C) with water available ad libitum or restricted during half of the active phase. Ambient temperature induced greater chronic stress than restricted water availability. While cool compared to hot temperatures induced higher numbers of heterophils and H : L ratios and declined total leucocyte counts, water restriction decreased the number of lymphocytes compared to water ad libitum. Body condition correlated with hematological parameters showing that birds with better condition had greater capacity to face environmental stress. Therefore, prolonged exposure to cool periods may result in chronic stress in zebra finches, especially, if body condition is weakened.
动物在受到环境压力后会启动生理机制来重建体内平衡。为了了解鸟类生理如何应对非生物压力,我们量化了雄性斑马雀(Taeniopygia guttata)在高温和低温(白天温度:40°C 和 23°C)环境中适应 18 周后慢性压力反应的血液学指标和身体状况的变化。与限制供水相比,环境温度引起的慢性压力更大。与高温相比,低温诱导的异性嗜酸性粒细胞数量和 H : L 比率更高,白细胞总数减少;与自由饮水相比,限制饮水减少了淋巴细胞数量。身体状况与血液学参数相关,表明身体状况较好的鸟类面对环境压力的能力更强。因此,长期暴露在低温环境中可能会对斑马雀造成慢性应激,尤其是在体质较弱的情况下。
{"title":"Temperature and water availability induce chronic stress responses in Zebra finch (Taeniopygia guttata).","authors":"R Colominas-Ciuró, A Kowalczewska, M Jefimow, M S Wojciechowski","doi":"10.1242/jeb.247743","DOIUrl":"https://doi.org/10.1242/jeb.247743","url":null,"abstract":"<p><p>Animals initiate physiological mechanisms to re-establish homeostasis following environmental stress. To understand how bird physiology responds to abiotic stress, we quantified changes in hematological markers of chronic stress response and body condition of male zebra finches (Taeniopygia guttata) acclimated for 18 weeks to hot and cool temperatures (daytime temperature: 40°C and 23°C) with water available ad libitum or restricted during half of the active phase. Ambient temperature induced greater chronic stress than restricted water availability. While cool compared to hot temperatures induced higher numbers of heterophils and H : L ratios and declined total leucocyte counts, water restriction decreased the number of lymphocytes compared to water ad libitum. Body condition correlated with hematological parameters showing that birds with better condition had greater capacity to face environmental stress. Therefore, prolonged exposure to cool periods may result in chronic stress in zebra finches, especially, if body condition is weakened.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kamar Nayal, Joshua J Krupp, Osama H M H Abdalla, Joel D Levine
Desiccation is a fundamental challenge confronted by all terrestrial organisms, particularly insects. With a relatively small body size and large surface-to-volume ratio insects are susceptible to rapid evaporative water loss and dehydration. To counter these physical constraints, insects have acquired specialized adaptations, including a hydrophobic cuticle that acts as a physical barrier to transpiration. We previously reported that genetic ablation of the oenocytes - specialized cells required to produce cuticular hydrocarbons (HCs) - significantly reduced survivorship under desiccative conditions in the fruit fly, Drosophila melanogaster. Although increased transpiration - resulting from the loss of the oenocytes and HCs - was hypothesized to be responsible for the decrease in desiccation survival, this possibility was not directly tested. Here we investigate the underlying physiological mechanisms contributing to the reduced survival of oenocyte-less (oe-) flies. Using flow-through respirometry we show that oe- flies, regardless of sex, exhibited an increased rate of transpiration relative to wild-type controls, and that coating oe- flies with fly-derived HC extract restored the rate to near wild-type levels. Importantly, total body water stores, including metabolic water reserves, as well as dehydration tolerance, measured as the percent of total body water lost at time of death, were largely unchanged in oe- flies. Together, our results directly demonstrate the critically important role played by the oenocytes and cuticular HCs to promote desiccation resistance.
干燥是所有陆生生物,尤其是昆虫面临的一个基本挑战。昆虫的体型相对较小,表面积与体积的比例较大,很容易受到快速蒸发失水和脱水的影响。为了应对这些物理限制,昆虫获得了专门的适应性,包括疏水性角质层,作为蒸腾的物理屏障。我们以前曾报道过,在干燥条件下,果蝇(Drosophila melanogaster)的存活率会显著降低。尽管有人推测蒸腾作用的增加--由于失去了卵母细胞和 HCs--是干燥存活率降低的原因,但这种可能性并未得到直接验证。在这里,我们研究了导致无卵母细胞(oe-)苍蝇存活率降低的潜在生理机制。通过流式呼吸测定法,我们发现与野生型对照组相比,无卵母细胞苍蝇(无论性别)的蒸腾速率都有所提高,给无卵母细胞苍蝇涂上苍蝇提取的 HC 提取物后,蒸腾速率恢复到接近野生型的水平。重要的是,包括代谢水储备在内的体内总蓄水量以及脱水耐受性(以死亡时体内总失水量的百分比来衡量)在黑蝇体内基本没有变化。总之,我们的研究结果直接证明了卵母细胞和角质层碳氢化合物在促进脱水抵抗力方面发挥着极其重要的作用。
{"title":"Cuticular hydrocarbons promote desiccation resistance by preventing transpiration in D. melanogaster.","authors":"Kamar Nayal, Joshua J Krupp, Osama H M H Abdalla, Joel D Levine","doi":"10.1242/jeb.247752","DOIUrl":"https://doi.org/10.1242/jeb.247752","url":null,"abstract":"<p><p>Desiccation is a fundamental challenge confronted by all terrestrial organisms, particularly insects. With a relatively small body size and large surface-to-volume ratio insects are susceptible to rapid evaporative water loss and dehydration. To counter these physical constraints, insects have acquired specialized adaptations, including a hydrophobic cuticle that acts as a physical barrier to transpiration. We previously reported that genetic ablation of the oenocytes - specialized cells required to produce cuticular hydrocarbons (HCs) - significantly reduced survivorship under desiccative conditions in the fruit fly, Drosophila melanogaster. Although increased transpiration - resulting from the loss of the oenocytes and HCs - was hypothesized to be responsible for the decrease in desiccation survival, this possibility was not directly tested. Here we investigate the underlying physiological mechanisms contributing to the reduced survival of oenocyte-less (oe-) flies. Using flow-through respirometry we show that oe- flies, regardless of sex, exhibited an increased rate of transpiration relative to wild-type controls, and that coating oe- flies with fly-derived HC extract restored the rate to near wild-type levels. Importantly, total body water stores, including metabolic water reserves, as well as dehydration tolerance, measured as the percent of total body water lost at time of death, were largely unchanged in oe- flies. Together, our results directly demonstrate the critically important role played by the oenocytes and cuticular HCs to promote desiccation resistance.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuting Lin, Jeffery W Rankin, Luís P Lamas, Mehran Moazen, John R Hutchinson
Terrestrial animals not only need to walk and run but also lie prone to rest and then stand up. Sit-to-stand (STS) and sit-to-walk (STW) transitions are vital behaviours little studied in species other than humans so far, but likely impose biomechanical constraints on limb design because they involve near-maximal excursions of limb joints that should require large length changes and force production from muscles. By integrating data from experiments into musculoskeletal simulations, we analysed joint motions, ground reaction forces, and muscle dynamics during STS and STW in a large terrestrial, bipedal, and cursorial bird: the emu (Dromaius novaehollandiae, ∼30 kg). Simulation results suggest that in both STS and STW, emus operate near the functional limits (∼50 % of shortening/lengthening) of some of their hindlimb muscles, particularly in distal muscles with limited capacity for length change and leverage. Both movements involved high muscle activations (> 50 %) and force generation of the major joint extensor muscles early in the transition. STW required larger net joint moments and non-sagittal motions than STS, entailing greater demands for muscle capacity. Whilst our study involves multiple assumptions, our findings lay the groundwork for future studies to understand, for example, how tendon contributions may reduce excessive muscle demands, especially in the distal hindlimb. As the first investigation into how an avian species stands up, this study provides a foundational framework for future comparative studies investigating organismal morphofunctional specialisations and evolution, offering potential robotics and animal welfare applications.
{"title":"Hindlimb kinematics, kinetics, and muscle dynamics during sit-to-stand and sit-to-walk transitions in emus (Dromaius novaehollandiae).","authors":"Yuting Lin, Jeffery W Rankin, Luís P Lamas, Mehran Moazen, John R Hutchinson","doi":"10.1242/jeb.247519","DOIUrl":"https://doi.org/10.1242/jeb.247519","url":null,"abstract":"<p><p>Terrestrial animals not only need to walk and run but also lie prone to rest and then stand up. Sit-to-stand (STS) and sit-to-walk (STW) transitions are vital behaviours little studied in species other than humans so far, but likely impose biomechanical constraints on limb design because they involve near-maximal excursions of limb joints that should require large length changes and force production from muscles. By integrating data from experiments into musculoskeletal simulations, we analysed joint motions, ground reaction forces, and muscle dynamics during STS and STW in a large terrestrial, bipedal, and cursorial bird: the emu (Dromaius novaehollandiae, ∼30 kg). Simulation results suggest that in both STS and STW, emus operate near the functional limits (∼50 % of shortening/lengthening) of some of their hindlimb muscles, particularly in distal muscles with limited capacity for length change and leverage. Both movements involved high muscle activations (> 50 %) and force generation of the major joint extensor muscles early in the transition. STW required larger net joint moments and non-sagittal motions than STS, entailing greater demands for muscle capacity. Whilst our study involves multiple assumptions, our findings lay the groundwork for future studies to understand, for example, how tendon contributions may reduce excessive muscle demands, especially in the distal hindlimb. As the first investigation into how an avian species stands up, this study provides a foundational framework for future comparative studies investigating organismal morphofunctional specialisations and evolution, offering potential robotics and animal welfare applications.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marian Y Hu, Tina M Bassarab, William W J Chang, Smilla L Tetzlaff, Feli Strohbach, Sam Dupont, Meike Stumpp
The energetic costs to generate calcium carbonate skeletons and shells in marine organisms remain largely speculative due to the scarcity of empirical data. However, this information is critical to estimate energetic limitations of marine calcifiers that can explain their sensitivities to changes in sea water carbonate chemistry in past, present and future marine systems. The cost of calcification was evaluated using larval stages of the purple sea urchin, Strongylocentrotus purpuratus. We developed a skeleton re-mineralization assay, in which the skeleton was dissolved in live larvae followed by a re-mineralization over a few days. During skeleton re-mineralization, energetic costs were estimated through the measurement of key metabolic parameters including whole animal metabolic rates, citrate synthase (CS) enzyme activities and mRNA expression as well as mitochondrial densities in the calcifying primary mesenchyme cells (PMCs). Minor increases in a CS activity and a 10-15% increase in mitochondrial densities in PMCs were observed in re-mineralizing larvae as compared to control larvae. Re-mineralization under three different pH conditions (pH 8.1, pH 7.6 and pH 7.1) decreased with decreasing pH accompanied by pronounced increases in CS expression levels and increased mitochondrial densities in PMCs at pH 7.6. Despite a prominent increase in mitochondrial density of primary mesenchyme cells, particularly in the calcifying cohort of this cell type, this work demonstrated a low overall metabolic response to increased mineralization rates on the whole animal level under both, high and low pH conditions. We conclude that calcification in sea urchin larvae is compromised under low pH conditions, associated with low energetic efforts to fuel compensatory processes.
{"title":"Calcification in sea urchin larvae is associated with low metabolic costs.","authors":"Marian Y Hu, Tina M Bassarab, William W J Chang, Smilla L Tetzlaff, Feli Strohbach, Sam Dupont, Meike Stumpp","doi":"10.1242/jeb.248145","DOIUrl":"https://doi.org/10.1242/jeb.248145","url":null,"abstract":"<p><p>The energetic costs to generate calcium carbonate skeletons and shells in marine organisms remain largely speculative due to the scarcity of empirical data. However, this information is critical to estimate energetic limitations of marine calcifiers that can explain their sensitivities to changes in sea water carbonate chemistry in past, present and future marine systems. The cost of calcification was evaluated using larval stages of the purple sea urchin, Strongylocentrotus purpuratus. We developed a skeleton re-mineralization assay, in which the skeleton was dissolved in live larvae followed by a re-mineralization over a few days. During skeleton re-mineralization, energetic costs were estimated through the measurement of key metabolic parameters including whole animal metabolic rates, citrate synthase (CS) enzyme activities and mRNA expression as well as mitochondrial densities in the calcifying primary mesenchyme cells (PMCs). Minor increases in a CS activity and a 10-15% increase in mitochondrial densities in PMCs were observed in re-mineralizing larvae as compared to control larvae. Re-mineralization under three different pH conditions (pH 8.1, pH 7.6 and pH 7.1) decreased with decreasing pH accompanied by pronounced increases in CS expression levels and increased mitochondrial densities in PMCs at pH 7.6. Despite a prominent increase in mitochondrial density of primary mesenchyme cells, particularly in the calcifying cohort of this cell type, this work demonstrated a low overall metabolic response to increased mineralization rates on the whole animal level under both, high and low pH conditions. We conclude that calcification in sea urchin larvae is compromised under low pH conditions, associated with low energetic efforts to fuel compensatory processes.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah A Brinkerhoff, Natalia Sánchez, Meral N Culver, William M Murrah, Austin T Robinson, J Danielle McCullough, Matthew W Miller, Jaimie A Roper
Gait adaptation during bipedal walking allows people to adjust their walking patterns to maintain balance, avoid obstacles, and avoid injury. Adaptation involves complex processes that function to maintain stability and reduce energy expenditure. However, the processes that influence walking patterns during different points in the adaptation period remain to be investigated. We recruited seventeen young adults ages 19-35 to assess split-belt adaptation. We also assessed individual aerobic capacity to understand how aerobic capacity influences adaptation. We analyzed step lengths, step length asymmetry (SLA), mediolateral margins of stability, positive, negative, and net mechanical work rates, as well as metabolic rate during adaptation. We used dual-rate exponential mixed-effects regressions to estimate the adaptation of each measure over two timescales. Our results indicate that mediolateral stability adapts over a single timescale in under 1 minute, while mechanical work rates, metabolic rate, step lengths, and step length asymmetry adapt over two distinct timescales, ranging from 3.5 to 11.2 minutes. We then regressed mediolateral margins of stability, net mechanical work rate, and metabolic rate on step length asymmetry during early and late adaptation phases to determine if stability drives early adaptation and energetic cost drives late adaptation. Stability predicted SLA during the initial rapid onset of adaptation, and mechanical work rate predicted SLA during the latter part of adaptation. These findings suggest that stability optimization may contribute to early gait changes and that mechanical work contributes to later changes during adaptation. A final sub-analysis assessed the effect of aerobic capacity on step length asymmetry adaptation. Aerobic capacity levels below 36 and above 43 ml/kg/min resulted in greater adaptation, underscoring the metabolic influences on gait adaptation. This study illuminates the complex interplay between biomechanical and metabolic factors in gait adaptation, shedding light on fundamental mechanisms underlying human locomotion.
{"title":"The dual timescales of gait adaptation: Initial stability adjustments followed by subsequent energetic cost adjustments.","authors":"Sarah A Brinkerhoff, Natalia Sánchez, Meral N Culver, William M Murrah, Austin T Robinson, J Danielle McCullough, Matthew W Miller, Jaimie A Roper","doi":"10.1242/jeb.249217","DOIUrl":"https://doi.org/10.1242/jeb.249217","url":null,"abstract":"<p><p>Gait adaptation during bipedal walking allows people to adjust their walking patterns to maintain balance, avoid obstacles, and avoid injury. Adaptation involves complex processes that function to maintain stability and reduce energy expenditure. However, the processes that influence walking patterns during different points in the adaptation period remain to be investigated. We recruited seventeen young adults ages 19-35 to assess split-belt adaptation. We also assessed individual aerobic capacity to understand how aerobic capacity influences adaptation. We analyzed step lengths, step length asymmetry (SLA), mediolateral margins of stability, positive, negative, and net mechanical work rates, as well as metabolic rate during adaptation. We used dual-rate exponential mixed-effects regressions to estimate the adaptation of each measure over two timescales. Our results indicate that mediolateral stability adapts over a single timescale in under 1 minute, while mechanical work rates, metabolic rate, step lengths, and step length asymmetry adapt over two distinct timescales, ranging from 3.5 to 11.2 minutes. We then regressed mediolateral margins of stability, net mechanical work rate, and metabolic rate on step length asymmetry during early and late adaptation phases to determine if stability drives early adaptation and energetic cost drives late adaptation. Stability predicted SLA during the initial rapid onset of adaptation, and mechanical work rate predicted SLA during the latter part of adaptation. These findings suggest that stability optimization may contribute to early gait changes and that mechanical work contributes to later changes during adaptation. A final sub-analysis assessed the effect of aerobic capacity on step length asymmetry adaptation. Aerobic capacity levels below 36 and above 43 ml/kg/min resulted in greater adaptation, underscoring the metabolic influences on gait adaptation. This study illuminates the complex interplay between biomechanical and metabolic factors in gait adaptation, shedding light on fundamental mechanisms underlying human locomotion.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vincent Godesberg, Till Bockemühl, Ansgar Büschges
Insects use walking behavior in a large number of contexts, such as exploration, foraging, escape and pursuit, or migration. A lot is known on how nervous systems produce this behavior in general and also how certain parameters vary with regard to walking direction or speed, for instance. An aspect that has not received much attention is if and how walking behavior varies across individuals of a particular species. To address this, we created a large corpus of kinematic walking data of many individuals of the fruit fly Drosophila. We only selected instances of straight walking in a narrow range of walking speeds to minimize the influence of high-level parameters, like turning and walking speed, aiming to uncover more subtle aspects of variability. Using high-speed videography and automated annotation we captured the positions of the six leg tips for thousands of steps and used principal components analysis to characterize the postural space individuals used during walking. Our analysis shows that the largest part of walking kinematics can be described by five principal components (PCs). Separation of these five PCs into a 2-dimensional and a 3-dimensional subspace divided the description of walking behavior into invariant features shared across individuals and features that relate to the specifics of individuals; the latter features can be regarded as idiosyncrasies. We also demonstrate that this approach can detect the effects of experimental interventions in an unbiased manner and that general aspects of individuality, such as the the individual walking posture, can be described.
{"title":"Natural variability and individuality of walking behavior in Drosophila.","authors":"Vincent Godesberg, Till Bockemühl, Ansgar Büschges","doi":"10.1242/jeb.247878","DOIUrl":"https://doi.org/10.1242/jeb.247878","url":null,"abstract":"<p><p>Insects use walking behavior in a large number of contexts, such as exploration, foraging, escape and pursuit, or migration. A lot is known on how nervous systems produce this behavior in general and also how certain parameters vary with regard to walking direction or speed, for instance. An aspect that has not received much attention is if and how walking behavior varies across individuals of a particular species. To address this, we created a large corpus of kinematic walking data of many individuals of the fruit fly Drosophila. We only selected instances of straight walking in a narrow range of walking speeds to minimize the influence of high-level parameters, like turning and walking speed, aiming to uncover more subtle aspects of variability. Using high-speed videography and automated annotation we captured the positions of the six leg tips for thousands of steps and used principal components analysis to characterize the postural space individuals used during walking. Our analysis shows that the largest part of walking kinematics can be described by five principal components (PCs). Separation of these five PCs into a 2-dimensional and a 3-dimensional subspace divided the description of walking behavior into invariant features shared across individuals and features that relate to the specifics of individuals; the latter features can be regarded as idiosyncrasies. We also demonstrate that this approach can detect the effects of experimental interventions in an unbiased manner and that general aspects of individuality, such as the the individual walking posture, can be described.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Craig M Lind, Joseph Agugliaro, Jason Ortega, Jenna N Palmisano, Jeffrey M Lorch, Tran B Truong, Terence M Farrell
Disease may be both a cause and consequence of stress, and physiological responses to infectious disease may involve stress coping mechanisms that have important fitness consequences. For example, glucocorticoid and glycemic responses may affect host fitness by altering resource allocation and use in hosts, and these responses may be affected by competing stressors. To better understand the factors that affect host responses to infection, we challenged the immune system of field acclimatized pygmy rattlesnakes, Sistrurus miliarius, with a sterile antigen, lipopolysaccharide (LPS), and measured the glucocorticoid and glycemic response in healthy non-reproductive snakes, snakes afflicted with an emerging mycosis (ophidiomycosis), and pregnant snakes. We hypothesized that LPS challenge would result in a glucocorticoid and glycemic response typical of the vertebrate acute phase response (APR), and therefore predicted that LPS challenge would result in an acute increase in plasma corticosterone (CORT) and a decline in plasma glucose in all individuals. Additionally, we hypothesized that the APR would be attenuated in individuals simultaneously coping with additional challenges to homeostasis (i.e., disease or reproduction). As predicted, immune challenge elicited an acute increase in plasma CORT and a decrease in plasma glucose. Snakes coping with ophidiomycosis and pregnant snakes were able to mount a robust glucocorticoid and hypoglycemic response to LPS challenge, which was contrary to our hypothesis. Our findings clarify directions of causality linking infection, glucocorticoids, and glucose, and emphasize the importance of future research examining the fitness consequences of interactions between stress and disease in wildlife threatened by emerging pathogens.
{"title":"Glucocorticoid and glycemic responses to immune challenge in a viviparous snake afflicted with an emerging mycosis.","authors":"Craig M Lind, Joseph Agugliaro, Jason Ortega, Jenna N Palmisano, Jeffrey M Lorch, Tran B Truong, Terence M Farrell","doi":"10.1242/jeb.247962","DOIUrl":"https://doi.org/10.1242/jeb.247962","url":null,"abstract":"<p><p>Disease may be both a cause and consequence of stress, and physiological responses to infectious disease may involve stress coping mechanisms that have important fitness consequences. For example, glucocorticoid and glycemic responses may affect host fitness by altering resource allocation and use in hosts, and these responses may be affected by competing stressors. To better understand the factors that affect host responses to infection, we challenged the immune system of field acclimatized pygmy rattlesnakes, Sistrurus miliarius, with a sterile antigen, lipopolysaccharide (LPS), and measured the glucocorticoid and glycemic response in healthy non-reproductive snakes, snakes afflicted with an emerging mycosis (ophidiomycosis), and pregnant snakes. We hypothesized that LPS challenge would result in a glucocorticoid and glycemic response typical of the vertebrate acute phase response (APR), and therefore predicted that LPS challenge would result in an acute increase in plasma corticosterone (CORT) and a decline in plasma glucose in all individuals. Additionally, we hypothesized that the APR would be attenuated in individuals simultaneously coping with additional challenges to homeostasis (i.e., disease or reproduction). As predicted, immune challenge elicited an acute increase in plasma CORT and a decrease in plasma glucose. Snakes coping with ophidiomycosis and pregnant snakes were able to mount a robust glucocorticoid and hypoglycemic response to LPS challenge, which was contrary to our hypothesis. Our findings clarify directions of causality linking infection, glucocorticoids, and glucose, and emphasize the importance of future research examining the fitness consequences of interactions between stress and disease in wildlife threatened by emerging pathogens.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Damián Oliva, Matias Gultig, Alejandro Cámera, Daniel Tomsic
Upon visually detecting a moving predator animals often freeze, i.e. stop moving, to minimize being uncovered and to gather detailed information of the object's movements and properties. In certain conditions the freezing behavior can be enough to avoid a predatory menace but, when the risk is high or increases to a higher level, animals switch strategy and engage in an escape response. The neural bases underlying escape responses to visual stimuli are extensively investigated both in vertebrates and arthropods. However, those involved in freezing behaviors are much less studied. Here, we investigated the freezing behavior displayed by the crab Neohelice granulata when confronted with a variety of looming stimuli simulating objects of distinct sizes approaching on a collision course at different speeds. The experiments were performed in a treadmill-like device. Animals engaged in exploratory walks respond to the looming stimulus with freezing followed by escaping. The analysis of the stimulus optical variables shows that regardless of the looming dynamic, the freezing decision is made when the angular size of the object increases by 1.4°. In vivo intracellular recording responses of Monostratified Lobula Giant Neurons (MLG1) to the same looming stimuli show that the freezing times correlate with the times predicted by a hypothetical spike counter of this neuron.
{"title":"Freezing of movements and its correspondence with MLG1 neurons response to looming stimuli in the crab Neohelice.","authors":"Damián Oliva, Matias Gultig, Alejandro Cámera, Daniel Tomsic","doi":"10.1242/jeb.248124","DOIUrl":"https://doi.org/10.1242/jeb.248124","url":null,"abstract":"<p><p>Upon visually detecting a moving predator animals often freeze, i.e. stop moving, to minimize being uncovered and to gather detailed information of the object's movements and properties. In certain conditions the freezing behavior can be enough to avoid a predatory menace but, when the risk is high or increases to a higher level, animals switch strategy and engage in an escape response. The neural bases underlying escape responses to visual stimuli are extensively investigated both in vertebrates and arthropods. However, those involved in freezing behaviors are much less studied. Here, we investigated the freezing behavior displayed by the crab Neohelice granulata when confronted with a variety of looming stimuli simulating objects of distinct sizes approaching on a collision course at different speeds. The experiments were performed in a treadmill-like device. Animals engaged in exploratory walks respond to the looming stimulus with freezing followed by escaping. The analysis of the stimulus optical variables shows that regardless of the looming dynamic, the freezing decision is made when the angular size of the object increases by 1.4°. In vivo intracellular recording responses of Monostratified Lobula Giant Neurons (MLG1) to the same looming stimuli show that the freezing times correlate with the times predicted by a hypothetical spike counter of this neuron.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicole Y Kelp, Kylie Tucker, François Hug, Taylor J M Dick
Skeletal muscles change shape when they contract. Current insights into the effects of shape change on muscle function have primarily come from experiments on isolated muscles operating at maximal activation levels. However, when muscles contract and change shape, the forces they apply onto surrounding muscles will also change. The impact of an altered contractile environment (i.e., mechanical behaviour of surrounding muscle) on muscle shape change, remains unknown. To address this, we altered the mechanical contributions of the gastrocnemii during isometric plantarflexion contractions [via changing knee angle] and determined if there were associated changes in how the muscles of the triceps surae bulged in thickness during a ramped contraction. We combined B-mode ultrasound imaging with surface electromyography to quantify the neuromechanical contributions of the medial (MG) and lateral gastrocnemius (MG) and soleus (SOL) muscles during isometric plantarflexion contractions. Our results demonstrated that at the same SOL activity levels, altering knee angle had no influence on the magnitude of muscle shape change (thickness) in the triceps surae muscles. We observed high levels of inter-individual variability in muscle bulging patterns, particularly in the knee flexed position, suggesting a complex relationship between muscle bulging and activation strategies in the triceps surae, which may be related to differences in muscle mechanical properties between participants or across muscles. Our findings highlight the dynamics of in vivo bulging interactions among muscles within the triceps surae and provide insights for future investigations into the impact of altered contractile environments on three-dimensional muscle deformations and force production.
骨骼肌在收缩时会改变形状。目前,有关形状变化对肌肉功能影响的研究主要来自以最大激活水平运行的孤立肌肉为对象的实验。然而,当肌肉收缩并改变形状时,它们施加到周围肌肉上的力也会发生变化。改变收缩环境(即周围肌肉的机械行为)对肌肉形状变化的影响仍然未知。为了解决这个问题,我们[通过改变膝关节角度]改变了等长跖屈收缩时胃网膜的机械贡献,并确定了在斜坡收缩过程中,肱三头肌的厚度隆起是否会发生相关变化。我们将 B 型超声波成像与表面肌电图相结合,量化了腓肠肌内侧(MG)、外侧(MG)和比目鱼肌(SOL)在等长跖屈收缩时的神经机械贡献。我们的结果表明,在相同的比目鱼肌活动水平下,改变膝关节角度不会影响肱三头肌肌肉形状变化(厚度)的幅度。我们观察到肌肉隆起模式的个体间差异很大,尤其是在屈膝位置,这表明肱三头肌的肌肉隆起和激活策略之间存在复杂的关系,这可能与参与者之间或不同肌肉之间的肌肉机械特性差异有关。我们的研究结果突显了肱三头肌内肌肉之间在体内隆起相互作用的动态变化,并为今后研究改变收缩环境对三维肌肉变形和力量产生的影响提供了启示。
{"title":"Effects of altered contractile environment on muscle shape change in the triceps surae.","authors":"Nicole Y Kelp, Kylie Tucker, François Hug, Taylor J M Dick","doi":"10.1242/jeb.248118","DOIUrl":"https://doi.org/10.1242/jeb.248118","url":null,"abstract":"<p><p>Skeletal muscles change shape when they contract. Current insights into the effects of shape change on muscle function have primarily come from experiments on isolated muscles operating at maximal activation levels. However, when muscles contract and change shape, the forces they apply onto surrounding muscles will also change. The impact of an altered contractile environment (i.e., mechanical behaviour of surrounding muscle) on muscle shape change, remains unknown. To address this, we altered the mechanical contributions of the gastrocnemii during isometric plantarflexion contractions [via changing knee angle] and determined if there were associated changes in how the muscles of the triceps surae bulged in thickness during a ramped contraction. We combined B-mode ultrasound imaging with surface electromyography to quantify the neuromechanical contributions of the medial (MG) and lateral gastrocnemius (MG) and soleus (SOL) muscles during isometric plantarflexion contractions. Our results demonstrated that at the same SOL activity levels, altering knee angle had no influence on the magnitude of muscle shape change (thickness) in the triceps surae muscles. We observed high levels of inter-individual variability in muscle bulging patterns, particularly in the knee flexed position, suggesting a complex relationship between muscle bulging and activation strategies in the triceps surae, which may be related to differences in muscle mechanical properties between participants or across muscles. Our findings highlight the dynamics of in vivo bulging interactions among muscles within the triceps surae and provide insights for future investigations into the impact of altered contractile environments on three-dimensional muscle deformations and force production.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Faith K Heagy, Katie N Clements, Carrie L Adams, Elena Blain, Fadi A Issa
Social dominance is prevalent throughout the animal kingdom. It facilitates the stabilization of social relationships and allows animals to divide resources according to social rank. Zebrafish form stable dominance relationships that consist of dominants and subordinates. Although social-status-dependent differences in behavior must arise due to neural plasticity, mechanisms of how neural circuits are reconfigured to cope with social dominance are poorly described. Here, we describe how the posterior tuberculum nucleus (PT), which integrates sensory social information to modulate spinal motor circuits, is morphologically and functionally influenced by social status. We combined non-invasive behavioral monitoring of motor activity (startle escape and swim) and histological approaches to investigate how social dominance affects the morphological structure, axosomatic synaptic connectivity, and functional activity of the PT in relation to changes in motor behavior. We show that dopaminergic cell number significantly increases in dominants compared to subordinates, while PT synaptic interconnectivity, demonstrated with PSD-95 expression, is higher in subordinates compared to dominants. Secondly, these socially induced morphological differences emerge after one week of dominance formation and correlate with differences in cellular activities illustrated with higher phosphor-S6 ribosomal protein expression in dominants compared to subordinates. Thirdly, these morphological differences are reversible as the social environment evolves and correlates with adaptations in startle escape and swim behaviors. Our results provide new insights of the neural bases of social behavior that may be applicable to other social species with similar structural and functional organization.
{"title":"Socially induced plasticity of the posterior tuberculum and motor behavior in zebrafish (Danio rerio).","authors":"Faith K Heagy, Katie N Clements, Carrie L Adams, Elena Blain, Fadi A Issa","doi":"10.1242/jeb.248148","DOIUrl":"https://doi.org/10.1242/jeb.248148","url":null,"abstract":"<p><p>Social dominance is prevalent throughout the animal kingdom. It facilitates the stabilization of social relationships and allows animals to divide resources according to social rank. Zebrafish form stable dominance relationships that consist of dominants and subordinates. Although social-status-dependent differences in behavior must arise due to neural plasticity, mechanisms of how neural circuits are reconfigured to cope with social dominance are poorly described. Here, we describe how the posterior tuberculum nucleus (PT), which integrates sensory social information to modulate spinal motor circuits, is morphologically and functionally influenced by social status. We combined non-invasive behavioral monitoring of motor activity (startle escape and swim) and histological approaches to investigate how social dominance affects the morphological structure, axosomatic synaptic connectivity, and functional activity of the PT in relation to changes in motor behavior. We show that dopaminergic cell number significantly increases in dominants compared to subordinates, while PT synaptic interconnectivity, demonstrated with PSD-95 expression, is higher in subordinates compared to dominants. Secondly, these socially induced morphological differences emerge after one week of dominance formation and correlate with differences in cellular activities illustrated with higher phosphor-S6 ribosomal protein expression in dominants compared to subordinates. Thirdly, these morphological differences are reversible as the social environment evolves and correlates with adaptations in startle escape and swim behaviors. Our results provide new insights of the neural bases of social behavior that may be applicable to other social species with similar structural and functional organization.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}